
Risk Prediction for Prostate Cancer Recurrence Through
Regularized Estimation with Simultaneous Adjustment for
Nonlinear Clinical Effects*

Qi Long,
Department of Biostatistics and Bioinformatics Emory University Atlanta, GA 30322, USA

Matthias Chung,
Department of Mathematics Texas State University San Marcos, TX 78666, USA

Carlos S. Moreno, and
Department of Pathology and Laboratory Medicine Emory University Atlanta, GA 30322, USA

Brent A. Johnson
Department of Biostatistics and Bioinformatics Emory University Atlanta, GA 30322, USA
Qi Long: qlong@emory.edu; Matthias Chung: conrad@mathcs.emory.edu; Carlos S. Moreno: cmoreno@emory.edu;
Brent A. Johnson: bajohn3@emory.edu

Abstract
In biomedical studies, it is of substantial interest to develop risk prediction scores using high-
dimensional data such as gene expression data for clinical endpoints that are subject to censoring.
In the presence of well-established clinical risk factors, investigators often prefer a procedure that
also adjusts for these clinical variables. While accelerated failure time (AFT) models are a useful
tool for the analysis of censored outcome data, it assumes that covariate effects on the logarithm of
time-to-event are linear, which is often unrealistic in practice. We propose to build risk prediction
scores through regularized rank estimation in partly linear AFT models, where high-dimensional
data such as gene expression data are modeled linearly and important clinical variables are
modeled nonlinearly using penalized regression splines. We show through simulation studies that
our model has better operating characteristics compared to several existing models. In particular,
we show that there is a non-negligible effect on prediction as well as feature selection when
nonlinear clinical effects are misspecified as linear. This work is motivated by a recent prostate
cancer study, where investigators collected gene expression data along with established prognostic
clinical variables and the primary endpoint is time to prostate cancer recurrence. We analyzed the
prostate cancer data and evaluated prediction performance of several models based on the
extended c statistic for censored data, showing that 1) the relationship between the clinical
variable, prostate specific antigen, and the prostate cancer recurrence is likely nonlinear, i.e., the
time to recurrence decreases as PSA increases and it starts to level off when PSA becomes greater
than 11; 2) correct specification of this nonlinear effect improves performance in prediction and
feature selection; and 3) addition of gene expression data does not seem to further improve the
performance of the resultant risk prediction scores.
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1. Introduction
In biomedical research, it is of substantial interest to build prediction scores for risk of a
disease using high-dimensional biomarker data such as gene expression data for clinical
endpoints subject to censoring, e.g., time to the development or recurrence of a disease. This
process typically involves a feature selection step, which identifies important biomarkers
that are predictive of the risk. When some clinical variables have been established as the risk
factors of a disease, it is preferred to use a feature selection procedure that also accounts for
these clinical variables. Using observed data with censored outcomes, our goal is to build
risk prediction scores using high-dimensional data through feature selection while
simultaneously adjusting for effects of clinical variables that are potentially nonlinear.

1.1. A Prostate Cancer Study
This article is motivated by a prostate cancer study. An important challenge in prostate
cancer research is to develop effective predictors of future tumor recurrence following
surgery in order to determine whether immediate adjuvant therapy is warranted. Thus,
biomarkers that could predict the likelihood of success for surgical therapies would be of
great clinical significance. In this study, each patient underwent radical prostatectomy
following a diagnosis of prostate cancer, and their radical prostatectomy specimens were
collected immediately after the surgery and subsequently formalin-fixed and paraffin-
embedded (FFPE). More recently, the investigators isolated RNA samples from these
specimens and performed DASL (cDNA-mediated Annealing, Selection, extension and
Ligation) expression profiling on these RNA samples using a custom-designed panel of
1536 probes for 522 prostate cancer relevant genes. The DASL assay is a novel expression
profiling platform based upon massively multiplexed real-time polymerase chain reaction
applied in a microarray format, and more importantly, it allows quantitative analysis of RNA
from FFPE samples whereas traditional microarrays do not (Bibikova et al., 2004;
Abramovitz et al., 2008). In addition, important clinical variables were also collected, two of
which, prostate specific antigen (PSA) and total gleason score, are known to be associated
with prostate cancer risk and prognosis and are of particular interest. The primary clinical
endpoint in this study is time to prostate cancer recurrence. The research questions of
interest include 1) identifying important probes that are predictive of the recurrence of
prostate cancer after adjusting for important clinical variables; 2) constructing and
evaluating risk prediction scores; and 3) determining whether the inclusion of the gene
expression data improves the prediction performance. It was also suspected that PSA may
have a nonlinear effect on the clinical endpoint. In this article, we will develop and apply a
new statistical model, which allows us to answer these questions.

