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1. Neurosteroid modulation of γ -aminobutyric acid
(GABA)A receptors present on dentate gran-
ule cells (DGCs) acutely isolated from epileptic
(epileptic DGCs) or control rats (control DGCs) was
studied by application of GABA with or without
the modulators and by measuring the amplitude
of peak whole-cell currents.

2. In epileptic DGCs, GABA efficacy (1,394 ±
277 pA) was greater than that in control DGCs
(765 ± 38 pA).

3. Allopregnanolone enhanced GABA-evoked cur-
rents less potently in epileptic DGCs (EC50 =
92.7 ± 13.4 nM) than in control DGCs (EC50 =
12.9 ± 2.3 nM).

4. Pregnenolone sulfate inhibited GABA-evoked cur-
rents with similar potency and efficacy in control
and epileptic DGCs.

5. Diazepam enhanced GABA-evoked currents less
potently in epileptic (EC50 = 69 ± 14 nM) com-
pared with the control DGCs (EC50 = 29.9 ±
5.7 nM).

6. Two different patterns of zolpidem modulation
of GABAA receptor currents were found in the
epileptic DGCs. In one group, zolpidem en-
hanced GABAA-receptor currents but with re-
duced potency compared with the control DGCs
(EC50 = 134 ± 20 nM vs. 52 ± 13 nM). In the sec-
ond group of epileptic DGCs, zolpidem inhibited
GABAA-receptor currents, an effect not observed
in control DGCs.

7. Epileptic DGCs were more sensitive to Zn2+ inhibi-
tion of GABAA-receptor currents (IC50 = 19 ±
6 µM) compared with control (IC50 = 94.7 ±
7.9 µM).

8. This study demonstrates significant differences
between epileptic and control DGCs. We conclude
that (a) diminished sensitivity of GABAA recep-
tors of epileptic DGCs to allopregnanolone can in-
crease susceptibility to seizures; (b) reduced sen-
sitivity to diazepam and zolpidem and increased
sensitivity to Zn2+ indicate that loss of allopreg-
nanolone sensitivity is likely to be owing to al-
tered subunit expression of postsynaptic GABAA

receptors present on epileptic DGCs; and (c) an
inverse effect of zolpidem in some epileptic DGCs
demonstrates the heterogeneity of GABAA recep-
tors present on epileptic DGCs.

COMMENTARY

C hanges in cell number and neural circuits in the epileptic
dentate gyrus have garnered much attention over the last

decades, and deservedly so. It has been known for years that cell
loss (e.g., within the dentate hilus), has a potentially important
relation to epilepsy (1). More recently, seizure-induced neu-
rogenesis has shown that increased granule cell numbers may
occur and also influence seizures (2,24). Synaptic reorganiza-
tion also is quite likely to play a role in the pathophysiology of
the epileptic dentate gyrus (3).

In addition to these changes, studies that have taken advan-
tage of modern molecular methods elucidated the alterations in
dentate granule cell γ -aminobutyric acid (GABA) receptors af-
ter seizures, and showed time and again that these changes are
likely to have functional importance.

For example, changes in GABA-receptor subunits during
status epilepticus may explain decreased benzodiazepine effi-
cacy as status progresses (4). Other studies using similar meth-
ods have shown why GABAergic inhibition may appear strong
in the epileptic dentate gyrus, but actually be susceptible to col-
lapse (5,6). The changes in GABA receptors are multifaceted
(7), and although they may have functional implications, data
from different models and human epileptic tissue do not always
agree (3,8).

New data now expand the ways in which changes of GABA
receptors alter the epileptic brain, and in this case potentially
elucidate the pathophysiology of the female brain in catamenial
epilepsy.
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Mtchedlishvili et al. (9) examined dissociated granule cells
from the epileptic brain of rats that were stimulated unilaterally
in the ventral hippocampus to induce status epilepticus and
subsequently, spontaneous recurrent seizures (10). Many weeks
after status, during the period of recurrent seizures, animals were
killed and granule cells were immediately dissociated.

