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Abstract

Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically
similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and
Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence
regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs
growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth
requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different
kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the
contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating
that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence,
which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted.

Introduction
The synthesis and the tailoring of the electrical and
optical properties of nanostructured materials are fasci-
nating research fields, and they represent a suitable
route in a wide range of potential nanoscale device
applications. Among these, axial structures such as C
nanotubes and group IV semiconductor nanowires
(NWs) are a realistic addition because of the quantum
confinement of their carriers in the planar direction and
because of their high surface/volume ratio. In the litera-
ture many simple device structures have been demon-
strated taking advantage of the enhanced electrical
properties of the NWs [1-3], of their quantum confine-
ment for light emission [4,5] or detection [6], of the
decoupling of the light absorption and carrier extraction
for efficient solar cell elements and of the enhanced sur-
face effects as biochemical sensors [7,9], or of their
structure for high-performance anode batteries [10]. A
broad selection of NW composition and band structures
is reported, but group IV semiconductor NWs are the
most interesting at the moment because they can be
easily integrated with the current CMOS technology. In
particular, Si is the leading semiconductor, and its
unlimited abundance makes it as the primary element

for the future applications. On the other hand, Ge is
experiencing a renewed interest, and it has been recently
proposed for specific high-frequency applications [11].
Si and Ge NWs can be synthesized following a bot-

tom-up approach, named vapor-liquid-solid (VLS) [12].
By exploiting the self-assembling capability of the semi-
conductor atoms coming from the vapor phase to dif-
fuse toward metallic droplets to form a eutectic liquid
phase and, at the same time, to supersaturate the dro-
plets performing the NWs axial growth, this approach
allows the control of all the structural features of the
NWs such as length, radius, and crystallographic prop-
erties. Gold has been usually chosen as a catalyst, and
the influence of its diffusion on the NW sidewall has
been extensively investigated [13]. Different techniques
usually benefit of the VLS mechanism. Chemical vapor
deposition (CVD) has been widely used to grow NWs
through the VLS mechanism. The peculiar issue of this
technique is the active chemical role of the metal dro-
plet, which catalyzes the cracking of the precursor mole-
cule in such a way that elemental atoms are formed
under the gold droplet, and the interaction with the
overall substrate is quite absent.
On the contrary, the physical vapor deposition (PVD)

techniques involve a different feeding contribution other
than direct impingement. In fact, the metal droplet repre-
sents a thermodynamic constraint only. It determines the
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area in which the eutectic conditions are reached. On the
other hand, the evaporated Si or Ge atoms reaching the
substrate interact with the surface atoms, bond with them,
and start to diffuse. They actually act as adatoms, and it is
demonstrated that they play a fundamental role in the
NWs growth. In particular, the microscopic growth
mechanisms governing the Si and Ge NWs growth in elec-
tron beam evaporation (EBE) technique are investigated in
detail. EBE is a PVD technique and, in contrast to the
MBE, it is a non-ultra-high vacuum, very flexible, and eco-
nomic preparation technique with broad industrial applica-
tions due to its very high potential deposition rate. In the
very recent times, it has been successfully proposed for the
growth of group IV semiconductor NWs because, despite
its non-UHV regime, NWs synthesized by EBE have high
crystallographic quality (they are single crystal and possibly
faceted), and it is possible to control their length, density,
as well as their crystallographic growth direction by chan-
ging the experimental parameters [14,15].
Si and Ge have the same crystallographic structure,

with a lattice misfit of about 4% only. Moreover, the Si/
Au and Ge/Au phase diagrams are very similar too:
each one has a single eutectic point, placed at substan-
tially the same temperature (about 360°C), and the semi-
conductor percentages in the alloy at the eutectic
temperature are comparable (19 and 28%, respectively)
[16]. From a thermodynamic point of view, their beha-
vior with respect to the NW growth by VLS can be con-
sidered the same. Nevertheless, in this article, it is
demonstrated that Si and Ge NWsgrowth occur in very
different temperatures and fluence regimes. The growth
mechanisms elucidating the relevance of the kinetic
behavior of Si and Ge adatoms on the axial growth rate
are investigated in detail. Finally, the contribution of the
direct impingement vs the surface diffusing ad-atoms to
the NWs growth in a PVD system is clarified.

