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Abstract

The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been
analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were
experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the
hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and
viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity
diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%)
compare well with literature values when available. New viscosity experimental data yield values more than twice
larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences
that must be taken into account for any practical application. These experimental results were compared with
some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and
Dougherty for viscosity.

Introduction
Improving the efficiency of energy production and con-
sumption has undoubtedly become one of the most
important global problems that will have to be faced
during the next decades. Some of the particular con-
cerns related with this main problem include the quanti-
fication and control of global climate change due to the
emissions of greenhouse gases, or the expected decline
in global oil production [1]. Considering the rapid
increase in energy demand worldwide, intensifying heat
transfer processes and reducing energy losses due to
ineffective use have become increasingly important
tasks. Nanoscience and nanotechnology are expected to
play a significant role in revitalizing the traditional
energy industries and stimulating the emerging renew-
able energy industries [2,3]. Nanofluids, in which nano-
sized particles are suspended in liquids, have emerged as
a potential candidate for the tailoring and production of
heat transfer fluids. It is known that these new fluids
enhance thermal conductivity of the base liquid,
although the underlying nature of this effect still
remains controversial. Moreover, nanofluids were found
to be very stable due to the small size of the particles

and the small volume fraction of the particles needed
for heat transfer enhancement [4].
When the nanoparticles are properly dispersed, nano-

fluids can offer numerous benefits [5-7] besides the
anomalously high effective thermal conductivity, such as
improved heat transfer and stability, microchannel cool-
ing without clogging, the possibility of miniaturizing sys-
tems scalings, or reduction in pumping power, among
others. Thus, nanofluids have a wide range of industrial,
engineering, and medical applications in fields ranging
from transportation, micromechanics, heating, ventilat-
ing and air-conditioning systems, biomolecules trapping,
or enhanced drug delivery [3,8].
When studying this type of systems, one of the vari-

ables that must be considered carefully in first place is
the sample polydispersity because usually, the average
particle size values declared to characterize samples are
only rough approximations, and definitely, a non-negli-
gible size distribution is always present for real samples,
producing noticeable changes in thermal behavior. Once
the dry nanoparticles are well characterized, the stability
of the suspensions must then be ensured. The measure-
ment of zeta potential and the use of UV/Vis spectro-
photometry represent reliable probes to quantify
stability [9-11]. Usually, the dispersion in the base fluid
is obtained using techniques such as mechanical stirring,
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ultrasound probes, or the combination of both, but
also in this case, there are no clear guidelines about
the most reliable method to achieve stability and avoid
sedimentation. The recommended sonication times
vary for the same nanofluid according to different
authors, and the effect on the size and distribution of
aggregates is seldom discussed [12,13]. Visual techni-
que controls may be discarded in this context for their
lack of reproducibility.
Although the determination of thermal conductivity

has focused most efforts, it is believed that viscosity is
as critical as thermal conductivity in engineering sys-
tems that entail fluid flow [8,14-16]. Pumping power is
proportional to the pressure drop, which in turn is
related to fluid viscosity. In laminar flow, the pressure
drop is directly proportional to the viscosity. Both visc-
osity and thermal conductivity of nanofluids are known
to undergo anomalous enhancements, but more thor-
ough investigations should be carried out on these prop-
erties because a good deal of controversy and
remarkable inconsistencies have been reported in this
emerging subject [17]. The monograph published by
Das et al. [4] represents a reference study about nano-
fluids, including a wide literature survey, which is indi-
cative of the efforts done in the last few years. A recent
collective study [18] intended to establish a benchmark
for thermal conductivity measurements by comparing
the results obtained from a common sample delivered
to many reference laboratories. The results yielded dif-
ferences between 5% and 10% for data of water and
PAO-based samples from different sources. In other
recent studies concerning thermophysical characteriza-
tion of nanofluids, Das et al. [19] and Eastman et al.
[15] presented a good account about nanotubes and the
role of the contact resistance in the thermal transport of
nanofluids, besides addressing the issues about thermal
conductivity and viscosity of oxide nanoparticle-based
and metallic nanofluids. Wang and Mujumdar [11] pre-
sented an overview focused on heat transfer characteris-
tics using nanofluids, and Murshed et al. [8] remarked
that it is imperative to conduct detailed research in
order to confirm the effects of particle size, shapes, clus-
tering of particles, and temperature on the effective
thermal conductivity of a wide range of nanofluids and
added that it is necessary to develop more comprehen-
sive models, based on first principles, with the aim of
accounting for the enhanced thermal conductivity of
nanofluids. Li et al. [20] also discussed the preparation
and characterization of nanofluids, a subject that unfor-
tunately has not received the necessary attention so far
but plays a key role. Wen et al. [2] and Murshed et al.
[21] insisted on the need of studies about other proper-
ties such as viscosity, wetting behavior, thermal diffusiv-
ity, convective heat transfer coefficients, and viscosity;