1.2. Feature Selection and Prediction in AFT
The accelerated failure time (AFT) model is an important tool for the analysis of censored
outcome data (Cox and Oakes, 1984; Kalbfleisch and Prentice, 2002). Compared to the
more popular proportional hazard (PH) model (Cox, 1972), the AFT model is, as suggested
by Sir David Cox (Reid, 1994), “in many ways more appealing because of its quite direct
physical interpretation,” especially when the response variable is not related to survival
time. Furthermore, when prediction is of primary interest, the AFT model is arguably more
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attractive, since it models the mean of the log-transformed outcome variable whereas the
Cox PH model estimates the hazard functions.

Classic AFT models assume that the covariate effects on the logarithm of the time-to-event
are linear, in which case one could use standard rank-based techniques for estimation and
inference (Tsiatis, 1990; Ying, 1993; Jin et al., 2003) and perform a lasso-type (Tibshirani,
1996) variable selection (Johnson, 2008; Cai, Huang and Tian, 2009). Regarding existing
variable selection and prediction procedures, there are two unsatisfying products. First, the
linearity assumption may not hold in real data. For example, Kattan (2003a) showed that
relaxing the linearity assumption of the Cox PH model improved predictive accuracy in the
setting of predicting prostate cancer recurrence with low-dimensional data. Second, an
unsupervised implementation of the regularized variable selection procedure can
inadvertently remove clinical variables that are known to be scientifically relevant and can
be measured easily in practice. We will address both concerns in our extensions of AFT
models.

1.3. Partly Linear Models
It has been well established that linear regression models are insufficient in many
applications and it is more desirable to allow for more general covariate effects. Nonlinear
modeling of covariate effects is less restrictive than the linear modeling approach and thus is
less likely to distort the underlying relationship between an outcome and covariates.
However, new challenges arise when including nonlinear covariate effects in regression
models. In particular, nonparametric regression methods encounter the so-called “curse of
dimensionality” problem, i.e., the convergence rate of the resulting estimator decreases as
the dimension of the covariates increases (Stone, 1980), which is further exacerbated when
the dimension of the covariates is high. The partly linear model of Engle et al. (1986);
Härdle, Liang and Gao (2000); Ruppert, Wand and Carroll (2003) provides a useful
compromise to model the effect of some covariates nonlinearly and the rest linearly.
Specifically, for the i-th subject, let Ti be a univariate endpoint of interest for the i-th subject,

and  and  denote high-dimensional
features of interest (say gene expression levels) and established clinical variables,
respectively. Then one partly linear model of interest is

(1)

where ϑ = (ϑ1, …, ϑd)T is a parameter vector of interest, φ is an unspecified function, and
the errors (εi) are independently and identically distributed (i.i.d.) and follow an arbitrary
distribution function Fε. Special cases of this model have been used in varied applications
across many disciplines including econometrics, engineering, biostatistics, and
epidemiology (Härdle, Liang and Gao, 2000). In this article, we consider Model (1) for Ti
subject to right-censoring, and hence the observed data are , where T ̃i =
min(Ti, Ci), δi = I(Ti ≤ Ci), and Ci is a random censoring event. We note that Ti is the log-
transformed survival time in survival analysis, and we refer to Model (1) as partly linear
AFT models.