Experimental
Samples have been prepared in an EBE chamber which
allows multiple subsequent evaporations from dissimilar
and separate crucibles. Au pellets, Si ingots, or Ge
ingots have been used as the sources. The evaporation
flux and the nominal planar film thickness were mea-
sured in situ through a quartz microbalance. The den-
sity of these layers has been measured by comparing the
thickness (measured using scanning electron micro-
scope–SEM) with the atomic areal density (measured
using Rutherford backscattering spectrometry). In con-
trast to Si layer, Ge layer grown by EBE shows a deeply
terraced surface. Moreover, some voids are visible
between terraces, and the effective density of this Ge
layer is about a 20% lower than the Ge bulk density.
Therefore, the evaporated flux impinging on each sam-
ple was set to the value of 2.5 × 1014 cm-2 s-1 in the

case of Si and to the value of 1.5 × 1014 cm-2 s-1 in the
case of Ge, to obtain the same velocity of growth of the
planar films, set at a constant value of 0.05 nm s-1. The
evaporated fluence has been varied in the range from
0.25 to 2.50 × 1018 atoms cm-2. The apparatus is
equipped with a substrate holder which can be heated
through Joule effect up to 800°C.
(111)-oriented n-type Si pieces are used as substrates

in all the cases. Sample preparation procedure compre-
hends surface cleaning (UV oxidation followed by a dip
in HF etching) to remove all surface impurities and to
avoid any oxygen contamination. In fact, it has been
demonstrated that the presence of the native Si oxide
inhibits the NWs growth [17,18]. Then, the samples are
loaded in the vacuum chamber (base pressure of 1-2 ×
10-8 mbar) where a 2-nm-thick Au layer has been first
evaporated on top of the sample keeping it at room
temperature. After deposition, a thermal annealing at
700°C for 2 h has been conducted to break the continu-
ous layer and induce the formation of gold droplets on
the substrate. These steps are repeated for all the sam-
ples in such a way that the substrate, the catalyst size
distribution, and density are always the same. Then, Si
or Ge is evaporated at the desired growth temperature,
performing the NWs growth.
Structural characterization is performed using a FE-

SEM Zeiss Supra 25. Plan, 65° tilted, and cross images
are performed to investigate surface properties, NWs
structural features, and layer thicknesses. Statistical ana-
lyses are conducted using the Gatan Digital Microscope
software. Focused ion beam (FIB) experiments are per-
formed with a 30-keV Ga+ FIB FEI V600.

Results and discussion
Growth mechanisms
Figure 1 shows the low-magnification SEM images of
typical samples of Si (a) and Ge (b) NWs. In particular,
these were prepared after evaporation of a Si fluence of
1.75 × 1018 atoms cm-2 (Figure 1a) or a Ge fluence of
1.00 × 1018 atoms cm-2 (Figure 1b). The bottom insets
of Figure 1a, b show high-magnification images of Si
and Ge NWs samples, respectively. The growth tem-
perature was set at 480°C in both cases. Both Si and Ge
NWs are clearly visible with the Au droplet standing on
top of them. The growth direction of these NWs is
(111) (they are perpendicular to the substrate), since
these growth parameters lead to a major percentage of
(111) NWs, while other crystallographic directions are
observed at different growth temperatures or evaporated
fluences, as has already been demonstrated earlier
[14,15]. A key issue of the NWs growth by EBE is the
competition between the axial growth and the planar
growth of a layer all over the sample. In fact, the evapo-
rated atoms reaching the heated substrate from the
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vapor phase can directly impinge on the gold droplet or
interact with the overall substrate, becoming adatoms.
Depending on the substrate temperature, they can dif-
fuse on the surface of the sample, and if they are not so
far from the Au droplet, then they can diffuse along the
NW sidewall eventually reaching the metal/semiconduc-
tor interface contributing effectively to the axial growth.
On the other hand, the adatoms stop when they form
more than one stable bonding with the surface atoms,
contributing to the growth of a planar layer. A film is
clearly visible both in Si and Ge NWs samples growing
on top of the substrate. A cross-sectional SEM images
of Si and Ge NWs samples are shown in the top inset
of Figure 1a, b, respectively: the Si and Ge layer on top
of the Si substrate is visible, and the Si and Ge NWs
overcome this layer. Such a competition between the
planar versus the axial growth has been modeled by
Dubrovskii et al. [19] and it has been observed in the
NWs growth both by MBE [20,21] and EBE [14,22,23].
In particular, the presence of a dip around the NWs