finally, Özerinç et al. [22] summarized the research in
nanofluid thermal conductivity from experimental and
theoretical investigations.
In this general context, the objective of this article was

to study nanofluids composed by alumina (Al2O3) nano-
particles dispersed in ethylene glycol in a concentration
ranging up to 25% in weight fraction. Two different sets
of samples were considered, one of them obtained from
dispersion of different brands of commercial dry nano-
powder and the second obtained from dispersion of a
dry nanopowder obtained by centrifuged and dried of a
commercial dispersion. The characteristics of the dry
powder, stability, size distribution, and Z potential are
discussed in each case. Then, the thermal conductivity
and viscosity of the nanofluids have been determined
experimentally between 283.15 K and up to 323.15 K.
From a theoretical point of view, it was Maxwell [23]

who first proposed a theory to account for the enhance-
ment produced in the thermal conductivity of a fluid by
the presence of suspended colloidal particles. Unfortu-
nately, the classical models on suspensions give an
insufficient understanding of the formulation and ther-
mophysical profile of nanofluids, thus limiting their
potential applications. Although it is widely agreed now
that the initial thermal conductivity enhancements
reported were by far too optimistic, a reliable theory
connecting the molecular structure and the macroscopic
transport properties of nanofluids is not available yet, so
a considerable effort for the determination of accurate
and reproducible experimental data for this type of sus-
pensions is essential. The results presented in this work
have been compared with other reported experimental
values and with various theoretical models proposed for
the prediction of the thermal conductivity and viscosity
of nanofluids. Concerning experimental and theoretical
studies on alumina nanoparticles dispersed in ethylene
glycol, the works studying the effect of temperature by
Timofeeva et al. [24] and Beck et al. [25-27] must be
cited. Alternatively, Beck et al. [28] have studied the
effect of particle size on thermal conductivity and Timo-
feeva et al. [24,29] considered the effect of particle shape
and pH on this property and also on viscosity, from
both experimental and theoretical perspectives. Timo-
feeva et al. have drawn attention on the fact that evalua-
tion of nanofluids for a particular application requires
proper understanding of all their characteristics and
thermophysical properties of nanoparticle suspensions.

Experimental
Sample preparation and characterization
Two sets of different samples of ethylene glycol-based
Al2O3 nanofluids were used. The first of them, S1, was
prepared by dispersing dry Al2O3 nanoparticles in ethy-
lene glycol (Aldrich, St. Louis, MO, USA, 99%). The
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nanoparticles were supplied by Nanophase, with a
declared diameter distribution D = 40-50 nm and a
crystal phase composition of 70:30 g and δ phases,
respectively. Samples S2 were prepared using Al2O3

nanoparticles supplied by Aldrich dispersed in water
(10% weight fraction), with a limiting value of D < 20
nm. This original dispersion was centrifuged and washed
repeatedly with absolute ethanol, and the obtained solid
was dried and redispersed in ethylene glycol. The pow-
der sample was in every case dispersed into a predeter-
mined volume of the base fluid to obtain the desired
weight fraction. Values up to 20 wt.% for viscosity, and
up to 25% for thermal conductivity measurements were
prepared using a Mettler AE-240 electronic balance
(Mettler-Toledo, Columbus, OH, USA), whose accuracy
is 5 × 10-5 g.
All products were used without any purification, and no

