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Biomechanics
Comment

There is always a trade-off
between speed and force in
a lever system: comment
on McHenry (2010)

In a recent Biology Letters article, McHenry [1] makes a
distinction between levers that operate under ‘quasi-
static’ and ‘dynamic’ conditions, concluding that ‘no
trade-off between force and velocity exists in a lever
with spring–mass dynamics’. As evidence, McHenry
uses a computer model to simulate a kicking locust
leg powered by a spring. While we concur with aspects
of McHenry’s analysis—and we agree that complex
relationships between forces and speeds may emerge
from some biological levers—we offer a different
interpretation of McHenry’s data.

1. What distinguishes levers under quasi-static
and dynamic conditions?

McHenry compares the maximum tangential velocity
of the kicking leg for levers with different geometry.
Because all models generate the same maximum speed,
but different forces (i.e. different accelerations of con-
stant mass), McHenry infers that geometry of the lever
‘does not present a trade-off between force and velocity’.
McHenry attributes this result to dynamic conditions,
specifically to the inertia of the leg and the capacity of
the spring to overcome this inertia.

We assert that the fundamental action of a rigid,
frictionless and massless lever does not change under
dynamic conditions. When any such lever performs
work, the output force and velocity are related to the
input force and velocity via mechanical advantage of
the lever, A. This force–velocity trade-off follows
from balancing moments on the lever:

moment balance: Finlin � Foutlout ¼ 0; ð1:1Þ
yielding

force enhancement: Fout ¼
lin

lout

Fin ¼ AFin ð1:2Þ

and kinematics: v ¼ l _u ) vout ¼
lout

lin
vin ¼

1

A
vin:

ð1:3Þ

Fin, Fout, vin, vout are the components of force and velocity
perpendicular to the lever (figure 1). These equations are
consistent with McHenry’s model, and they hold under
quasi-static and dynamic conditions, regardless of
whether the forces vary with time. Importantly, power
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input equals power output at each instant:

Foutvout ¼ Finvin: ð1:4Þ
It appears McHenry made differing assumptions

about the input forces and speeds when analysing lever
mechanics under quasi-static and dynamic conditions.
When comparing levers under quasi-static conditions,
McHenry assumed that the input speeds were identical,
but not the input forces. Under dynamic conditions, he
assumed that the input (length-dependent) forces were
identical, but not the input speeds. These assumptions
and their implications for power transmission (not
spring–mass dynamics) explain McHenry’s result that
levers with high A ‘generate more force and achieve
high speed more quickly’ under dynamic conditions,
when compared with quasi-static ones.

2. Does McHenry’s model exhibit a force–
velocity trade-off?

We conducted simulations of a lever with spring–mass
dynamics (figure 1, similar to McHenry’s model), and we
compared the time-varying forces, velocities and powers
associated with the input (spring) and output (mass) for
levers with different geometry. We used equation (1.1)
assuming Fout ¼ ma (incorporating all of the leg’s mass
into Fout, as McHenry did) and Fin ¼ Fspring (simplifying
McHenry’s geometry such that the spring force acted
perpendicular to the lever throughout time). These
simulations confirm that equations (1.2) and (1.3)
hold: while Fout/Fin increases with A, vout/vin decreases
with A (figure 2). Therefore, a force–velocity trade-off
indeed exists.

3. Does output force or velocity alone
characterize lever mechanics?

Levers exhibit a force–velocity trade-off because they
transmit power (equation (1.4)). In McHenry’s analysis,
the spring’s input power is not the same in each simu-
lation. This is because the rate of energy release from
the spring depends on the inertial resistance of the mass
(which depends on lout). By accelerating the same mass
with the same length-dependent (but not rate-depen-
dent) force, McHenry guarantees that his higher A
lever transmits greater power (figure 2 and electronic
supplementary material, figure S1). Though arguably
interesting, this approach makes it difficult to infer
general principles about the effects of lever geometry—
especially if only the output force and velocity are con-
sidered. To accurately characterize the mechanics of a
lever, ratios of both the input and output forces and vel-
ocities must be analysed (equations (1.2)–(1.4)).
Although maximum velocity may be relevant for
McHenry’s example, the function of many musculoske-
letal levers is to transmit power (e.g. [2,3]).