clearly demonstrates that the atoms missing from the
planar layer act as a sort of reservoir contributing to the
axial growth of the NWs. The surface area of this dip is
named as the “collecting area.” Only atoms impinging
inside this area can potentially contribute to the NWs
axial growth. For an effective contribution, these ada-
toms should not be desorbed from the substrate, or be
adsorbed (in this way, they would contribute to the pla-
nar layer growth), and finally they have to be able to
reach the growing NW up to the metal/semiconductor
interface. The relevant role played by kinetic processes
for the NWs growth in PVD techniques is evident as
well as the thermodynamic constraints. It has been
recently demonstrated for Si grown by EBE, by investi-
gating the role of oxygen contaminations in relation to
the adatoms surface diffusivity [18].
In the later sections of this article, the authors will

elucidate the adatoms contribution by comparing the Si
and Ge growth regimes. In fact, these two semiconduc-
tors have strong differences from a kinetic point of
view. Despite the presence of adatoms diffusion on the
substrate proceeds with the same mechanism (one of
the four dangling bonds links with a dangling bond of
the surface and diffusion continues till the adatom finds
a more stable position where it can saturate two or
more dangling bonds), and it is well known that Ge sur-
face diffusivity on Si is very different from the self-diffu-
sion of Si [24]. Moreover, the melting point of Ge is
475°C lower than that of Si, and solid-phase epitaxy
regrowth in Ge has a lower activation energy (EGe = 2.0
eV) than in Si (ESi = 2.7 eV), with the same pre-expo-
nential value (about of 3 × 108 cm s-1). As a conse-
quence, recrystallization processes in Ge occur at much
lower temperatures with respect to the typical Si tem-
perature processes for crystalline growth [25,26]. The
differential bond energy between Si/Si and Ge/Si atoms
can account for this difference, and, consequently, for
the very different mobilities of these species. Moreover,
according to Zakharov et al. [27] referring to the MBE
growth technique, atoms directly impinging on the cata-
lyst droplet allow the growth of the NWs in maintaining
the Au droplet on top of it with a maximum axial rate
that is equal to the planar rate. One could expect that Si
or Ge NWs growth is observable in the same regime
with similar structural features. On the contrary, it is
shown that these two nanostructures grow at different
temperatures and different fluence regimes, and these
results are correlated to the different Si and Ge adatoms
kinetics on the substrate.

Temperature dependence
Figure 2 reports the Si (red dots) and Ge (blue squares)
NWs lengths as a function of the growth temperature
for an evaporated fluence of 1.75 × 1018 cm-2. The

Figure 1 SEM images of Si NWs and Ge NWs. (a) Low-
magnification SEM images of sample of Si NWs. The bottom inset
shows a higher magnification of a Si NW. The top inset is a cross-
sectional SEM image of the sample showing the substrate and the
2D Si layer on top of it. (b) Low-magnification SEM images of Ge
NWs. The bottom inset shows a Ge NW. In the top inset, the cross
section of the sample is shown, and the Si substrate, the 2D Ge
layer, and some NWs are visible.
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measured NWs length increases as the temperature
increases up to a maximum value which is obtained at
450°C for the Ge and 480°C for the Si NWs. At higher
temperatures, the length saturates and, as is well evident
for Ge NWs, it decreases, and NWs growth is even-
tually inhibited. This trend resembles a bell-shaped
behavior, with the length reaching its maximum value
at an intermediate temperature. This is the result of the
competition between two different and opposite tem-
perature-dependent processes, both related to the ada-
toms contribution to the axial growth. The first one is
the adatoms diffusion which is brought about by
increasing the substrate temperature. As a consequence,
the adatoms surface diffusivity increases, and the col-
lecting area enlarges. The axial NWs growth increases
because of the increased number of the contributing
adatoms. Instead, adatoms can desorb from the sub-
strate and come back into the gaseous phase; the rate
of this process is increased by further increasing the
substrate temperature, making it detrimental for the
growth.
It is intriguing to note that Si and Ge NWs growth