dispersants or surfactants were used to stabilize the sam-
ples. As it has been shown that the size, shape, and com-
position of nanoparticles strongly influence their
thermophysical profile, the first step to obtain a precise
characterization of the samples was the analysis of the dry
nanoparticles used in the preparation of S1 and S2. In this
case, the scanning electron microscopy [SEM] technique
was used, and the images were obtained with a JEOL JSM-
6700F field emission gun-SEM, (JEOL, Tokyo, Japan),
operating at an acceleration voltage of 20 kV in backscat-
tering electron image (yttrium aluminium garnet-type
detector). This device incorporates an energy-dispersive
X-ray spectrometer that was used to chemically character-
ize the samples. SEM samples were prepared by deposition
of the nanopowder on top of a carbon substrate, coated
with a thin (approximately 20 nm) carbon layer. The pic-
tures in Figure 1 show that under atmospheric condition,
the nanopowder forms close agglomerates of micrometers
in size (Figure 1a). A magnification of these aggregates
(Figure 1b) allows identifying the individual nanoscale size
particles on the agglomerate surface. The shape of the
individual nanoparticles is nearly spherical.

As described in a previous work [10], the use of an
ultrasonic homogenizer improves nanofluid stability
over other alternatives available to disperse the nanopar-
ticles, and so a (U.S.int) BandelinSonoplus HD 2200 was
used (Bandelin Electronic, Berlin, Germany), with typical
sonication times of 16 min. In order to check the mor-
phology and size distribution of the fluid samples, trans-
mission electron microscope technique was used [10].
An estimate of the size distribution in each case was
obtained using ImageTool freeware software http://
www.digitalimagetool.com. The volume-weighted aver-
age diameter values computed were D = 43 ± 23 nm for
S1 and D = 8 ± 3 nm for S2 [10]. More details about
sample preparation and characterizations are given in
[10,30].

Thermal conductivity and viscosity measurements of
nanofluids
Once both samples have been adequately characterized,
the following step is to determine the thermal conduc-
tivity and viscosity of the nanofluids. The transient hot-
wire method was first suggested in 1931 to measure the
absolute thermal conductivity, and ever since many
authors have contributed to improve the method, mak-
ing it more accurate. With the development of modern
electronic instrumentation and use of a proper theoreti-
cal basis, this method has evolved to be one of the most
accurate techniques of determining the thermal conduc-
tivity of fluids, including nanofluids [8,31]. The advan-
tage of this method is connected with its success to
nearly completely avoid natural convection effects. In
addition, this method is fast and its conceptual design is
simple when compared to other techniques. Thermal
conductivity data were measured in this case using the
Decagon devices KD2 Pro Thermal Properties Analyzer
(Decagon Devices Inc., Pullman, WA, USA). This appa-
ratus meets the standards of ASTM D5334 and IEEE
442-1981 regulations. Its principle of measurement is
based on the transient hot-wire source approach, and it

Figure 1 SEM image of S1 dry Al2O3nanopowder at two magnifications. a × 5,000; b × 60,000.
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has been used successfully for nanofluids by several
authors [29,32-34]. It basically comprises a readout unit
and a single-needle sensor that is inserted into the fluid
sample. The thermal probe (1.27-mm diameter, 60-mm
length), containing a heating element and a thermoresis-
tor, should be inserted into the sample vertically, rather
than horizontally, with the aim of minimizing the possi-
bility of inducing convection. The measurement is made
by heating the probe within the sample while simulta-
neously monitoring the temperature change of the
probe. A single reading generally takes 2 min. The first
90 s are used to ensure temperature stability, after
which the probe is heated for 30 s using a controlled
current intensity. The thermistor measures the changing
temperature while the microprocessor stores the data.
At the end of the reading, the thermal conductivity of
the fluid is computed using the temperature difference
versus time data based on a parameter-corrected version
of the temperature model given by Carslaw and Jaeger
[35] for an infinite line heat source with constant heat
output and zero mass in an infinite medium. Before and
after analysis of the nanofluid samples, the accuracy of
the probe was carefully checked on pure water, ethylene
glycol, and a standard sample of glycerol of well-known
thermal conductivity. Approximately 15 cm3 of the sam-
ple to be analyzed was sealed in a glass sample vial. The
probe was then inserted vertically into the sample via a
purpose-made port in the lid of the vial. The sealed vial
was then fully immersed in a temperature-controlled
water bath, model Grant GD200, (Grant Instruments,
Cambridge, UK), and allowed to thermostatize. Once
the sample reached the required temperature, 15 more
minutes were allowed to go before carrying out the
measurement to ensure complete thermal equilibration.
At least four measurements were taken at each tempera-
ture, with a delay of at least 15 min between each other,
to ensure reproducibility. The uncertainty of the thermal
conductivity was estimated from the standard deviations
of experimental data and departures from literature
values of the cited reference fluids, and was estimated to
be lower than 3%.
Viscosity measurements of alumina nanofluids were

