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Atomic force microscopy investigation of the
kinetic growth mechanisms of sputtered
nanostructured Au film on mica: towards a
nanoscale morphology control
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Abstract

The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for
applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on
mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-
assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are
ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms
is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological
properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film
deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from
an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of
Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range.
The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06.
Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular
depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the
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quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of
the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological
characteristics of the Au film simply controlling the annealing temperature and time.

Introduction
Thin nanometric films play important role in various
fields of the modern material science and technology
[1,2]. In particular, the structure and properties of thin
metal films deposited on non-metal surfaces are of con-
siderable interest [3,4] due to their potential applications
in various electronic, magnetic and optical devices. The
study of the morphology of such films with the variation
of thickness and thermal processes gives an idea about
the growth mechanism of these films [5-7]. Study of

morphology and understanding of growth mechanism
are, also, essential to fabricate nanostructured materials
in a controlled way for desired properties. In fact, such
systems are functional materials since their chemical
and physical properties (catalytic, electronic, optical,
mechanical, etc.) are strongly correlated to the structural
ones (size, shape, crystallinity, etc.) [8]. As a conse-
quence, the necessity to develop bottom-up procedures
(in contrast to the traditional top-down scaling scheme)
allowing the manipulation of the structural properties of
these systems raised. Such studies find a renewed inter-
est today for the potential nanotechnology applications
[8]. The key point of such studies is the understanding
of the thin film kinetic growth mechanisms to correlate
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the observed structural changes to the process para-
meters such as deposition features (i.e. rate, time, etc.)
[9-13] and features of subsequent processes (i.e. anneal-
ing temperatures and time, ion or electron beam energy
and fluence, etc.) [14-17].
In this framework, the study of the surface morphology

of Au deposited on mica is crucial [18-39] in view of the
fabrication of flat Au films for applications in biological,
electronic, optical devices and techniques (i.e. surface
enhanced Raman spectroscopy). Mica is a suitable sup-
port for crystalline Au deposition because the small mis-
match of the crystal lattice allows the Au to grow in large
atomically flat areas. The understanding of the kinetic
growth mechanisms of Au on mica allows to tune the
process parameters (substrate temperature, pressure, rate
deposition, film thickness) to obtain ultra-flat Au film as
suitable platform for anchoring self-assembling mono-
layers (due to Au affinity to thiol groups of organic mole-
cules), molecules, nanotubes, nanoparticles and so on.
Atomically flat Au substrates are ideal for imaging adsor-
bate layers using scanning probe microscopy techniques.
For these characterization methods, flat substrates are
essential to distinguish the adsorbed layer from the sub-
strate features. Obviously, the control of the kinetic
growth mechanisms of Au on mica is a prerequisite for
control of the film nano- and micro-structure to obtain
materials with desired morphological properties. The main
literature concerns Au film on mica produced by ultra-
high-vacuum evaporation [18-25,29-34,37-39]. Very few
works regard sputtered Au films on mica [22,26-28] and
the general deposition criteria deduced for the evaporation
technique do not necessarily apply to other methods. The
sputtering method is simpler than vacuum evaporation
both for instrumentation and deposition procedure; with
the deposition parameters properly chosen, the sputtered
films exhibit superior surface planarity, even flatter than
the smoothest evaporated films reported to date [28].
In the present work we aim to illustrate the surface

morphology evolution of room-temperature sputtered
nanoscale Au film on mica when it is subjected to
annealing processes. We deposited 28 nm of Au on the
mica substrate and performed annealing treatments in
the 573-773 K temperature range and 900-3600 s time
range to induce a controlled film nano-structuring.
Atomic force microscopy (AFM) is an important meth-

odology to study the surface morphology in real space
[40,41]: the top surface can be imaged using an AFM and
these images provide information about the morphology
evolution. So, using the AFM technique, we analyzed
quantitatively the evolution of the Au film morphology as
a function of the annealing time and temperature. Such a
study allowed us to observe some features of the mor-
phology evolution and to identify the film evolution
mechanisms. In particular, several results were obtained:

1. In a first stage of annealing (573 K-900 s) a nuclea-
tion process of small clusters from the starting quasi-
continuous 28 nm Au film occurs.
2. In a second stage of annealing (573-773 K for 1800-

3600 s) a growth process of the Au clusters occurs. The
late state of cluster growth is accompanied by the forma-
tion of circular depletion zones around the largest clus-
ters. This behavior was associated, by the Sigsbee theory
[42], to a surface diffusion-limited Ostwald ripening
growth in which the Au surface diffusion plays a key role.
3. The AFM analyses allowed to study the evolution of

the mean cluster height as a function of annealing time for
each fixed temperature, showing a power-law behavior
characterized by a temporal exponent whose value suggest
that the full cluster surface is active in mass transport.
4. By the evolution of the mean radius of the depletion

zones as a function of the annealing time t and tem-
perature T the Au surface diffusion coefficient at 573,
673, and 773 K was estimated.
5. The activated behavior of the Au surface diffusion

coefficient was studied obtaining the activation energy
for the surface diffusion process.

Experimental
Samples were prepared from freshly cleaved mica sub-
strates. Depositions were carried out by a RF (60 Hz)
Emitech K550x Sputter coater onto the mica slides and
clamped against the cathode located straight opposite of
the Au source (99.999% purity target). The electrodes
were laid at a distance of 40 mm under Ar flow keeping
a pressure of 0.02 mbar in the chamber. The deposition
time was fixed in 60 s with working current of 50 mA.
In these conditions, the rate deposition was evaluated in
0.47 nm/s and, accordingly, the thickness h of the
deposited film was about 28 nm.
The annealing processes were performed using a stan-

dard Carbolite horizontal furnace in dry N2 in the 573-
773 K temperature range and 0-3600 s time range.
The AFM analyses were performed using a Veeco-

Innova microscope operating in high amplitude mode
and ultra sharpened Si tips were used (MSNL-10 from
Veeco Instruments, with anisotropic geometry, radius of
curvature approximately 2 nm, tip height approximately
2.5 μm, front angle approximately 15°, back angle
approximately 25°, side angle 22.5°) and substituted as
soon as a resolution lose was observed during the acqui-
sition. The AFM images were analyzed by using the
SPMLabAnalyses V7.00 software.
Rutherford backscattering spectrometry (RBS) analyses

performed using 2 MeV 4He+ backscattered ions at 165°.

Results
Figure 1a shows a 40 μm × 40 μm AFM image of the
starting 28 nm Au film. We can observe that over such
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a scan size the Au film is very flat presenting a rough-
ness s = 1.2 nm. The roughness was evaluated using
the SPMLabAnalyses V7.00 software: it is defined by

  



1 2

1

1 2

N
y yii

N
( )

/
where N is the number of

data points of the profile, yi are the data points that

describe the relative vertical height of the surface, and

y is the mean height of the surface. Furthermore, the

roughness value was obtained averaging the values
obtained over three different images.
Figure 1b shows a 0.5 μm × 0.5 μm AFM image of the

starting 28 nm Au film, to highlight its nanoscale

Figure 1 AFM images of the starting Au film: (a) 40 μm × 40 μm AFM scan of the starting 28-nm Au film sputter-deposited on the
mica substrate; (b) 0.5 μm × 0.5 μm AFM scan of the same sample, to evidence the percolative nature of the film.
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structure: we can observe the occurrence of a percolation
morphology (Au islands grow longer and are connected to
form a quasi-continuous network across the surface) as
standard for metal film on non-metal surface in the late
stage of growth [12,43-45]. In fact, generally, metal films
on non-metal surfaces grow in a first stage (low thick-
nesses) in the Volmer-Weber mode as 3D islands with
droplet-like shapes. For higher thicknesses, the shapes of
the islands become elongated (and, correspondently, their
surface density decreases), and only for further higher
thicknesses the film takes a percolation morphology and
finally becomes a continuous rough film.
We studied the evolution of the starting ultra-flat 28