occurs in very different regimes of temperature. In fact,
Ge NWs grow, which can be observed just above the
eutectic temperature (363°C). On the other hand, the
minimum temperature at which Si NWs are observed is
450°C. The authors performed specific experiments at
lower temperatures (360 and 420°C, respectively), but
no NWs were observed in the samples. The existence of
a lower bound temperature which is well above the
eutectic temperature is not generally observed in some
growth techniques, such as CVD growth. In fact, in the
CVD technique, the semiconductor (Si or Ge) adatoms
diffusion on the surface plays a minimal role with
respect to direct impingement of the semiconductor

gaseous species on the metallic droplet. Indeed, in PVD
case it is concluded that, because of the different Si and
Ge surface diffusivity, Si NWs growth needs a tempera-
ture very much higher than the Au-Si eutectic tempera-
ture, whereas Ge NWs growth is essentially limited by
the eutectic temperature in such a way that thermody-
namics sets a lower bound condition.
Finally, another difference arises because of the NWs

length itself; while Si NWs at these conditions reach a
maximum length of 200 nm, Ge NWs are taller by
about a factor of 4. This evidence is strictly related to
the differential axial rate behavior with respect to the
temperature and the evaporated fluence of the two
semiconductors; the dependence due to the latter will
be discussed in the next section.

Competition between axial and 2D growth rates
A comprehensive comparison of the axial growth rate in
the case of Si and Ge NWs synthesized by EBE is
shown in Figure 3. This figure reports the increment of
the fluence ΔF of both the NWs and the planar rate
over the increment of the evaporated incident fluence
(ΔFinc), as a function of the evaporated fluence Finc. In
particular, in the case of the NW, ΔFNW has been cal-
culated as the increment of the areal density of atoms
contributing to the NWs growth. This ratio represents
the axial growth rate of the NW derived with respect to
the evaporated fluence.
Red dots and blue squares refer to the NW contribu-

tions of Si and Ge NWs, respectively. In both cases, the
growth temperature of 450°C and (111)-oriented NWs
only are taken into consideration, which in these growth

Figure 2 Si (red dots) and Ge (blue squares) NWs measured
length as a function of the growth temperature for an
evaporated fluence of 1.75 × 1018 cm-2.

Figure 3 Increment of the fluence ΔF of both the NWs, and
the planar rate over the increment of evaporated incident
fluence ΔFinc, as a function of the evaporated fluence Finc. In
particular, in the case of the NW, ΔFNW has been calculated as the
increment of the areal densities of atoms contributing to the NW
growth. This ratio represents the axial growth rate of the NW
derived with respect to the evaporated fluence.
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conditions are the most observed directions. Red and
blue triangles refer to the planar rate of Si and Ge
layers, respectively. These values have been obtained
from the cross SEM measurements of the thicknesses of
the planar layers grown by evaporation, and the dura-
tion of the evaporation, by considering the different
densities of Si and Ge 2D layers grown by EBE.
Differences between Si and Ge are very impressive. In

fact, the axial rate of Si NWs increases only at high eva-
porated fluences. The minimum Si fluence necessary to
observe Si NWs outside the planar layer is equal to 1.75
× 1018 cm-2. This value is defined as the incubation flu-
ence for the growth. Moreover, after the conditions for
the catalyzed growth are reached, the axial growth
occurs in a limited range of evaporated fluences (from
1.75 to 2.50 × 1018 cm-2), but it is very efficient being
about seven times higher than the planar rate. At the
fluence value of 2.50 × 1018 cm-2, it assumes again the
planar rate value. On the other hand, the behavior of Ge
is very different. The incubation fluence is strongly
reduced, being less than 0.25 × 1018 cm-2, i.e., the
growth after evaporating a small Ge fluence is observed,
which is equivalent to a planar layer of about a few nan-
ometers. The axial rate of Ge NWs is first about seven
times higher than the planar rate, and then it continu-
ously decreases on increasing the evaporated fluence
until it comes back to the planar value. The fact that
the peak values of the axial rates in both Si and Ge
NWs are quite similar can be attributed to the similar
mechanism of surface diffusion of Si and Ge adatoms.

