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Abstract

Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to
advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer
therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles
(AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been
developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups
have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell
hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride), or poly
(phenylacetylene-co-allylmercaptan). The chemical structure of polymeric shell, size and size distribution and optical
properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about
10-30 nm) with polymeric shell of about 2 nm.

Introduction
The field of nanoscience and nanotechnology has found
a dramatic attention in recent years and applicative per-
spectives of nanomaterials are widely studied [1]. One of
the main goals in nanoscience is the understanding of
materials behaviour when the size becomes close to
atomic dimensions. Increased attention has been
recently paid to metallic nanoparticles and in particular
to noble metal nanoparticles (Au, Ag, Pt) that can be
used in several fields: biomedicine, diagnostics [2], drug
delivery systems [3], sensors [4,5], catalysis [6] and
optics [7,8]. Optical tuneable properties have been dee-
ply investigated [9] and arise from collective oscillation
of conduction electrons within the nanoparticles result-
ing in the so-called plasmon resonance [10,11].
AuNPs have emerged as a broad new research field in

the domain of colloids not only for their optical proper-
ties [12,13], but also for high chemical stability, catalytic
use and size-dependent properties [14,15]. Aggregation
phenomena can be avoided by protecting agents such as
thiols or aminic compounds. Different synthetic

protocols have been developed for the preparation of
small, monodisperse nanoparticles [16,17]. One phase
methods, based on organic solvents such as methanol
[18] or tetrahydrofuran [19] have also been successfully
developed. Thiol-protected AuNPs usually show high
stability lasting even for years; recently Pd(II) containing
organometallic thiols have also been used for the stabili-
zation of AuNPs [20,21]. A number of functional groups
such as thiopronin [19], succinic acid [22], sulfonic acid
[23] and ammonium ions [24,25] have shown to result
in stable and readily water dispersible AuNPs.
Silver nanoparticles (AgNPs) have gained interest over

the years because of appealing properties, such as cataly-
tic and antibacterial activity [26,27] which open perspec-
tives in medical applications [28]. There are many
methods for the synthesis as well as the control of the
shape of AgNPs [29]. Silver nanoparticles can be synthe-
sized by means of several methods and chemical reduc-
tion is one of the most frequently applied methods for
their preparation as colloidal dispersions in water or
organic solvents [30,31]. The reduction of silver ions in
aqueous solution generally yields colloidal silver with
particle diameters of several nanometres [32]. The
synthesis is often carried out in the presence of stabili-
zers in order to prevent unwanted agglomeration of the
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colloids. Among others, tertiary amines have been
recently used to form Ag nanoparticles in organic med-
ium [33]. Amine derivative complexes have been used
to synthesize Au nanoparticles as well [34,35].
Platinum metal is used in industrial catalysts and can

be found in the catalytic converters, and platinum nano-
particles (PtNPs) have been recently used as a novel
hydrogen storage medium [36]. Colloidal PtNPs are
synthesized in a fashion similar to that of AuNPs and
AgNPs, by reduction of H2PtCl6 in the presence of a
citrate capping agent. Colloidal platinum can be functio-
nalized with nucleic acids and has been used as label for
the amplified biorecognition of DNA hybridization,
aptamer/protein recognition events and tyrosinase activ-
ity [37]. Colloidally prepared Pt nanoparticles capped
with organic ligands appear to be suitable as supported
catalysts, and CO adsorption experiments have clearly
shown that small molecules can pass through the ligand
shell and adsorb on free areas of the Pt surface [38].
There has been recently a strong interest in the self-