nm sputter-deposited Au film as a consequence of the
annealing processes performed in the 573-773 K tem-
perature range and 0-3600 s time range. So, as exam-
ples, Figure 2 reports 100 μm × 100 μm AFM images of
the starting Au film subjected to various thermal treat-
ments: (a) 573 K-900 s, (b) 573 K-1800 s, (c) 673 K-
3600 s, and (d) 773 K-3600 s. In particular, the AFM
image in Figure 2b of the sample annealed at 573 K-
1800 s shows the formation of Au clusters whose size
increases when the annealing time and/or temperature
increases, while their surface density (number of clusters
per unit area) decreases.
To understand the formation of the Au clusters, first

of all, we analyzed the morphology of the starting Au
film after the 573 K-900 s. So, Figure 3a,b shows 20 μm
× 20 μm and 10 μm × 10 μm AFM images of the Au
film annealed at 573 K-900 s. Interestingly, we observe
that this annealing process determines the nucleation of
small Au clusters (height of about 10 nm) from the
starting quasi-continuous film. Furthermore, while the
nucleation of these small clusters takes place, also the
formation of small holes (depth of about 10 nm) in the
Au film occurs. Figure 4 reports, also, 1 μm × 1 μm
AFM images of the same sample focusing both on the
small Au clusters and the holes. Figure 4b shows an
AFM cross-sectional line scanning profile analysis that
refers to a Au cluster imaged in Figure 4a: the section

analyses allow to evaluate its height in 11.2 nm. Simi-
larly, Figure 4d shows the AFM cross-sectional line
scanning profile analysis that refers to an hole imaged in
Figure 4c, allowing to evaluate its depth in 7.4 nm. We
can conclude that the 573 K-900 s annealing process
determines the first stage of nucleation of Au clusters
from the starting quasi-continuous film and that the fol-
lowing annealing processes cause their growth. To study
the growth stage, we imaged by the AFM the Au clus-
ters annealed between 573 and 773 K and 0-3600 s at
higher resolution. As examples, Figure 5 reports 50 μm
× 50 μm AFM images of the starting Au film subjected
to various thermal treatments: (a) 573 K-1800 s, (b) 673
K-3600 s, and (c) 773 K-3600 s. The qualitative increase
of the mean clusters size and the decrease of their sur-
face density increasing the annealing time t and/or tem-
perature T are evident. The main feature in the late
stage of the cluster growth is the formation of circular
depletion zones around the largest clusters. We used the
AFM analyses, also, to image the morphology structure
of the large clusters and of the depletion zones around
them. So, for examples, Figure 6a shows a 7 μm × 7 μm
AFM image of a single Au large cluster (corresponding
to the 673 K-3600 s annealed sample), while Figure 6b
shows a 1 μm × 1 μm AFM image of depletion zone
near the cluster, and Figure 6c shows a 1 μm × 1 μm
AFM image taken over the Au cluster. Figure 6b shows
a percolation morphology of the underlaying residual
Au film (similar to that of the starting 28 nm Au film),
while Figure 6c shows a more complex nano-structure:
the large cluster appears to be formed by Au
nanoclusters.

Discussion
On the basis of the exposed results, we can sketch the
evolution of the Au film morphology as pictured in
Figure 7: starting from the quasi-continuous Au film
(Figure 7a), the 573 K-900 s annealing process deter-
mines the first stage of nucleation of Au clusters from
the starting quasi-continuous film (Figure 7b). After the

Figure 2 100 μm × 100 μm AFM scans of the Au film thermally processed at: (a) 573 K-15 min, (b) 573 K-30 min, (c) 673 K-60 min,
and (d) 773 K-60 min.
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Figure 3 AFM images of the thermally processed Au film: (a, b) 20 μm × 20 μm and 10 μm × 10 μm, respectively, AFM scans of the
Au film thermally processed at 573 K-15 min.