Direct impingement versus adatoms contribution
It is demonstrated that surface adatoms diffusion has a
relevant role on the NWs growth, determining the col-
lecting area and consequently the axial growth rate.
Temperature and evaporated fluence dependences sup-
port this model. On the other hand, in the typical
description of the VLS mechanism, the main role is
ascribed to the atoms impinging on the Au droplet,
then to those diffusing into it and reaching the liquid
interface. In order to quantify, which is the effective role
of the two processes (direct impingement vs adatoms
diffusion form the surface) in the PVD techniques, both
in the cases of Si and Ge evaporations, a specific experi-
ment that can evaluate the volume of the dip around
the NWs is performed. The dip is a sort of reservoir
such that the atoms missing in this volume have been
consumed for the NWs growth, thus contributing to its
total volume. In particular, through FIB cross sections
of single Si (and Ge) NWs were locally performed, both
of them being prepared at a growth temperature of 480°
C; the evaporated fluence has been chosen such that the
thickness of the planar layer is constant. In particular,
half of the NW and the surrounding grown layer were

vertically cut till the Si wafer substrate to make visible a
section of the dip around the NW. The volume of this
dip was measured, corresponding to the evaporated ada-
toms contribution to the axial growth. Furthermore, the
entire volume of the NWs was measured. Since the den-
sities of Si and Ge are different, and since the measured
NWs have different radius, data are analyzed to make
direct comparison possible. Both the NW and the dip
volumes to the volume of a cylinder having the same
radius of the NW and the same height of the 2D planar
layer, named V2D, were normalized. In this study, the
total and the adatoms contributions to the NW growth
were obtained, which are reported in Figure 4 with blue
and red columns, respectively, for both Si and Ge. In
the inset of the figure, a schematic picture of the experi-
ment is depicted. A section of the NW is drawn, and
the measured volumes (of the dip and of the NW) are
colored according to the column in the graph. To com-
plete the description, it is necessary to quantitatively
evaluate the contribution of the atoms which directly
impinge on the Au droplet and are adsorbed into the
liquid interface through the catalyst. With this purpose
in view, the difference between the total NW volume
and the volume of the dip was calculated. The properly
normalized difference is reported in the green columns,
and it represents the direct impingement contribution.
The height of the green column has to be compared
with the volume V2D which should be filled by a com-
pletely planar layer after an evaporation of such a flu-
ence. This volume refers to a 2D planar layer grown
under the same conditions without the presence of the

Figure 4 Measured volume of the entire NW (blue column);
measured volume due to the contribution of the Si or Ge
diffusing adatoms (red columns); difference between the
overall volume and the part ascribed to the adatoms (green
columns). The calculated volume V2D which should be filled by a
completely planar layer after an evaporation of such a fluence is
reported in the graph with the dashed line. All data are normalized
to this value.
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gold droplet. This calculated value is reported in the
graph with the dashed line.
It is remarkable to observe that the volume ascribed to

the direct impingement process on the NW growth
matches very well with the volume V2D which should be
filled by the planar layer in the absence of the Au dro-
plet. In other words, this analysis definitely demon-
strates that direct impingement, in the case of PVD
techniques, has a minor role in the axial growth because
it contributes to a maximum NW height corresponding
to the thickness of the planar layer only. NWs should
not be visible outside the planar layer if direct impinge-
ment were the only mechanism for the axial growth. On
the contrary, it is demonstrated that adatoms diffusion
has a relevant role in the axial growth. The measured
length outside the 2D film is due to this mechanism
only.

Discussion
On the basis of the data reported in this article, the
authors have been able to model the NWs growth by
PVD techniques. In particular, the differences between
Si and Ge NWs behaviors will drive this modeling. In
this case, the substrates are always Si wafers. When Si is
evaporated, Si adatoms diffusion on Si during the whole
growth process must be taken into consideration. On
the contrary, at the first stages of Ge evaporation, Ge
adatoms move on Si. Later, the Si from the substrate
cannot interact anymore with the Ge adatoms, and they
start to move on a Ge planar layer. It is reported in the
literature that the diffusion mean length measured at
450°C of Ge on Si is twice greater than that of Si on Si
[24]. Moreover, the diffusion mean length of Ge on Ge
is about a factor of 15 times higher than that of Si on
Si. As a consequence, by changing the mean diffusion
length in the different systems, the effective collecting
area for the growth is changed. In particular, the collect-
ing area for Ge NWs is much greater than for Si NWs.
As a consequence, once the substrate temperature is
fixed, the incubation fluence value for Ge NWs growth
can be reached at lower fluence values with respect to
those of the Si.
Figure 5 shows the schematic picture of the Si (left-

hand side) and of the Ge NWs (right-hand side) growth
on a Si substrate. Color scale refers to the evolution of
the growth as a function of the evaporated fluence, as
indicated in the scale bar. The top panel refers to the
first stages of the growth, corresponding to an evapo-
rated fluence, named F1, at which Si NWs are still not
observable outside the planar layer, while Ge NWs have
started to grow with their maximum possible axial rate.
In other words, F1 is higher than the Ge incubation flu-
ence Fc