assembly of metal nanoparticles into ordered structures,
mainly by using bifunctional molecules such as organic
dithiols [39], surfactants [40] and polymers [41]. Noble
metal nanoparticles protected by synthetic polymers, i.e.
core shell systems, are envisioned to be superior to poly-
meric micelles, for example as thermosensitive materials
for biomedical applications [42]. Metal nanoparticles
stabilized by polymers can be prepared by postmodifica-
tion of preformed gold nanoparticles and physisorption
[43] or by “graft-from” and “graft-to” methods. For
example, surface-initiated atom transfer radical polymer-
ization technique has been successfully used to modify
Ni nanoparticles and poly(methylmethacrylate) and poly
(n-isopropylacrylamide) were grafted from the immobi-
lized initiators [37]. A facile approach to prepare thiol-
terminated poly(styrene-ran-vinyl phenol) (PSVPh)
copolymers and PSVPh-coated gold nanoparticles is
reported with the goal of creating stabilizing ligands for
nanoparticles with controlled hydrophilicity [44]. Poly-
mer shells have been formed around AgNPs by poly-
merization of adsorbed and solution-free monomers
[45,46] and the reduction of Ag salts in polymer
micelles [47]. Both hydrophilic and hydrophobic poly-
mers [48,49] have been tested and the development of
synthesis protocols has received considerably attention.
Water-dispersible metal nanoparticles are expected to
have applications in catalysis, sensors, molecular mar-
kers and in particular, biological applications such as
biolabelling and drug delivery.
In this paper, the synthesis and characterization of core

shell systems based on noble metal nanoparticles and
hydrophilic and hydrophobic polymer shells are reported.
In particular, the “graft-to” strategy was applied starting
from the ammonium-containing conjugated polymer, i.e.

poly(dimethylpropargylamonium chloride) [P(DMPAHCl)]
and a thiol-containing co-polymer, poly(phenylacetylene-
co-allylmercaptan) [P(PA-co-AM)]. The polymers were
used as stabilizer during the generation of Au, Ag and Pt
nanoparticles and the materials were fully characterized by
means of basic spectroscopic techniques, dynamic light
scattering (DLS), Z-potential and X-ray photoelectron
spectroscopy (XPS) and, for the investigation of morphol-
ogy and dimensions of self-assembled structures, by trans-
mission electron microscopy (TEM) techniques.

Experimental
Materials
Gold(III) chloride trihydrate (HAuCl4 3H2O) (99.9%),
silver nitrate (AgNO3) (99.9%), potassiumtetrachloropla-
tinate(II) (K2PtCl4) (99.9%), tetra-n-octylammonium bro-
mide (TOAB) (98%), sodium borohydride (NaBH4)
(98%), 3-dimethylamino-1-propyne (DMPA) (98%), phe-
nylacetylene (PA) (98%), allylmercaptane (AM) (98%),
potassium persulphate (99%), toluene, ethanol, and
chloroform were purchased from Sigma Aldrich. All
reagents were used as received without further purifica-
tion. Water was purified through a Millipore-SIMPA-
KOR1system (Simplicity 185) and degassed for 30 min
with Argon, before use. Conjugated polymer P
(DMPAHCl) was synthesized in analogy to the method
reported in our previous work [50], using Rh(I) dimer
complex [Rh(cod)Cl]2 (cod = cyclooctadiene) with com-
plex/monomer ratio 1/100 (a typical procedure is
reported in Additional file 1). P(PA-co-AM) was pre-
pared by using the emulsion polymerization technique
in analogy to the synthesis of similar copolymers
reported in our recent paper [51], with co-monomer
ratios PA/AM = 5/1 and 10/1 (a typical procedure is
reported in Additional file 1, together with the main
characterizations of the precursor polymers).

Synthesis of hydrophilic metal nanoparticles
The hydrophilic metal core shell systems (Au, Ag, Pt) were
prepared using the following procedure: gold(III) chloride
trihydrate (0.02 g, 0.051 mmol) or silver nitrate (0.02 g
0.118 mmol) or potassiumtetrachloroplatinate (0.02 g
0.048 mmol) was dissolved in water (10 ml) to form a
clear solution to which the polymer solution was then
added (0.02 g of P(DMPAHCl) in 10 ml water). The mix-
ture was vigorously stirred and degassed with Ar for
15 min. A water solution of sodium borohydride (0.02 g in
10 ml) was put into the mixture slowly. The reaction was
stopped after 12 h and the water phase was left overnight
in freezer (-20°C); the next day the dark precipitate,
i.e. Au@P(DMPAHCl), Ag@P(DMPAHCl) or Pt@P
(DMPAHCl), was washed several times with water by cen-
trifugation and finally dried at 40°C (Yield 35 wt%). Main
characterizations: Au@P(DMPAHCl): IR (film, cm-1):1615,
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1250, 1120; UV-Vis (CHCl3): lmax = 296, 540 nm; Ag@P
(DMPAHCl): IR (film, cm-1):1615, 1250, 1120; UV-Vis
(CHCl3): lmax = 296, 410 nm; Pt@P(DMPAHCl): IR (film,
cm-1):1615, 1250, 1120; UV-Vis (CHCl3): lmax = 300 nm.