performed using a Schott rotational viscometer (Cole
Parmer, Vernon Hills, IL, USA), equipped with a spindle
of coaxial cylindrical geometry (LCP) equipped with a
stainless steel flow jacket. This viscometer is a con-
trolled shear rate instrument. By using a multiple-speed
transmission and interchangeable spindles, a variety of
viscosity ranges can be measured, enhancing device ver-
satility. Flow behavior of nanofluids was tested at a
shear rate of 123 s-1. The LCP adaptor holds a sample
volume of 16-18 ml and is connected to a PolyScience
fluid circulation bath (PolyScience, Niles, IL, USA), that
controls temperature measured inside the cell with a

PT100 probe that ensures an uncertainty of 0.05 K. The
estimated uncertainty in viscosity using this device is
guaranteed to within ± 1%.

Results and discussion
Thermal conductivity
The experimental thermal conductivities at atmospheric
pressure from 283.15 K to 323.15 K for pure ethylene
glycol and water were determined first and are pre-
sented in Table 1. A comparison between our data and
those from literature [36-42] is displayed graphically in
Figure 2. Overall average deviation of 1.8% is obtained
for ethylene glycol and 0.8% for water. An inspection of
the data presented in Figure 2 shows that our results
are in agreement with literature values within the esti-
mated experimental uncertainty.
The thermal conductivity enhancement of five different

ethylene glycol-based Al2O3 nanofluids corresponding to
the denoted S1 samples has been measured at 283.15 K,
303.15 K, and 323.15 K. The volume fraction, j, varied
between 1.5% and 8.6% estimated from the densities of the
pure liquid, determined in our laboratory with an Anton
Paar DMA 4500 vibrating tube densimeter (Anton Paar,
Graz, Österreich), and the bulk solid oxide [41]. The
experimental thermal conductivities of alumina nanofluids,
knf, at several temperatures are presented in Table 2 as a
function of volume fraction. At the tested concentrations,
thermal conductivity increases with nanoparticle volume
fraction, j, as shown in Figure 3. This behavior is in agree-
ment with Timofeeva et al. [24,29] for different particle
shapes, including spheres, and with those reported by
Beck et al. [25] and Wang et al. [43] for nanofluids consist-
ing of ethylene glycol with 20- and 28-nm alumina nano-
particles, respectively. Concerning temperature
dependence, the thermal conductivity of all nanofluids
also increases with temperature. As observed, the addition
of nanopowder systematically increases the thermal con-
ductivity of the nanofluid as compared with the pure fluid.
If Table 2 is analyzed, we can conclude that this enhance-
ment for a given nanofluid is nearly temperature-indepen-
dent, as Peñas et al. [38] have also stated. Average
enhancements values from 3% at the lowest volume frac-
tion up to 19% for the highest concentration are found,
showing good agreement (average 1% deviation) with the
data from Timofeeva et al. [24] at 296.15 K for

Table 1 Experimental thermal conductivity for ethylene
glycol and water

EG H2O

T (K) k (W m-1 K-1) T (K) k (W m-1 K-1)

283.15 0.2433 283.15 0.5784

303.15 0.2463 303.15 0.6259

323.15 0.2494 323.15 0.6345
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suspensions prepared from 40-nm alumina nanoparticles.
However, the S1 sample data reported here and those
from [24] with 11-, 20-, and 40-nm nominal sizes do not
show the same trend as reported by Beck et al. [28] in
their study on the effect of particle size on alumina nano-
fluids in ethylene glycol. This may be due to the different
pH of the samples studied [29], an effect that has been
cited to have an influence on this property.
In the past decade, many efforts have been made to

theoretically estimate the enhancement of thermal

conductivity of nanofluids, and a rather large number of
models have been proposed. However, and despite the
efforts to account for different physical effects, none of
these models can be used with enough generality. The
classical Maxwell model [23] for thermal conductivity
was proposed to predict the thermal conductivity of
homogeneous liquid/solid suspensions with relatively
large and spherical particles. This model has been
applied here in its original formulation.