In the absence of censoring, the nonparametric function φ in Model (1) can be estimated
using kernel methods (Härdle, Liang and Gao, 2000) (references therein) and smoothing
spline methods (Engle et al., 1986; Heckman, 1986). For partly linear AFT models, one can
extend the basic weighting scheme of Koul, Susarla and van Ryzin (1981), where one treats
censoring like other missing data problems (Tsiatis, 2006) and inversely weights the
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uncensored observations by the probability of being uncensored, i.e. so-called inverse-
probability weighted (IPW) estimators. A close cousin to the IPW methodology is censoring
unbiased transformations (Fan and Gijbels, 1996) (ch. 5 and references therein), which
effectively replaces a censored outcome with a suitable surrogate before complete-data
estimation procedures are applied. Both IPW kernel-type estimators and censoring unbiased
transformations in the partly linear model have been studied for AFT models (Liang and
Zhou, 1998; Wang and Li, 2002). Since both aforementioned approaches make stronger
assumptions than rank estimation of AFT models (Cai, Huang and Tian, 2009), we focus on
extending rank estimation to meet our needs.

We here consider a general penalized loss function for partly linear AFT models

(2)

where ℒn is the loss function for observed data and J(φ) imposes some type of penalty on
the complexity of φ. Our approach is to replace ℒn with the Gehan (1965) loss function (Jin
et al., 2003) and model φ using penalized regression splines; our focus is to build risk
prediction scores. To minimize the penalized loss function (2), the insight into the
optimization procedure is due, in part, to Koenker, Ng and Portnoy (1994), who noted that
the optimization problem in quantile smoothing splines can be solved by L1-type linear
programming techniques and proposed an interior point algorithm for the problem. Li, Liu
and Zhu (2007) built on this idea to propose an entirely different path-finding algorithm for
more general nonparametric quantile regression models. Along similar lines, when J(φ) is
taken as a L1 norm as in penalized regression splines (Ruppert and Carroll, 1997), the
optimization problem of (2) is essentially an L1 loss plus L1 penalty problem, and can also
be solved by L1-type linear programming techniques, which will be exploited in our
approach to the optimization problem. Once the basic spline framework is adopted, we show
that our estimator can be generalized through additive models for q > 1 and variable
selection in the linear component. The additive structure of nonlinear components (Hastie
and Tibshirani, 1990) is adopted to further alleviate the issue of curse of dimensionality. To
the best of our knowledge, there is no similar work in the partly linear or partly additive
model for censored or uncensored data using Cox or AFT models, and we are the first to
conduct systematic investigation on the impact of mis-specified nonlinear effects on
prediction and feature selection using AFT models for high-dimensional data.

More recently, Chen, Shen and Ying (2005) proposed stratified rank estimation for Model
(1) and Johnson (2009) proposed a regularized extension. However, their stratified methods
are fundamentally different from ours in several aspects. First and foremost, the stratified
estimators do not provide an estimate of the nonlinear effect of the stratifying variable,
namely, φ ̂(X), and hence the lasso extension proposed by Johnson (2009) focused on
variable selection only. It is evident that φ ̂(X) plays an important role in prediction; since the
stratified estimators in Johnson (2009) can only use ϑ̂TZ for prediction, their performance
suffers, which will be shown in our numerical studies. By contrast, our approach provides an
estimate of φ(X), which in turn can be used to improve prediction performance. Second, the
numerical algorithm proposed in Johnson (2009) can only handle the case of d < n and their
numerical studies are limited to such cases, whereas we here investigate the high-
dimensional settings with d > n. Third, as will be shown in our numerical results, our
proposed method outperforms the stratified estimators in feature selection as well.

The rest of the article is organized as follows. In Section 2, we present the details of the
methodology. In Section 3, we investigate the operation characteristics of the proposed
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approach through simulation studies. In Section 4, we analyze the prostate cancer study and
provide answers to the research questions of interest. We conclude this article with some
discussion remarks in Section 5.