A force–velocity trade-off is most easily discerned
when the levers being compared have identical input
force and velocity, and therefore identical power.
Under identical power, levers with different A clearly
exhibit a trade-off between output force and speed
(electronic supplementary material, figure S2).

4. What determines the mass’s maximum
velocity?

McHenry concludes that no force–velocity trade-off
exists for his model, in part, because the maximum
speed of the kicking leg does not depend on geometry.
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Figure 1. Lever analogy for a locust leg with spring–mass

dynamics. Equations (1.1)–(1.4) were derived from a free-
body diagram of a lever (a, in contrast to McHenry’s fig. 1a)
acting to move mass m with acceleration a. We assumed Fin¼

Fspring and Fout ¼ ma (b), simplifying McHenry’s nonlinear geo-
metry. The dynamics were simulated using parameters similar

to those of McHenry: k ¼ 0.3 N mm–1, Lo (spring stretch at
uo) ¼1.5 mm, lin¼ 0.75 mm, lout ¼ 20 mm, m ¼ 20 mg, uo ¼

68, and _uo ¼ 08 s–1. We varied lout (10–40 mm) alone and in
combination with the mass (8–80 mg) to assess the effects of
geometry on force, velocity and power.
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Figure 2. Force–velocity trade-off for a lever with spring–
mass dynamics. As predicted from equations (1.2) and
(1.3), the ratio of maximum forces [Fout/Fin]max ¼ A (a)

while the ratio of maximum speeds [vout/vin]max ¼ 1/A (b).
Note that peak power of the spring increases with A (a,
dashed line) for any given output mass.
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We concur that the mass’s maximum speed is indepen-
dent of A—but this fact should not be associated with
lever mechanics. As McHenry noted, the mass’s maxi-
mum speed is determined by the principle of energy
conservation, and thus depends only on the mass being
accelerated and the elastic energy available (assuming no
energy loss and negligible lever inertia). If the same
energy accelerated the mass along a horizontal, frictionless
table, the mass would reach the same speed, with no lever
involved.

5. Do all levers show the same force–velocity
trade-off?

We affirm McHenry’s overarching message that lever
systems with more complex dynamics—such as those
with velocity-dependent input forces (e.g. actuated by
muscles), or those with non-negligible inertia, energy
dissipation, or compliance—may exhibit more complex
relationships between forces and speeds than predicted
by equations (1.1)–(1.4). Therefore, as McHenry
notes, caution is warranted when modelling and analys-
ing biological levers. For example, representing a limb
as a point mass accelerated by a ‘massless, frictionless
lever’ may be insufficient for some applications. When a
lever has inertia and transmits power at a non-steady
rate, equations (1.1) and (1.2) must be modified:

Finlin � Foutlout ¼ I€u; ð1:5Þ

Fout ¼
lin

lout

Fin þ
I€u

lout

ð1:6Þ

yielding power: Foutvout ¼ Finvin �
d

dt

1

2
I _u

2
� �

: ð1:7Þ

In this case, output power equals input power minus the
change in rotational kinetic energy of the lever. Output
Biol. Lett. (2011)
velocity is still related to input velocity, and output
force to input force, but in a more complicated manner,
since some of the input energy is converted to kinetic
energy of the lever itself. These equations may be appli-
cable when modelling a limb that transmits forces to its
environment, or when it physically does not make sense
to lump all of a limb’s mass into the output force.
Equations (1.5)–(1.7) are relevant to biologists, since
many musculoskeletal structures have inertia and
undergo substantial accelerations, acting as levers to
transmit power.

In closing, we thank Matt McHenry for stimulating
this discussion. We hope this commentary further clari-
fies the principles that govern rigid levers with spring–
mass dynamics.
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