Synthesis of hydrophobic metal nanoparticles
The hydrophobic metal (Au, Ag) nanoparticles were
prepared by the following route: gold(III) chloride trihy-
drate (0.02 g, 0.05078 mmol) or silver nitrate (0.02 g,
0.1177 mmol) was dissolved in water (20 ml) to form a
clear yellow solution, then polymeric solution (0.01 g P
(PA-co-AM) in 10 ml toluene) and TOAB in toluene
solution (0.035 mg in 4 ml) were added. The mixture
was vigorously stirred and degassed with Ar for 15 min
at room temperature. A water solution of sodium boro-
hydride (0.02 g in 10 ml) was added to the mixture
drop-by-drop. The reaction was allowed to react
and maintained under stirring for 12 h. The black pro-
duct, i.e. Au@P(PA-co-AM) or Ag@P(PA-co-AM) was
extracted with a separator funnel two times with water
(10 ml each) and, after that, the organic phase was left
overnight in freezer (-20°C); the next day the dark preci-
pitate was washed several times by centrifugation with
ethanol and finally dried at 40°C (Yield 25 wt%). Main
characterizations: Au@P(PA-co-AM): IR (film, cm-1):
3050, 2580, 1597; UV-Vis (CHCl3): lmax = 525 nm;
Ag@P(PA-co-AM): IR (film, cm-1): 3050, 2580, 1597;
UV-Vis (CHCl3): lmax = 400 nm.

Instruments
UV-Vis spectra were recorded on a VARIAN Cary 100.
All optical measurements were performed at room tem-
perature using quantitative H2O or CHCl3 solutions.
NMR spectra were recorded on a Varian XL-300 spectro-
meter at 300 MHz, in appropriate solvents (CDCl3, D2O);
the chemical shifts (ppm) were referenced to TMS for 1H
NMR assigning the residual 1H impurity signal in the sol-
vent at 7.24 ppm (CDCl3). Molecular weights were deter-
mined at 25°C by gel permeation chromatography on a
PL-gel column containing a highly cross-linked polystyr-
ene/divinylbenzene matrix packed with 10 μm particles
of 100 Å pore size using CHCl3 (HPLC grade) as eluent
(details in Additional file 1). Samples for TEM measure-
ment were prepared by placing a drop of suspension
onto a carbon-coated copper grid and examined using a
Philips CM120 Analytical transmission electron micro-
scope with LaB6 filament, operating at 120 kV, magnifi-
cation up to 660.000 ×, resolution up to 0.2 nm. DLS
measurements were carried out using a Brookhaven
instrument (Brookhaven, NY, USA) equipped with a
10 mW HeNe laser at a 632.8 nm wavelength, at the tem-
perature of 25.0 ± 0.2°C. Correlation data were collected
at 90° relative to incident beam and delay times from
0.8 μs to 10 s were explored. Correlation data were fitted

using the non-negative least squares or CONTIN algo-
rithms [52,53], supplied with the instrument software.
The average hydrodynamic radius RH of the diffusing
objects was calculated from the diffusion coefficient D
and the Stokes-Einstein relationship, RH = (KBT)/(6πhD),
where KBT is the thermal energy and h is the solvent
viscosity. XPS spectra were obtained using a custom-
designed spectrometer. A non-monochromatic MgKa
X-rays source (1253.6 eV) was used and the pressure in
the instrument was maintained at 1 × 10-9 Torr through-
out the analysis; binding energies (BE) were corrected by
adjusting the position of the C1s peak to 285.0 eV in
those samples containing mainly aliphatic carbons and to
284.7 eV in those containing more aromatic carbon
atoms, in agreement with literature data [54] (see details
in Additional file 1).