2. Methodology
2.1. Regression Splines in Partly Linear AFT model

We first consider a simplified case for the partly linear AFT model (1), where Xi is assumed
to be univariate, i.e. q = 1 and Xi ≡ Xi, and then Model (1) reduces to

(3)

Let (x) = {B1(x), …, BM(x)}T (M ≤ n) be a set of basis functions. We use a regression
spline model for φ(·), which asserts that φ(x) = (x)Tβ, for some. β ∈ ℜM. Popular bases
include B-splines, natural splines, and truncated power series basis (Ruppert, Wand and
Carroll, 2003). As explained in Section 2.2, we will use the truncated power series basis of

degree p without the intercept term, i.e., , where
(κ1,…, κr) denotes a set of r knots, and (u)+ = uI(u ≥ 0). Hence, M = p + r. Throughout, we
use equally spaced percentiles as knots and set p = 3, i.e., the cubic splines, unless otherwise
noted. Let θ ≡ (β, ϑ) denote the parameters of interest. Then, define θ ̂RS ≡ (β ̂,ϑ̂)=
argminβ,ϑℒn(β, ϑ), where

(4)

with ei = T ̃i−βT (Xi) − ϑTZi and c− = max(0, −c). Because Model (3) has been
“linearized”, we can apply existing rank-based estimation techniques for the usual linear
AFT models. In particular, Jin et al. (2003) noted that the minimizer of ℒn(β, ϑ) is also the
minimizer of

for a large constant ζ, where . Evidently, the minimizer of
this new loss function may be viewed as the solution to a L1 regression of a pseudo response
vector V = (V1, …, VS)T (S × 1) on a pseudo design matrix W = (W1, …, WS)T (S × (M +
d)). It can be readily shown that V is of the form {δi(T ̃i − T̃j), …, ζ}T and W is of the form

, where δi(T ̃i − T ̃j) and  go through all i and j with δi = 1,
and hence S denotes the number of pseudo observations in V. Consequently, we have

(5)
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The fact that θ ̂RScan be written as the L1 regression estimate facilitates the numerical
techniques, which will be used for our subsequent estimators.

2.2. Penalized Regression Splines in Partly Linear AFT Models
When regression splines are used to model nonlinear covariates effects, it is crucial to
choose the optimal number and location of knots (κ1, …, κr). It is well known that too many
knots may lead to overfitting whereas too few may not be sufficient to capture non-linear
effects (Ruppert, Wand and Carroll, 2003). The penalized regression spline regression
approach (Eilers and Marx, 1996; Ruppert and Carroll, 1997; Li and Ruppert, 2008;
Claeskens, Krivoboko and Opsomer, 2009) handles this problem by starting with a very
large number of knots and applying regularization to avoid overfitting. In addition, a
penalized regression spline with L1 penalty corresponds to a Bayesian model with double
exponential or Laplace priors and is known to be able to accommodate large jumps when
using the truncated polynomial basis functions (Ruppert and Carroll, 1997). While the
truncated power series basis is often used for penalized regression spline (Ruppert and
Carroll, 1997), one can use other bases such as B-splines basis in penalized regression spline
models and the results should not differ as long as two sets of bases span the same space of
functions (Li and Ruppert, 2008). We adopt the L1 penalty and consider the penalized
regression spline estimator

(6)

referred to as the partly linear AFT estimator, where γ is a regularization parameter and is
used to achieve the goal of knot selection. Using the L1 loss function in (5) and a data
augmentation technique for regularized L1 regression, θPRS(γ) may be found easily for a

given γ. Namely, define , W* = [WT,(0r×p, Dr, 0r×d)T]T, and Dr = γIr, where
0r is a r-vector of zeros, 0r×p (0r×d) is a r × p (r × d) matrix of zeros and Ir an r-dimensional
identity matrix. Then, θ ̂PRS(γ) is found through the L1 regression of V* on W*. γ can be
selected through cross validation or generalized cross validation (Ruppert, Wand and
Carroll, 2003).

2.3. Variable Selection and Prediction in Partly Linear AFT Models
Finally, we consider variable selection for the high-dimensional features (Z) in the partly
linear AFT model (3) by extending the penalized regression spline estimator θ ̂PRS(γ). Let λ
be another regularization parameter and consider the minimizer to the L1 regularized loss
function

(7)

which is also referred to as the lasso partly linear AFT model estimator. The data
augmentation scheme used in Section 2.2 applies to the regularized estimator in (7) as well.