Currents evoked by GABA application were compared
with currents evoked by GABA and neurosteroids. The two
neurosteroids that were chosen already are known modulate
physiologic function, although studies to date have not used
epileptic tissue. These neurosteroids are allopregnanolone and
pregnenolone sulfate.

Pregnenolone is the precursor to progesterone, and allo-
pregnanolone is a metabolite of progesterone. Allopregnanolone
and pregnenolone sulfate have potent effects at the GABAA re-
ceptor normally (11). Allopregnanolone is thought to mediate
anticonvulsant effects of progesterone (12). In contrast, preg-
nenolone sulfate appears to increase the susceptibility to seizures
(13).

Mtchedlishvili et al. showed that dentate granule cells iso-
lated from rats with recurrent seizures (“epileptic DGCs”) had
distinct pharmacology compared with DGCs of control rats.
Notably, epileptic DGCs were far less sensitive to allopreg-
nanolone, whereas effects of pregnenolone sulfate appeared to
be similar.

These results suggest a molecular explanation for the in-
creased seizure susceptibility in epileptic female brain, although
admittedly the studies were conducted in male rats, and only
DGCs were studied. Still, if granule cell inhibition is the bar-
rier to seizure propagation in the hippocampus, as proposed
(14,15), and similarity is found between female and male
DGCs, the results are potentially very important.

These data add to a literature that has already pointed
out the proepileptic changes involving altered GABA-receptor
subunits occur in the normal female brain and are likely to be
relevant to catamenial epilepsy.

Thus, during the normal menstrual cycle, the time when
progesterone declines (the perimenstrual period) has been asso-
ciated with increased seizures, and attributed to a “withdrawal”
from the inhibitory effects of allopregnanolone (16,17). Studies
by Smith et al. (18) showed that changes in GABA receptors
subunits in a rodent model of progesterone withdrawal may
be the reason for increased seizure susceptibility. Thus, both a
decline in the concentration of allopregnanolone and an altered
sensitivity of GABA receptors to allopregnanolone are likely to
be important.

Studies in nonepileptic animals have shown that sensitiv-
ity to allopregnanolone was reduced when α4 (18) or δ sub-
units (19) were expressed. Although potentially relevant to al-
tered seizure susceptibility after progesterone withdrawal, the
relevance to chronic epilepsy was unclear. In the studies of

Mtchedlivishili et al., epileptic DGCs appeared to be less sen-
sitive to modulators of α4 or δ subunits. Thus, changes in α4
or δ subunit expression may underlie the altered sensitivity to
allopregnanolone in epileptic DGCs. Increased expression of
these receptors has been previously shown in epileptic DGCS
by using another animal model of epilepsy (20), but whether
this was the case in the experiments of Mtchedvilshili et al. was
not explored.

The α1 subunit also was studied because this subunit ap-
pears to be influenced by allopregnanolone normally (21), and
α1 subunits changes after seizures (20,22). Mixed results were
obtained when the α1-subunit modulator zolpidem was used
to probe potential changes in α1 subunit function. This may
reflect that some changes in DGCs are not homogeneous, mak-
ing epileptic DGC function more complex than other results
would predict.

One could argue that isolated neurons are not as useful as
intact neurons to understand epilepsy, because of potential al-
terations in receptors during the acute dissociation procedures,
but the authors point out that both control and epileptic tis-
sue were treated in the same way. Therefore, differences exist,
although the relative contribution of synaptic versus extrasy-
naptic receptors may not yet be clear. Indeed one would hope
that even more studies of this kind could be done to answer
this question. In addition, expansion of the techniques to other
cell types could potentially identify functional changes in re-
ceptors on both neurons and glia in the epileptic brain. For
example, the α1 subunit is strongly expressed in some GABA
neurons (23); what changes occur after seizures, and how does
that influence granule cell inhibition? Such molecular studies
would be an ideal complement to the more “intact” approaches
that are presently defining changes in cell numbers and synaptic
circuitry.

by Helen E. Scharfman, Ph.D.
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