knf =
kp + 2k0 + 2(kp − k0)ϕ

kp + 2k0 − (kp − k0)ϕ
k0 (1)

where knf, kp, and k0 stand for the thermal conductiv-
ity of the nanofluid, solid particles, and bulk liquid,
respectively, and j is the particle volume fraction (vol.
%). For the thermal conductivity of the particles, we
used tabulated values [41] for the bulk solid, kAl2O3 = 36
W m-1 K-1 (polycrystalline).
Many other models were proposed based on the tradi-

tional Maxwell formulation, considering the influence of
factors as particle diameter, surface area, shape, Brow-
nian motion, or solid/fluid interfacial effects. Wang and
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Figure 2 Comparison of thermal conductivity values. Values obtained in this work (filled circle, water; empty circle, EG) and several literature
values for water (filled triangle [38]; filled square [37]; filled diamond [41]; downturned triangle [36]) and EG (ex [52]; empty diamond [39]; empty
square [42], empty triangle [38]).

Table 2 Experimental values of the thermal conductivity
of nanofluids based on EG (S1 samples)

j knf (W m-1 K-1)

283.15 K 303.15 K 323.15 K

0.000 0.2433 0.2463 0.2494

0.015 0.2515 0.2545 0.2562

0.031 0.2626 0.2652 0.2685

0.048 0.2733 0.2773 0.2788

0.066 0.2824 0.2867 0.2886

0.086 0.2910 0.2938 0.2954
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Mujumdar [11] extensively reviewed different nanofluid
thermal conductivity theories, beginning with the adap-
tation by Hamilton and Crosser [44] of the classical
Maxwell model.
The effects of solid/fluid interface are very important

in suspensions. The nanolayer between the nanoparticles
and the base fluid may be a dominant factor influencing
the thermal conductivity of nanofluids. Current research
on nanofluids indicates that the enhancement of thermal
conductivity might be due to the ordered layering of
liquid molecules near the solid particles, and some mod-
els taking this effect into account have been developed
[20]. Nevertheless, it is beyond the goal of this work to
compare our experimental data with an extensive review
of models. Moreover, as was pointed out elsewhere [11]
for dilute concentrations, there is little difference
between the classical Maxwell model and other more
sophisticated theories.
The experimental values of the thermal conductivity

together with the predictions based on Equation 1 for
the different nanofluids studied are represented in
Figure 4 at 303.15 K, and similar results have been
obtained at all temperatures. As can be seen, the Max-
well model overpredicts the experimental enhancement
of the thermal conductivity. This behavior is also found
for several sets of data of Al2O3/water nanofluids exam-
ined in [11], with also larger deviations appearing at
higher volume fractions. As a conclusion, and in coinci-
dence with the common opinion, it is still necessary to
develop further investigation about thermal transfer pro-
cesses in nanofluids considering some of the variables

cited above. Nevertheless, as a first step, it is even more
necessary to concentrate efforts on a very accurate
experimental determination, controlling all properties
involving in nanofluids and standardizing the characteri-
zation and preparation of new nanofluids, keeping in
mind the objective of obtaining a perfectly reliable
reproducibility in sample preparation at a first stage and
then the same reproducibility in thermophysical prop-
erty determination as that currently achieved when deal-
ing with classical fluids and solutions.