Define the pseudo response vector  and the pseudo design matrix
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For fixed γ and λ, the estimate is computed as the L1 regression estimate of V† on W†. To
select γ and λ, we can use two approaches, namely the cross validation (CV) and generalized
cross validation (GCV) (Tibshirani, 1997; Cai, Huang and Tian, 2009). The K–fold CV
approach chooses the values of γ and λ that maximize the Gehan loss function (4). The GCV
approach chooses the values of γ and λ that maximize the criteria, ℒn(β, ϑ)/(1 − dγ, λ/n)2,
where n is the number of observations and dγ,λ is the number of nonzero estimated
coefficients for the basis functions ( (X)) and linear predictors (Z), i.e., the number of
nonzero estimates in (β ̂, ϑ̂). Note that dγ,λ depends on γ and λ. Once θPRS(1) is obtained, one
can build prediction scores as φ ̂(X) + ϑ̂TZ.

2.4. Extension to Additive Partly Linear AFT Models
When Xi is of q-dimension (q > 1) in the partly linear model (1), estimation is more difficult
due to the issue of curse of dimensionality, even when q is moderately large and in the
absence of censoring. For our partly linear AFT model, we propose to use an additive
structure for φ to further alleviate the problem, namely an additive partly linear AFT model,

(8)

where φj's (j = 1, …, q) are unknown functions. Similar to what is discussed in Section 2.2,
penalized regression splines can be used for the additive partly linear model to conduct knot

selection for each nonlinear effect, . The variable selection for Z as
discussed in Section 2.3 can also be extended to this additive partly linear AFT model.
When q is large and it is also of interest to conduct feature selection among q additive
nonlinear effects, one can modify the regularization term for β in the loss function (6) and

(7); specifically one can regularize all β, i.e., , as opposed to regularizing only

the terms that correspond to the set of jumps in the pth derivative, i.e., .
Similarly, we can modify the data augmentation scheme to obtain the parameter estimates
for these models.

2.5. Numerical Implementation For High-dimensional Data
In Section 2.1-2.4, the parameters are estimated using L1 regression models through a data
augmentation scheme such as (5), which can be readily implemented using the quantreg
package in R. While this algorithm works well when the total number of parameters is small
relative to the sample size, it becomes very slow and starts to fail as the number of
parameters gets close to or greater than the effective sample size after accounting for
censoring. As an alternative, we extended a numerical algorithm developed for efficient
computation of rank estimates for AFT models (Conrad and Johnson, 2010) to compute the
proposed estimators, in particular, the estimator in (7). In essence, this method approximates
a L1 regularized loss function with a smooth function and subsequently optimizes the
smoothed objective function using a Limited-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm (Nocedal and Wright, 2006), which is implemented in Matlab. This method
speeds up the computation substantially and can handle the case of high-dimensional data.
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We have compared these two algorithms and they give very similar results when both are
applicable, i.e., Z is of low dimension.

3. Simulation Studies
We conducted extensive simulation studies to evaluate the operating characteristics of the
proposed models including estimation, feature selection and most importantly prediction, in
comparison with several existing models.

3.1. Estimation
We considered a case of single Zi and single Xi, i.e., Model (3), and focused on the
estimation of the regression coefficient ϑ and its sampling variance. In this setup, no feature
selection is involved. To facilitate comparisons, our simulation study details were adapted
from those given by Chen, Shen and Ying (2005) and Johnson (2009). The random variable
Zi was generated from a standard normal distribution, and Xi was generated through Xi =
0.25Zi + Ui, where Ui follows a uniform distribution Un(−5, 5) and completely independent
of all other random variables. In Model (3), we let ϑ = 1 and εi ∼ N(0, 1) and mutually
independent of (Xi, Zi). We considered linear and quadratic effects, i.e., φ(Xi) = 2Xi and

, respectively. Finally, censoring random variables were simulated through
, where  follows Un(0, 1). As a result, the proportion of censored

outcomes ranges from 20% to 30%. We compared several estimators, the partly linear AFT
model (PL-AFT) with r knots (r = 2 and 4), which was fit using the loss function (6), the
stratified estimator in Chen, Shen and Ying (2005) (SK-AFT) where K denotes the number
of strata, the standard linear AFT model with both Xi and Zi modeled linearly (AFT), and an
AFT model with true φ plugged in (AFT-φ). Two sample sizes were used, n = 50 and n =
100.

