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The oldest annelid fossils are polychaetes from
the Cambrian Period. They are representatives
of the annelid stem group and thus vital in any
discussion of how we polarize the evolution of
the crown group. Here, we describe a fossil poly-
chaete from the Early Cambrian Sirius Passet
fauna, Pygocirrus butyricampum gen. et sp.
nov., with structures identified as pygidial cirri,
which are recorded for the first time from Cam-
brian annelids. The body is slender and has
biramous parapodia with chaetae organized in
laterally oriented bundles. The presence of pygi-
dial cirri is one of the characters that hitherto
has defined the annelid crown group, which
diversified during the Cambrian–Ordovician
transition. The newly described fossil shows that
this character had already developed within the
total group by the Early Cambrian.
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1. INTRODUCTION
Polychaetes (Annelida) are common constituents of
modern marine habitats. With their distinctive seg-
mented body plan and lateral appendages, called
parapodia, which usually have two bundles of chitinous
bristles (neuro- and notochaetae), they display several
modes of life, for example, as epibenthic predators
and scavengers, infaunal burrowers, sessile filter feeders
and even pelagic predators and planktotrophs [1]. The
clitellates, which include the more familiar earthworms
and leeches, evolved within the annelids and have
invaded most freshwater and terrestrial habitats.

Fossil annelids are rare, but jaw elements (scoleco-
donts) from some polychaetes (eunicidans and
glycerids) appeared in the fossil record in the Early
Ordovician (488 Ma) [2]. Calcified polychaete tubes
from mainly serpulids are known since the Jurassic
[3,4], whereas complete polychaetes with some soft-
tissue preservation are reported from a limited
number of localities ranging in age from the Cambrian
to the Cretaceous. Some of the most important are
described from the Cambrian Burgess Shale [5,6],
the Devonian Hunsrück Slate [7], the Carboniferous
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Mazon Creek fauna [8–10] and the largely undes-
cribed Cretaceous Hakel polychaete fauna [11,12].

The oldest known fossil polychaete is Phragmochaeta
canicularis Conway Morris and Peel, 2008 from the
Early Cambrian Sirius Passet fauna [13]. In this
paper, we describe a new genus and species, Pygocirrus
butyricampum gen. et sp. nov., from the same locality
and with preserved pygidial cirri, and discuss its impli-
cations for our understanding of evolution towards the
annelid crown group.
2. SYSTEMATIC DESCRIPTION
crown group Lophotrochozoa Halanych et al. 1995

stem group Annelida Lamarck 1909
Pygocirrus butyricampum gen. et sp. nov.

(a) Etymology

Pygo: for pygidium (Latin), terminal body region—
and cirrus: thread, used for a tendril-like appendage
in zoology.

This species is named in honour of Dr Nicholas
Butterfield (Department of Earth Sciences, Cambridge
University, UK) in recognition of his work on Cambrian
metazoan palynomorphs. Butyrum: butter and campus:
field; butyricampum is a noun in apposition.

(b) Locality and material

Sirius Passet, North Greenland, Lower Cambrian
(possibly Atdabanian [14]). Collected from the
exposure of a very fissile dark shale unit within the
Buen Formation, with abundant fossils preserved as
two-dimensional reflective films. Holotype: part and
counterpart (figure 1), Geological Museum of Copen-
hagen, MGUH 29288. Paratype: part and counterpart
(electronic supplementary material, figure S1),
MGUH 29289.

(c) Diagnosis

Annelid with biramous parapodia, each ramus contain-
ing seven to 10 laterally oriented capillary chaetae. One
pair of pygidial cirri present.

(d) Description

The holotype is a posterior fragment, lacking the head
and an unknown, but presumably small, number of
anterior chaetigers. The preserved body is 14 mm
long excluding pygidial cirri, and 1.2 mm wide without
parapodia, 1.7 mm with parapodia and 5.3 mm with
parapodia and chaetae. A total of 14 chaetigers are
present. The median body region is straight-sided
in the first nine chaetigers; from chaetiger 10 the
body tapers towards the pygidium. The parapodia
are short and those of certain chaetigers appear to be
bilobed (figure 1e). The parapodia are biramous; the
most well-developed parapodia show two fascicles of
seven to 10 capillary chaetae. The two bundles are
semi-parallel, but with separate fascicles (figure 1f ).
Chaetae of the posterior segments are almost 1.5
times longer than on more anterior segments and are
directed postero-laterally. Pygidium with two elongate,
distally tapering cirri, V-shaped in outline. The left
cirrus on the part (figure 1a,g) is more or less comple-
tely preserved, whereas the right cirrus is incompletely
exposed.
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Figure 1. Pygocirrus butyricampum sp. et gen. nov. Holotype MGUH 29288. From Sirius Passet, North Greenland, Early
Cambrian. (a) Part and (b) corresponding interpretive camera lucida drawing; numbering denotes individual parapodia.
(c) Counterpart and (d) corresponding interpretive camera lucida drawing. (e) Parapodium, detail of area indicated in (b).
( f ) Two chaetal bundles emerging from a parapodium, detail of anterior area indicated in (d). (g) The pygidial cirri on the

counterpart, detail of posterior area indicated in (d). Scale bars, (a–d ) 5 mm; (e–g) 1 mm.
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The paratype is a median fragment with 10 chaetigers;
it is 11.3 mm long, 1.7 mm wide lacking well-preserved
parapodia and 9.5 mm wide with parapodia and chaetae.