Viscosity
Viscosity describes a fluid internal resistance to flow
and, in the case of nanofluids, depends on the morphol-
ogy and size of nanoparticles. Although some studies
indicate non-Newtonian behavior of nanofluids, specially
at low shear rate, Wang et al. [43] and Chen et al. [45]
indicated for Al2O3/EG nanofluids a Newtonian beha-
vior at relatively high shear rates, and the value stated in
this work (g = 123 s-1) lies in that range. Experimental
viscosity values at atmospheric pressure and at 5 K
intervals, from 283.15 K to 323.15 K, for S1 and S2 are
listed in Table 3. Experimental results for pure ethylene
glycol were compared with those reported by Sun and
Teja [39] and by Chen et al. [45], finding a good agree-
ment, with an average deviation of 1% and 2%,
respectively.
Concentrations from 1.7% to 20% in weight fraction,

corresponding to volume fractions from 0.005 to 0.065,
were considered for nanofluids using S1 samples, while
concentrations from 1.7% to 10% in weight fraction,
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Figure 3 Experimental measured thermal conductivity. Alumina nanofluids in EG versus volume fraction concentration at different
temperatures: 283.15 K (filled circle); 303.15 K (empty circle), and 323.15 K (downturned triangle).
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corresponding to volume fractions from 0.005 to 0.03,
were measured for the S2 samples. The viscosity
decreases significantly with temperature, as usual, as
represented in Figure 5.
A large number of methods have also been developed

to describe the dependence of viscosity for different
fluids with temperature. Among them, the following
modification of Andrade’s equation, also known as

three-coefficient Vogel-Fulcher-Tammann equation, was
proposed:

Ln (η) = A +
B

T − T0
(2)

where h is the dynamic viscosity, T is the temperature,
and A, B, and T0 are adjustable parameters. The ratio of
parameters B and T0 is also known as Angell strength

0.00 0.02 0.04 0.06 0.08 0.10

k n
f /
k 0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Figure 4 Enhancement in the thermal conductivity at 303.15 K. Alumina nanofluids as a function of the volume fraction of nanoparticles.
Solid line, Prediction of Maxwell model of Equation 1.

Table 3 Experimental viscosity values, h (mPa·s), for nanofluids based on EG constituted by S1 and S2 samples

j T (K)

283.15 288.15 293.15 298.15 303.15 308.15 313.15 323.15

S1 samples

0.000 35.44 28.00 21.89 17.25 13.86 11.64 9.62 7.21

0.005 37.30 29.54 23.61 18.35 14.48 12.16 10.17 7.51

0.010 40.29 31.54 25.22 19.91 15.87 13.55 11.21 8.26

0.015 43.21 33.75 26.61 21.05 16.75 14.27 11.89 8.73

0.021 46.67 36.20 28.51 22.69 18.18 15.16 12.53 9.27

0.031 51.90 39.79 31.99 25.64 20.55 17.00 13.79 10.44

0.048 65.43 49.41 38.07 30.46 24.31 20.32 16.80 12.40

0.066 81.51 61.27 47.70 37.86 30.87 25.35 21.50 15.41

S2 samples

0.000 35.44 28.00 21.89 17.25 13.86 11.64 9.62 7.21

0.005 40.54 32.01 24.50 19.46 15.76 13.13 10.84 8.10

0.010 46.07 34.98 27.06 21.57 17.67 14.52 12.05 8.96

0.015 53.50 40.85 30.44 23.78 19.41 15.85 13.01 9.47

0.021 61.35 46.86 35.62 27.80 22.31 18.20 14.94 11.02

0.031 75.19 57.48 43.80 33.92 27.02 21.80 18.27 13.26
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parameter [46]. The values obtained from A, B, and C
are gathered in Tables 4 and 5 for different nanofluids.
The average standard deviation of these correlations is
0.3 mPa s for both S1 and S2 samples, the maximum
being 0.7 and 0.5 mPa s, respectively. The goodness of
this fit can also be seen in Figure 5.
Viscosity increases with volume fraction, as expected,

and this enhancement, defined as (hnf - h0)/h0, h0 being
the viscosity of the base fluid, can be considered tem-
perature-independent by analyzing Table 3. This
approximation was also considered by Chen et al. [45]
and Prasher et al. [47]. Thus, average viscosity increase
values for each studied nanofluid were assumed over the
temperature range because it allows a convenient repre-
sentation of results (Figure 6). S1 and S2 samples,
although sharing the same nature and nanoparticle con-
centration, exhibit remarkably different viscosity
enhancements, and the difference between both trends
is increased with concentration, as can be observed in
Table 3 or in Figure 6. S2 samples, whose average nano-
particle size is smaller, show a significantly larger viscos-
ity than S1 samples. These variations must be carefully
considered because they indicate that the differences in
size or aggregation of the nanoparticles used to produce
a nanofluid have a determining influence on its viscosity.
This effect should be analyzed when any practical