Results and discussion
The preparation of hydrophilic and hydrophobic core
shell hybrids has been carried out by performing wet
reductions of metal salts in the presence of polymeric
solutions (see Figure 1: The chemical synthesis of Au
core shell hybrids, reported as an example).
The size and shape of the nanoparticles prepared by

the reduction of the ions in solution normally depends
on a number of parameters, such as the kind of reducing
agent and the loading of the metal precursor. The redu-
cing agent determines the rate of nucleation and particle
growth: slow reduction produces large particles, while
fast reduction gives small particles. In every case the
NaBH4 was chosen as the reducing agent, which leads to
a fast rate of nucleation and usually small metal cores.
In the case of P(DMPAHCl)-based core shell systems,

due to their high water solubility, the reaction was car-
ried out in aqueous phase, without the need of TOAB
stabilizer. On the other hand, in the case of hydrophobic
P(PA/AM)-based systems, a classical two phase proce-
dure has been used allowing the TOAB to act as the
phase transfer from the organic to the aqueous one.
Metal core shells have been produced from the reduc-

tion of AuCl-, Ag+ or PtCl4
2- ions in aqueous solutions

in the presence of polymers. In the case of gold, upon
addition of NaBH4 the colour of the solution gradually
turned from yellowish to clear to grey to purple during
the reaction, indicating the formation of small gold
nanoparticles. The progress of the reaction leading to
Au and Ag-based core shell hybrids has been monitored
following their plasmon absorption bands, whereas the
Pt nanoparticles evolution have been recorded from the
growth of the featureless absorption bands, monotoni-
cally increasing in the visible region. Representative UV-
Vis spectra of the samples Au@P(DMPAHCl), and
Ag@P(DMPAHCl) are shown in Figure 2, together with
an image of the water suspensions.
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The characteristic plasmon band for gold and silver
has been observed at about 540 and 410 nm, respec-
tively, with shoulders at about 300 nm, due to the
absorption of polymeric shell. As expected, in the spec-
tra of PtNPs, recorded at the end of the reaction, no
characteristic peaks of the nanoparticles have been
observed and a broad absorption at about 300 nm has
been assigned to the polymer shell. During the evolution
of the metal nanoparticles, UV-Vis spectra of the metal
sols at different times have also been recorded and it
was found that as the time progresses the absorption
bands for Au and Ag narrowed and shifted continuously
to the shorter wavelength regions. Purification of the
nanoparticles has been performed by centrifugation of
the pristine suspension, giving rise to samples a, b, c
with the characteristic plasmon band split in two com-
ponents, centred at 540 and 695 nm (sample Au@P
(DMPAHCl-c). This behaviour can be explained as a
consequence of the isolation of core shell hybrids with
different shapes, sizes, and compositions. While gold
nanospheres usually show one absorption band in the
visible region, gold nanorods are reported to show two
bands [55]. The IR spectra of the core shell hybrids

show the characteristic features of the structural units of
the polymeric shell, not affected by the reduction proce-
dures, thus confirming the achievements of a defined
and stable polymeric shell.

Figure 1 Typical procedure to obtain hydrophobic and hydrophilic core shell hybrids.

Figure 2 a: UV-Vis absorption spectra of samples Au@P
(DMPAHCl) and Ag@P(DMPAHCl) and b: Ag, Au and Pt core
shell in water suspensions image (yellow, pink and grey,
respectively).
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In the case of Au@P(PA-co-AM) and Ag@P(PA-co-
AM) samples, upon addition of NaBH4 to AuCl4

- solu-
tion in the presence of P(PA/AM) copolymer, the colour
of the solution rapidly turned to brown during the reac-
tion and UV-Vis spectra of the purified samples show
the characteristic plasmon band of gold and silver at
about 525 and 400 nm, partially overlapped the typical
large absorption band of the P(PA-co-AM) copolymer at
about 370 nm. Also in this case the IR characterization
confirmed the presence of the functional group charac-
teristics of the polymeric shell.
XPS characterization has been carried out on our

materials and allowed to investigate the interaction at
the interface between metal nanoclusters and polymers,
as well as the chemical composition of the resulting
core shell materials. C1s, N1s, S2p, Cl2p and Au4f,
Ag3d or Pt4f signals have been acquired. For compari-
son, pristine P(DMPAHCl) and P(PA-co-AM) polymers
were also investigated.
C1s spectra of all samples appear structured and three