Neither specimen shows any sign that dorsal cirri,
ventral cirri or aciculae were present. The paratype is
more decayed than the holotype: some of the para-
podia are partially detached from the body and show
no evidence of aciculae.
3. DISCUSSION
The presence of pygidial cirri in P. butyricampum is
unique among annelids known from the Cambrian
Period. Therefore, although the species description pro-
vided here is incomplete (the anterior end is unknown),
this form marks the origin of an important character for
our understanding of annelid evolution. Pygidial cirri
are widely distributed among modern annelids and
have been considered one of the key autapomorphies
of polychaetes [15,16]. The consistent result that clitel-
lates (which lack pygidial cirri) are derived from within
the polychaetes [16–19] indicates that this feature is
one of the characteristics of the phylum as a whole.

Understanding the phylogenetic relationships
among major subclades of annelid polychaetes has
Biol. Lett. (2011)
been problematic owing to major conflicts between
molecular systematics and morphology, e.g. [20],
although recent published research displays a high
degree of agreement between the two [19]. This con-
tribution supports the recognition of two major
groups. The first is Sedentaria (including the Clitel-
lata), which contains groups that have grooved
peristomial palps for food collection or are infaunal
burrowers lacking large external head appendages
(broadly conforming to Canalipalpata þ Scolecida,
both sensu [21], as well as Clitellata). The second
major group is Errantia (as with Sedentaria, originally
introduced in De Quatrefages [22]), most members of
which have non-grooved, sensory prostomial palps and
are often motile surface dwellers; this group consists
mainly of the Aciculata, sensu [21], with the addition
of Orbiniidae. The exact position of some groups
remains problematic in this analysis, such as the ecto-
parasitic Myzostomidae and the Chaetopteridae,
which are placed at the base of the annelids, below
the sipunculans. Other studies that relied on less
homoplastic characters such as rare genomic changes
[23] have indicated that Sipuncula is the sister group
of Annelida, as a separate phylum [18,24], which
suggests that the position of myzostomids and
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Figure 2. Hypothesized position of Pygocirrus butyricampum on the annelid stem lineage denoting the appearances of important

morphological characters. The position of P. butyricampum is hypothesized based on a cladistic analysis (electronic supplemen-
tary material, S2) as a stem form subtending the crown group.
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chaetopterids below sipunculans is erroneous: they
exhibit features that suggest an aciculate and canali-
palpate affinity, respectively. This would also be in
agreement with the fossil evidence, as crown group
sipunculans are known from the Early Cambrian
Chengjiang fauna of South China [25], which is simi-
lar in age to the Sirius Passet fauna. Thus, the
primitive morphology of crown annelids can be recon-
structed as an animal with anterior non-grooved palps,
pygidial cirri, nuchal organs and parapodia that
contain two bundles of simple chaetae [15,16].

The diverse polychaete fauna from the Burgess Shale
includes a number of stem annelids [6]. These forms all
have elaborate, usually biramous, parapodia with simple
chaetae and many forms exhibit anterior (presumably
prostomial) palps and thus conform to the expected
presence of these characters in the ancestral annelid,
except that they all lack pygidial cirri. The fossil
Cambrian annelids therefore enable us to polarize the
morphology of the ancestral annelid body plan as a sur-
face dwelling errant worm with palps and biramous
parapodia, but without compound chaetae or aciculae.
None of these forms exhibit unequivocal pygidial cirri
like those in P. butyricampum [6]. A cladistic analysis
(electronic supplementary material, S2) finds that
P. butyricampum resolves at a node above Canadia from
the Burgess Shale in a polytomy with the crown group.
While nothing is known about the anterior region of
this new species, we predict that it also possesses sensory
palps and might be located in a more derived position on
the annelid stem lineage than the forms hitherto known
from the Cambrian (figure 2). While it could be argued
that it belongs to the crown group, we hypothesize that it
diverged further down the lineage subtending the crown
group. It has been argued that the crown group diverged
in the Late Cambrian/Early Ordovician [6,26].
Biol. Lett. (2011)
Continued studies of annelids from the Cambrian
Period will provide more detail to our emerging picture
of the appearance of apomorphic morphological char-
acters among forms preceding the origin of the crown
group near the Cambrian–Ordovician transition.
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