Figure 4 AFM images and section masurements of the thermally processed Au film: (a, c) 1 μm × 1 μm AFM scans of the Au film
thermally processed at 573 K-15 min; (b) section measurement to estimate the height (11.2 nm) of a nucleated Au cluster; (d) section
measurement to estimate the depth (7.4 nm) of a hole in the Au film.
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nucleation stage, the subsequent annealing in the 573-
773 K temperature range and 0-3600 s time range deter-
mines a growth stage of the nucleated clusters with the
formation of depletion zones around the largest clusters
(Figure 7c). In particular, this phenomenon corresponds

to the surface diffusion-limited Ostwald ripening model
developed by Sigsbee [42]. Ostwald ripening is regulated
by the vapor pressure at the surfaces of the cluster, P(R),
depending on the curvature of the surface and it is driven
by the minimization of the total surface free energy. For

Figure 5 50 μm × 50 μm AFM scans of the Au film thermally processed at: (a) 573 K-30 min, (b) 673 K-60 min, and (c) 773 K-60 min.

Figure 6 AFM image of a single Au cluster: (a) 7 μm × 7 μm AFM scan of the Au film thermally processed at 773 K-60 min, focusing,
in particular, on an Au cluster; (b) 1 μm × 1 μm AFM scan of the underlaying Au film; (c) 1 μm × 1 μm AFM scan on the Au cluster,
evidencing its granular structure.
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spherical clusters with a radius R, the vapor pressure at
the surface of the cluster is given by the following rela-
tion according to the Gibbs-Thompson equation [46]:

P R P Rk T P c R( ) exp( / ) ( / )   2 1 B (1)

with P∞ the vapor pressure at a planar surface, g the
surface free energy, Ω is the atomic volume, kB the
Boltzmann constant, c a temperature-dependent but
time-independent constant and depending on the sur-
face diffusion atomic coefficient DS [46-48]. Lifshitz and
Slyozow [46] as well Wagner [47] have formulated the

basis for a mathematical description of the growth of
grains in three-dimensional systems, yielding the follow-
ing general expression for the asymptotic temporal evo-
lution mean particle radius〈R〉

R ct z /1 (2)

z being a characteristic growth exponent whose value
depends on the specific characteristics of the growth
mechanism. At any stage during ripening there is a so-
called critical particle radius Rc: particles with R >Rc will
grow and particles with R <Rc will shrink. The atoms of

Figure 7 Schematic picture of the growth stages of the Au film as a function of the thermal budget.

Ruffino et al. Nanoscale Research Letters 2011, 6:112
http://www.nanoscalereslett.com/content/6/1/112

Page 7 of 13



the clusters with R <Rc diffuse over the surface toward
the nearest cluster with R >Rc and they are incorporated
by it. Later, Sigsbee [42] developed a model for the clus-
ter growth in two dimensions and considered the forma-
tion of depletion zones. A depletion zone around a large
cluster, originates from the shrunken smaller clusters.
Such depletion zones would have circular border lines
in the case of the clusters being generated on isotropic
smooth substrates, that is if the diffusion process occur
isotropically. The radius l of a depletion zone at time t
is simply the atomic diffusion length:

l D t s . (3)

The time dependence of the cluster growth expressed
by Equation 2 is determined by the dimensionality of
the growing system and the processes limiting the mass
transport by surface diffusion. The specific values of z
for different systems are summarized in [7]. For exam-
ple, for the three-dimensional cluster growth with only
the contact line to the substrate surface active in mass
transport, the critical radius of the clusters will grow
according to Equation 2 with a time exponent 1/z = 1/3;
if, instead, for the three-dimensional clusters the full
cluster surface is active in mass transport, a time expo-
nent 1/z = 1/2 is expected.
Obviously, the mass conservation law dictates that

increasing 〈R〉 the thickness of the underlaying quasi-
continuous film has to decreases proportionally, as qua-
litatively indicated by the schematic picture in Figure 7.
We can quantify the evolution of the height R of the