Ge and less than the Si incubation fluence Fc
Si,

i.e., in the range between 0.25 and 1.75 × 1018 cm-2. It

is clear that Si axial rate is equal to the planar one, but
the gold droplets are still active as they have not been
covered and they are visible from the top of the sample.
On the other hand, Ge adatoms are contributing to the
planar layer also, but as they can move on the surface
faster than Si adatoms, the Ge incubation fluence has
been reached, and we observe very tall Ge NWs despite
the low evaporated fluence, and the dip around the NW
just being formed. The picture represents this stage.
The Ge adatoms path from the dip to the liquid eutectic
interface is indicated by arrows. The width of the dip is
correlated to the Ge adatoms mean diffusion length,
RcGe. The bottom panel refers to the subsequent stages,
in which both Si and Ge NWs are growing. This occurs
at evaporated fluences higher than the Si and Ge incu-
bation fluences but less than the respective saturation
fluences, named, Fsat

Si and Fsat
Ge. Strong differences are

observable. In fact, the picture clearly depicts what
we discussed about the growth rate measurements in
Figure 3. Si NWs are growing with an axial rate which
increases with increasing evaporated fluence (note the
color scale in the picture) so that the Si NWs length
strongly increases at the later stages only. Actually, the
total Si NWs length is lower than that of Ge NWs. The
dip in this case is also visible, and it is continuously
used as a reservoir for the growth. Its width, being
determined by the Si adatoms diffusion length RcSi, is
narrower than that of Ge. In the fluence regime that are
now being analyzed, the Ge axial growth rate is

Figure 5 Schematic picture of the Si NWs (left-hand side) and
of the Ge NWs growth on Si substrate (right-hand side), in
different fluence regimes. Color scale refers to the evolution of
the growth as a function of the evaporated fluence.
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decreasing with increasing evaporated fluence. In fact,
the Ge NW is so tall that Ge adatoms cannot reach the
gold droplet, because of their finite diffusion length.
Therefore, the contribution of the adatoms for the
growth is reduced, and adatoms are favored to contri-
bute to the planar layer growth. As a consequence, the
Ge NWs length measured outside the planar layer satu-
rates. At the final stage, the collecting area has been
totally filled by the adatoms. If the diffusion mean
length could be similar for Si and Ge, then NWs should
grow in the same regime. Actually, this condition
requires either a Ge growth temperature less than the
eutectic one or a Si growth temperature so high that
desorption process would be dominant.

Conclusions
This study highlights the microscopic mechanisms
occurring during the growth of Si and Ge NWs. It is
demonstrated that they grow in different regimes of
temperatures and fluences, despite Si and Ge having the
same structure, and despite Si-Au and Ge-Au phase dia-
grams being very similar. First, it was proved that the
minimal Si NWs growth temperature is limited by
kinetics constrains. From a thermodynamic point of
view, the growth could occur above 363°C. Owing to
the low activation energy of the surface Si diffusion pro-
cess, at temperatures less than 420°C, adatoms cannot
contribute to the growth. They are substantially frozen
on the substrate (i.e., their mean diffusion length is very
short), and they cannot contribute to the axial growth.
As a consequence, NWs are not visible outside the pla-
nar layer. On the contrary, the minimal Ge NWs growth
temperature is limited by the thermodynamic constraint
only (the eutectic temperature). Moreover, incubation
fluences have been identified for both Si and Ge, and
this value is shwon to be much higher in Si NWs than
in Ge ones. Accordingly, Si NWs can grow in a very
narrow fluence range at higher values than the Ge
NWs. We showed that the different Si and Ge surface
kinetics can well explain these differences, and we are
able to model the microscopic growth mechanisms of
both systems. These results open the way for an under-
standing of the peculiarity of the VLS mechanism in
PVD systems, such as EBE to easily control the NWs
growth mechanisms in achieving the maximum possible
axial rate for both systems.

Abbreviations
CVDP: chemical vapor deposition; EBE: electron beam evaporation; FIB:
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