Our simulation results show that the CV and GCV methods give similar results, so we report
only the results using GCV. Table 1 summarizes the mean bias, standard deviation (SD) and
mean squared error (MSE) of ϑ̂ over 200 Monte Carlo data sets, and it also provides the
range of standard errors for the performance measure in each column, where all numbers are
multiplied by 1000. In all cases, the proposed partly linear AFT estimator outperforms the
stratified estimators as well as the standard AFT estimator in terms of MSE, and its
performance is comparable to that of the estimator using the true φ. The number of knots has
little impact on the performance of our proposed estimator. The standard linear AFT
estimator exhibits the largest bias and MSE when φ is not linear, indicating that it is
important to adjust for the nonlinear effect of X even when one is only interested in the
effect of Z. While the stratification step in the SK-AFT method results in reduced bias when
the number of strata is large, it has larger SD and MSE compared to PL-AFT. Furthermore,
in the settings of our interest, no method has been proposed for choosing K in the SK-AFT
method, which is not obvious either, leading to a further shortcoming of this method over
the others.

3.2. Feature Selection
In our second set of simulation studies, we focused on simultaneous estimation and feature
selection for Zi as well as prediction. The regression function still consisted of a nonlinear
effect of a single covariate Xi, but we increased the dimension of the linear predictors (Zi) to
d = 8. Zi were generated from a multivariate normal with a mean equal to 0d and (j, k)th
element of the covariance matrix equal to ρ|j−k| (ρ = 0, 0.5, 0.9). The covariate Xi was
generated through Xi = 0.5Z1i + 0.5Z2i + 0.5Z3i + Ui, where Ui is Un(−1, 1) and independent
of all other random variables. This corresponds to a case where Z1 and Z2 have both direct
and indirect effect through X on the outcome whereas Z3 has only an indirect effect on the
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outcome. The true regression coefficients for Z are set to ϑ = (Δ, Δ, 0, 0, 0, Δ, 0, 0)′, where
Δ = 1 and 0.5 represent a strong signal (effect size) and a weak signal (effect size),
respectively. In this case, the three important covariates (namely, Z1, Z2, and Z6) can
potentially be highly correlated. The effect of Xi was generated from

, where I(·) is the indicator
function. This setup mimics a practical setting where the effect of the clinical variable (X) on
the outcome is ignorable when X is less than a threshold level (X = 0); but as X increases
past the threshold level, its effect becomes appreciable. The log survival time Ti was then
generated using Equation (3), where εi follows N(0, 1) and is mutually independent of (Xi,
Zi). The censoring random variable was simulated according to the rule,

, where , follows the uniform distribution Un(0, 6). The resulting
proportion of censoring ranges from 20% to 30%.

We compared six models: (1) the lasso partly linear AFT model (Lasso-PL) with r = 6
which was fit using the loss function (7); (2) the lasso stratified model (Lasso-SK) (Johnson,
2009) where K denotes the number of strata; (3) the lasso linear AFT model assuming a
linear effect for both Xi and Zi (Lasso-L); (4) the standard linear AFT model (AFT); (5) the
lasso linear Cox PH model assuming a linear effect for both Xi and Zi (Lasso-Cox)
(Tibshirani, 1997; Goeman, 2010); and (6) the so-called oracle partly linear model (Oracle)
with ϑ3, ϑ4, ϑ5, ϑ7 and ϑ8 fixed at 0 and r = 6 for the penalized splines. We are not aware
of any existing Cox PH model that can handle both nonlinear covariate effects and feature
selection in high-dimensional data. Since the data were generated under a true AFT model
and the PH assumption underlying the Cox model is violated, we are primarily interested in
feature selection when comparing the Lasso-Cox model. The oracle model, while
unavailable in practice, may serve as an optimal bench mark for the purpose of comparisons.
In each instance of regularized methods, GCV was used to tune the regularization
parameters, λ and/or γ.