clusters by the AFM analyses using the SPMLabAna-
lyses V7.00 software that define each grain area by the
surface image sectioning of a plane that was positioned
at half grain height. In this way we can obtain the dis-
tributions of R as a function of the annealing time t
for each fixed annealing temperature T. Figure 8
reports, for examples, the distributions of R for the
samples annealed at 773 K-1800 s (a), 773 K-2400 s
(b), 773 K-3000 s (c), and 773 K-3600 s (d), respec-
tively. Each distribution was calculated on a statistical
population of 100 grains and fitted (continuous lines
in Figure 8) by a Gaussian function whose peak posi-
tion was taken as the mean value 〈R〉 and whose
full width at half maximum as the deviation on such
value. Therefore, we obtain the evolution of the mean
clusters height 〈R〉 as a function of t for each fixed
T, as reported in Figure 9 (dots) in a semi-log scale.
For each temperature we fitted (continuous lines in
Figure 9) the experimental points by Equation 2 to
obtain the best value for 1/z: by this procedure we
obtain 1/z = 0.52 ± 0.02 at 573 K, 1/z = 0.49 ± 0.06 at
673 K, and 1/z = 0.60 ± 0.06 at 773 K. Averaging these
values we deduce 1/z = 0.54 ± 0.04 indicating a three-

dimensional cluster growth in which the full clusters
surface is active in the mass transport.
By the AFM analyses we can, also, quantify the evo-

lution of the radius l of the depletion zones observable
in the AFM images around the larger clusters. Also in

Figure 8 Distributions of the clusters height R for samples
annealed at 773 K for: (a) 30 min, (b) 40 min, (c) 50 min, and
(d) 60 min. The continuous lines are the Gaussian fits.
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this case we can proceed to a statistical evaluation of
〈l〉: by the analyses of the AFM images we obtain
the distributions of l as a function of the annealing
time t for each fixed annealing temperature T. Figure
10 reports, for examples, the distributions of l for the
samples annealed at 773 K-1800 s (a), 773 K-2400 s
(b), 773 K-3000 s (c), and 773 K-3600 s (d), respec-
tively. Each distribution was calculated on a statistical
population of 100 grains and fitted (continuous lines
in Figure 10) by a Gaussian function whose peak posi-
tion was taken as the mean value 〈l〉 and whose full
width at half maximum as the deviation on such value.
Therefore, we obtain the evolution of the mean clus-
ters height 〈l〉 as a function of t for each fixed T. In
Figure 11, we plot (dots) in a semi-log scale 〈l〉2 as
a function of t for each T, obtaining linear relations as
prescribed by Equation 3. Fitting the experimental data

by 〈l〉2 = Dst we obtain, as fit parameter, the values
of the atomic Au surface diffusion coefficient DS: DS

(573 K) = (9.35 × 10-16) ± (5.6 × 10-17) m2/s, DS(673
K) = (2.55 × 10-15) ± (1.8 × 10-16) m2/s, DS(773 K) =
(5.25 × 10-15) ± (3.2 × 10-16) m2/s. The Arrhenius plot
of the resulting Ds(T), showen in Figure 12 indicates
the occurrence of the thermally activated diffusion
process [6,49] described by

D T D e

E

k TB
s

a

( ) 


0
(4)

D0 being the pre-exponential factor and Ea the activa-
tion energy of the surface diffusion process. By the fit of
the experimental data (dots) in Figure 12 using Equation
4 we obtain, as fit parameters, D0 = (7.42 × 10-13 ± 5.9 ×
10-14) m2/s and Ea = (0.33 ± 0.04)eV/atom.

Figure 9 Plot (dots) of the mean clusters height,〈R〉, as a function of the annealing time t, for each fixed annealing temperature T.
The continuous lines are the fits.
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A consistency calculation is suggested by the mass con-
servation law: at any stage of annealing process the total
amount of deposited Au must be constant. By the RBS
analyses, the starting 28 nm Au film was found to be
formed by Q = 1.7 × 1017 atoms/cm2. After, for example,

the final 773 K-3600 s annealing process, the total amount
of the Au atoms forming the Au cluster and the underlay-
ing residual quasi-continuous film must be the same. If we
suppose the largest Au clusters obtained after the 773 K-
3600 s annealing as semi-spheres of radius 〈R〉 = 240
nm with a surface density, estimated by the AFM images
of about N = 9 clusters per 100 μm2, then the number S =
N(4/6)〈R〉3/Ω ≈ 1.5 × 1017 atoms/cm2 is an estimation
of the Au atoms per unit area forming these Au clusters.
The remaining (1.7 × 1017-1.5 × 1017) Au/cm2 = 2 × 1016