application of the nanofluid is envisaged. As an example,
at 10% weight fraction, viscosity enhancements of 46%
and 96% are obtained for S1 and S2 samples, respec-
tively, while for S1 samples, enhancements from 5% up
to more than twice the base fluid value for the lower
and higher volume fractions are found. The influence of
particle size in a colloid viscosity is well known [48] due
to effects, as for instance, of the electric double-layer
repulsion.
This viscosity enhancement of nanofluids with volume

fraction has already been cited in literature as noted
above, but again, there is no agreement about the
underlying physical reasons for this behavior. Several
authors have proposed semi-empirical equations to
describe the enhancement of the viscosity of concen-
trated suspensions (hr = hnf/h0, where hnf and h0 are
the nanofluid and base fluid viscosity, respectively) as a
function of the volume fraction only, inspired by the ori-
ginal expression of Einstein [49] who derived a linear
relation. This classical approach largely underestimates
the usual nanofluid viscosities. Nevertheless, many
authors followed this approach, proposing similar corre-
lations with variable degree volume fraction polyno-
mials, as in the case of Chow [50]. This author
presented a theory to describe the viscosity of concen-
trated dispersions of arbitrary-shaped particles. For the
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Figure 5 Dynamic viscosities for both Al2O3/EG nanofluids versus temperature. S1 samples (a) and S2 samples (b). Experimental points at
different volume fractions: EG (filled circle), 0.005 (empty circle), 0.010 (filled diamond), 0.015 (empty diamond), 0.021 (filled square), 0.031 (empty
square), 0.048 (filled triangle), 0.066 (empty triangle), Vogel-Fulcher-Tammann equation (solid line).

Table 4 Coefficients A, B, T0, and standard deviation, s,
from Vogel-Fulcher-Tammann equation for S1 Al2O3/EG
nanofluids at different volume concentration, j

j

0.000 0.005 0.010 0.015 0.021 0.031 0.048 0.066

A -3.694 -3.632 -2.381 -1.702 -3.450 -3.302 -1.379 -3.039

B (K) 999.0 999.0 689.3 534.7 999.0 999.0 518.4 999.2

T0 (K) 145.7 145.5 169.8 185.5 146.2 145.3 189.9 148.7

s (mPa s( 0.29 0.43 0.32 0.36 0.18 0.33 0.16 0.70

Table 5 Coefficients A, B, T0, and standard deviation, s,
from Vogel-Fulcher-Tammann equation for S2 Al2O3/EG
nanofluids at different volume concentration, j

j

0.000 0.005 0.010 0.015 0.021 0.031

A -3.694 -3.617 -1.558 -2.161 -2.540 -2.767

B (K) 999.0 999.1 493.2 616.2 745.9 847.7

T0 (K) 145.7 146.7 191.6 182.9 171.1 163.6

s (mPa s) 0.29 0.36 0.10 0.41 0.34 0.48
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simplest case of spherical monodisperse particles, the
author demonstrates that a good approximation of the
enhancement of the viscosity can be obtained with a
polynomial expansion of volume fraction, as follows:

ηr =
ηnf

η0
= 1 +

N∑
i=1

Ciϕ
i (3)

where N is the degree of the expansion and Ci are coef-
ficients. Equation 3 reduces to the well-known Einstein
[49] expression for dilute dispersion viscosity if N = 1
and C1 = 2.5. As commented, Figure 6 shows that the
Einstein relation underestimates the enhancement of the
viscosity, especially at higher concentrations. A fit of
Equation 3 to experimental viscosities was considered,
with N = 1, yielding C1values of 15.2 and 29.2 for S1 and
S2 samples, respectively. These correlations are also
shown in Figure 6, and absolute average deviations of 2%
were reached for both sets of samples. No significant
improvements have been obtained if N = 2 is considered
in Equation 3. As an alternative approach, we have
applied the following semi-empirical relationship for visc-
osity of dispersions covering the full range of particle
volume fraction obtained by Krieger and Dougherty [51]:

ηr =
ηnf

η0
=

(
1 − ϕ

ϕm

)−[η]ϕm

(4)

where jm is the maximum particle volume fraction
and [h] is the intrinsic viscosity, whose typical value for

monodisperse suspensions of hard spheres is 2.5. Then,
if nanoparticles in nanofluids are assumed to form
aggregates, and hydrodynamic forces are considered
insufficient to break the structure of aggregates into iso-
lated particles, the flow of such stable aggregates must
be taken into account. Considering the effects of vari-
able packing fraction within the aggregate structure, an
approximate expression for the nanofluid enhancement
of the viscosity can be derived [45]:

ηr =
[

1 − ϕ

0.605

(aa

a

)1.2
]−1.5125

(5)

where aa and a represent the average radius of the
aggregates and single particles, respectively. This the-
ory attributes the viscosity enhancement of a nanofluid
only to the aggregation state of the nanoparticles.
Assuming as Chen et al. [45] Newtonian behavior for
EG-based nanofluids and the enhancement of the visc-
osity depending on particle concentration in a non-
linear manner but independent of temperature, we
considered the size of the aggregates dependent on
nanofluid concentration. Thus, a value of the ratio aa/
a was computed in Equation 5 for each nanofluid con-
centration. This calculation offers ratio values from 3
to 4 for S1 samples, whereas these fitted parameters
goes from 5.2 to 6.5 for S2 samples. The value of this
parameter is always higher in S2 than in S1 sample,
but this difference decreases when concentration rises.
The goodness of this Equation is plotted in Figure 6,
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Figure 6 Enhancement of viscosity increase for alumina nanofluids as a function of volume fraction of nanoparticles. S1 (diamond) and
S2 (triangle) samples. Prediction of Einstein equation (broken solid line), Equation 3 with N = 1 (dashed line), Equation 5, considering variable aa/a
ratio (dashed-dot line), and Equation 5 considering constant aa/a ratio (solid line).
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and deviations lower than experimental uncertainties
are obtained, showing the suitability of the proposed
theory to describe the viscosity for these EG-based
nanofluids.
Finally, Equation 5 was applied using the size of the

aggregates as independent of the nanofluid concentra-
tion. This way, when this equation is fitted to experi-
mental viscosities of this work, ratios of aa/a of 3.2 and
5.5 are found for S1 and S2, respectively, yielding viscos-
ity absolute average deviations of 3% and 2% for both
fluids. According to this theory, the aggregation phe-
nomenon is more relevant for smaller particles disper-
sions as it has been found to occur as the result of this
calculation. The results from Equation 5 using only one
parameter for all S1 and S2 samples are also plotted in
Figure 6. With this model, aggregation alone might not
be enough to describe as well the behavior of viscosity
at higher concentrations, so in this case, other variables
should be taken into account.

Conclusions
Thermal conductivities and viscosities of Al2O3 in ethy-
lene glycol nanofluids have been determined experimen-
tally as a function of volume concentration and
temperature. Two different types of samples were con-
sidered for viscosity, with nominal particle sizes of 43
and 8 nm, denoted here as S1 and S2, respectively,
while S1 samples were considered for thermal conduc-
tivity studies. It has been found that the thermal con-
ductivity and the viscosity increase with the
concentration of nanoparticles, whereas when the tem-
perature increases the viscosity diminishes and the ther-
mal conductivity rises. Enhancements up to 19% and
more than twice the value of the base fluid were found
for thermal conductivity and viscosity, respectively. Visc-
osity increases as particle size decreases, following the
expected classical behavior for dispersions. These large
differences on viscosity depending on particle size must
be taken into account for any practical application. We
have used the Maxwell model to predict the thermal
conductivities, finding that the Maxwell method over-
predicts these experimental values. The Vogel-Tam-
mann-Fulcher method was applied to the experimental
viscosity data, finding good agreements and showing
that this correlation with temperature is suitable also for
nanofluids. Among the methods to describe the viscosity
trend with the volume fraction of nanofluids, that from
Krieger and Dougherty, which attributes the viscosity
enhancement of a nanofluid only to the aggregation
state of the nanoparticles, gives excellent results in this
particular case, so here there is no need to consider the
influence of other variables, as for instance sample
polydispersity.
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