components were individuated by peak fitting: a main
signal at 285.0 eV due to aliphatic carbon atoms that
was used for the calibration procedure (see “Experimen-
tal” section), a component at about 286.5 eV belonging
to C atoms bridged to aminic (C*-N) or thiol (C*-S)
groups, and a third signal of very low intensity at higher
BE values (288.5 eV) that is due to organic contami-
nants chemisorbed on the sample surface. Metal XPS
spectra, i.e. Au4f, Ag3d and Pt4f, show a couple of spin
orbit pairs. The signal at lower BE values (83.80 eV for
Au4f7/2, 369.07 eV for Ag3d5/2 and 73.49 eV for Pt4f7/
2) was assigned to metallic gold, silver and platinum,
respectively; the feature at higher BE values (84.65 eV
for Au4f7/2, 369.80 eV for Ag3d5/2 and 74.91 eV for
Pt4f7/2) was attributed to metal atoms interacting with
the co-polymer functional group, i.e. -N(CH3)2 for P
(DMPAHCl) and -SH for P(PA-co-AM). The direction
of the shift in metal XPS spectra clearly indicates that
part of the metal atoms are in an oxidized state, i.e. the
metal-polymer interaction causes a decreased electron
density on the interacting metal atoms. For example, a
BE value of 84.6 eV for Au4f7/2 component is consis-
tent with the BE value of 84.4 eV reported in the litera-
ture for Au(1) complexes [56]. N1s spectra of Au@P
(DMPAHCl), Ag@P(DMPAHCl) and Pt@P(DMPAHCl)
revealed two components at about 400.2 and 402.5 eV.
The signal at higher BE values was attributed to the
unperturbed aminic groups, by comparison with the
pristine P(DMPAHCl) polymer. The N1s spectrum of P
(DMPAHCl) shows a single signal at about 402.3 eV, as
expected for aminic groups interacting with Cl- ions,
alike for example in NH4X or (CH3)4NX [57]; Cl2p
spectra were also collected and the observed Cl2p3/2
signal is found at about 197.80 eV in both pristine

polymers and core shell systems, and attributed to Cl-

ions alike for NH4Cl [58]. The second N1s peak
observed for the core shell M@P(DMPAHCl) samples at
400.2 eV was assigned to aminic groups bonded to Au
and, respectively, Ag and Pt. The observed decrease in
N1s BE value is related to the increased charge density
on N atoms, as a consequence of the nitrogen-metal
interaction. A completely similar behaviour was
observed for S-containing polymers grafting Au and Ag
nanoparticles in Au@P(PA-co-AM) and Ag@P(PA-co-
AM), where S2p3/2 signal BE decreases from 163.2 to
about 162.0 eV going from pristine P(PA-co-AM) co-
polymer to the core shell systems. A completely similar
trend was observed for thiols anchored on metal
nanoclusters as well as metal surfaces, and extensively
discussed in the literature [59,60]. The above discussed
XPS analysis lead to ascertain that a covalent bond
occurs between the metal atoms and the polymer func-
tional group, DMPA (N atoms) and AM (S atoms),
respectively.
Inspection of the TEM image revealed different shapes

of the core shell structure of the polymer-stabilized
metal nanoparticles. In the case of Au@P(DMPAHCl)
(shown in Figure 3a), the average diameter of the gold
cores was less than 30 nm, surrounded by a polymer
shell with a thickness of about 2 nm. A selected sample,
i.e. Au@P(DMPAHCl)-c was also studied and revealed
the presence of different shapes ranging from triangles
to rods with dimensions in the range 20-40 nm. A detail
of the structure is shown in Figure 4b. Ag-based nano-
particles showed generally an hexagonal shape with
mean dimension of about 30 nm (Figure 4c), whereas
smaller diameters have been observed for Pt-based
nanoparticles (less than 20 nm), that appear to be
formed of smaller particles with irregular shapes.
In Figure 4a,b the TEM images of Au@P(PA-co-AM)

and Ag@ P(PA-co-AM) obtained from P(PA-co-AM)
with co-monomer ratio 5/1, are reported. In this case
dispersed nanoparticles have been observed and the
dimensions are distributed in the range of 5-15 nm for
AuNPs and 10-30 nm for AgNPs.