Au/cm2 form the underlaying residual Au film. This
amount corresponds to an average thickness of about 3
nm. This calculation gives a reasonable confirmation of
the mass conservation law validity.
Concerning the formation of the small holes in the Au

film, as evidenced in the AFM images in Figures 3 and 4,
as already done in [13], we can suppose that the formation
of this holes is characteristic of the sputtering deposition
technique. In fact, it is known from the literature that
when Au films on mica are bombarded with noble gas ions
at low energies [22,28,50-52] (as in the case of Au film sur-
face processed by RF Ar plasma [50]) stable surface defects
(holes) with a monoatomic layer depth are produced. For
example, when Au(111) films on mica were bombarded
with helium ions at energies of 0.6 or 3 keV, holes with a
monoatomic layer depth were observed using STM [52].
Their formation is due to the clustering of vacancies pro-
duced by individual sputtering events. Furthermore, for an
initially atomically flat Au surface on mica, the flat surface
features were observed to be modified during 3 keV Ar
irradiation by the ablation of small clusters of atoms which
then diffused until a sputter-etched pit was encountered, in
which they were trapped [22]. It has been suggested [22],
also, that the high energetic sputtered atoms (in compari-
son with evaporated atoms) from the target with their
energetic impact with the growing film surface would
cause a poorly oriented pebble-like structure for Au films
sputtered onto a RT mica. In our experimental conditions,
the Ar+ ions have energy of 0.23 keV, whereas the sputter-
ing threshold for Ar+ ions on Au is about 20 eV, and at
0.23 keV, 1 Au atom is sputtered for each Ar+ ions [53].
On the basis of such considerations we can suppose that
during the sputter deposition of the starting 28 nm Au
film, stable surface defects with a monoatomic layer depth
are produced by the interaction of the Ar plasma with the
growing Au film. The subsequent annealing processes
induce a coalescence phenomenon of these defects result-
ing in the formation of the observed holes.

Conclusions
AFM has been applied for the analysis of the dynamics
morphology evolution of room-temperature sputtered Au
film on mica. In particular, an analysis of the structural
evolution of a starting 28-nm Au film as a consequence of

Figure 10 Distributions of the radius l of the depletion zones
for samples annealed at 773 K for: (a) 30 min, (b) 40 min, (c)
50 min, and (d) 60 min. The continuous lines are the Gaussian fits.
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annealing processes was performed. The nucleation and
growth of Au cluster, as a consequence of the thermal
treatments were observed and the possibility of controlling
their size by process parameters such as annealing time
and/or temperature has been demonstrated, describing
their kinetic growth mechanism. In particular, the cluster-
ing kinetic process has been interpreted by classical mod-
els involving surface diffusion-limited ripening of three-
dimensional clusters on a substrate. From the quantifica-
tion of the time evolution of the mean cluster height, a
time exponent 1/z = 0.54 ± 0.04 was evaluated, indicating
a three-dimensional cluster growth in which the full clus-
ters surface is active in the mass transport. Furthermore,
from the observation of the formation of depletion zones
around the largest clusters and by the quantification of
their time evolution, the Au surface diffusion coefficient

Ds(T) = (7.42 × 10-13 ± 5.9 × 10-14)exp[(0.33 ± 0.04)eV/
kBT]m

2/s was evaluated.
The results of the present work can be of importance in

view of the tuning of the morphological characteristics of
the sputter-deposited Au films on mica for various tech-
nological applications as anchoring of molecules and
nanotubes, optoelectronic and plasmonic devices, etc.
About analysis techniques, the nano- and micro-struc-
tured Au films on mica presented in this work could be
of interest, for example, for surface enhanced Raman
spectroscopy (SERS) and surface resonance plasmonic
(SPR) applications as plasmonic substrates.

Abbreviations
AFM: atomic force microscopy; RBS: Rutherford backscattering spectrometry;
SERS: surface enhanced Raman spectroscopy; SPR: surface resonance
plasmonic.

Figure 11 Plot (dots), in semi-log scale, of the square values of the mean radius of the depletion zones, 〈l〉2, as a function of the
annealing time t, for each fixed annealing temperature T. The continuous lines are the fits.
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