Figure 3 TEM image of core shell hybrids: (a) Au@P(DMPAHCl);
(b) Au@P(DMPAHCl)-c; (c) Ag@P(DMPAHCl).
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The size and size distribution of hydrophobic core shell
hybrids in aqueous solutions have been investigated by
means of DLS measurements resulting in a hydrodynamic
radius around 15-20 nm with a relatively low dispersity as
determined by the first cumulant analysis. We obtained an
average hydrodynamic radius of 21 ± 2 nm for Ag@P
(DMPAHCl); a value of 18 ± 2 nm for Au@P(DMPAHCl),
and a value of 15.5 ± 0.5 nm for Pt@P(DMPAHCl). For all
the samples investigated, the dispersity varies in the range
of 0.08-0.15 (see Figure 5). These values are in a fairly
good agreement with TEM measurements.
A similar behaviour was observed in the case of

hydrophobic, i.e. with P(PA-co-AM) shell in CHCl3
solution. A typical example of the correlation functions
for Au@P(PA-co-AM) is shown in Figure 6 with two
different ratios of P(PA-co-AM) polymeric shell. In
these conditions, the average hydrodynamic radius is

20 ± 2 nm for PA/AM = 10/1 and 22 ± 3 nm for PA/
AM = 5/1.
The reported results show the achievement of an easy

and versatile synthesis of core shell systems based on noble
metal nanoparticles that allows the modulation of mor-
phology, dimensions and chemical-physical properties of
these nanoparticles, such as the hydrophilic-hydrophobic
character, using an appropriate conjugated polymeric shell.

Conclusions
A versatile and facile synthesis of core shell systems
based on noble metal nanoparticles (AuNPs, AgNPs,
PtNPs), coated by polymers and copolymers belonging to
the class of substituted polyacetylenes has been devel-
oped. The polymeric shells containing different function-
alities have been chosen in order to tune the hydrophilic
and hydrophobic properties of the target core shell
hybrids. The core shell dimensions can be tailored by the
synthesis and obtained in the range of 10-30 nm. The
nanoparticles show hydrophilic and hydrophobic groups
on the surface of the spherical shell and this functional
property is a suitable tool for future applications of these
coated metal nanoparticles for biomedicine and sensors.

Additional material

Additional file 1: Supporting information. A Word DOC containing
supporting information.

Abbreviations
AgNPs: silver nanoparticles; AM: allylmercaptane; BE: binding energies; DLS:
dynamic light scattering; PA: phenylacetylene; P(DMPAHCl): poly

Figure 5 DLS measurements.Left: A typical correlation function C
(τ) as a function of the correlation time τ for Ag(DMPAHCl) in
aqueous solution. The inset shows the correlation function in a log
scale, evidencing deviations, at longer times, from a single
relaxation process characterized by a single decay time. Right: The
histograms of the distribution of the hydrodynamic radius of the
nanoparticles in aqueous solutions. Upper panel: Ag@P(DMPAHCl)
with an average hydrodynamic radius of 21 ± 2 nm; intermediate
panel: Au@P(DMPAHCl), with an average hydrodynamic radius of 18
± 2 nm; bottom panel: Pt@P(DMPAHCl), with an average
hydrodynamic radius of 15.5 ± 0.5 nm.

Figure 4 TEM image of: (a) Au@ P(PA-co-AM); (b) Ag@P(PA-co-AM).

Figure 6 The autocorrelation functions of Au-NPs in CHCl3
solutions at two different PA/AM ratios of copolymeric shell,
as a function of the correlation time. The insets show the
analysis of the autocorrelation functions by means of the cumulant
method to emphasize deviation from a single exponential decay
due to the dispersity.
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(dimethylpropargylamonium chloride); P(PA-co-AM): poly(phenylacetylene-
co-allylmercaptan); PSVPh: poly(styrene-ran-vinyl phenol); PtNPs: platinum
nanoparticles; TEM: transmission electron microscopy; XPS: X-ray
photoelectron spectroscopy.
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