In each simulation run, a training sample of size n = 125 and a testing sample of size 10n
were generated. To evaluate parameter estimation, we monitored the sum of squared errors
(SSE) for ϑ̂ defined as (ϑ̂ − ϑ)T(ϑ̂ − ϑ). To evaluate feature selection, we monitor the

proportion of zero coefficients being set to zero ,
for which 1 is the optimal value, and the proportion of nonzero coefficients being set to zero

, for which 0 is the optimal value. To assess the
prediction performance, we considered two mean squared prediction errors,

, and

, where j goes through the observations in the testing
sample. MSPE1 is the squared prediction error using both nonlinear and linear components
in Model (3), and MSPE2 is the squared prediction error using only linear components in
Model (3). For AFT models, MSPE1 and MSPE2 can be considered as metrics of prediction
performance on the log-transformed scale. Note that the stratified Lasso model does not
provide an estimate of φ(X), so MSPE1 is not applicable for Lasso-SK. For each simulation
setting, the performance measures were averaged over 400 Monte Carlo data sets. For the
performance measure in each column, the range of standard errors was computed.

Our simulation results are summarized in Table 2. First, the performance of the standard
linear AFT model (AFT) is not satisfactory in terms of both prediction and feature selection.
We now restrict the discussion to the regularized estimators. In all cases, our Lasso-PL
estimator exhibits lowest SSE, MSPE1 and MSPE2 among regularized estimators; in
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particular, its MSPE1 and MSPE2 are comparable to that of the Oracle estimator and are
substantially lower than other regularized estimator. In terms of feature selection, Lasso-PL,
Lasso-L and Lasso-Cox correctly identify the majority of the regression coefficients that are
zero (PC); Lasso-PL has higher PC than Lasso-L when ρ = 0 or 0.5 and their PC's are
comparable in the presence of high correlation (ρ = 0.9); and Lasso-L has considerably
higher PC than Lasso-Cox in all cases. By comparison, the lasso stratified models (Lasso-
SK) only identify less than 30% of true zeros in some cases and roughly half of the true zeros
in the rest of the cases. When there is no correlation and the signal is strong, all Lasso
estimators successfully avoid setting nonzero coefficients to zero i.e, PI equal to or close to
0. However, as the correlation gets stronger, PI increases for all estimators to various
degrees. When ρ = 0.9, PI becomes appreciable for Lasso-L, whereas it remains moderate
for Lasso-PL.

3.3. Prediction in the Presence of High-dimensional Data
We conducted a third set of simulations to explore the impact of noise levels on the
prediction performance in the presence of high-dimensional data (i.e., d ≥ n), and compared
four models, namely, Lasso-PL, Lasso-SK, Lasso-L and Lasso-Cox. We note that the
standard AFT model is not applicable for high-dimensional data. The simulation setup
paralleled that in Section 3.2. The differences are noted as follows. The sample size was
fixed to n = 100 and the number of linear predictors was d ≥ 100, and let ϑ1 = ϑ26 = ϑ51 =
ϑ76 = 1 and all other ϑ's be 0. Let X = 0.5Z10 + 0.5Z35 + 0.5Z60 + Ui, where Ui follows
Un(−1, 1). Through these changes, we investigated a case where the significant linear
predictors (Z) are not highly correlated. The censoring random variable was generated
similar to that in Section 3.2 with a different uniform distribution such that the censoring
probability is approximately 40%. Since MSPE1 and MSPE2 are not applicable in the
presence of censoring in practice, we computed another metric of prediction performance
using the testing sample, namely, the c statistic for censored data, which measures the
proportion of concordance pairs based on observed and predicted outcomes and ranges
between 0 and 1 with 1 indicating perfect prediction (Kattan, 2003a,b; Steyerberg et al.,
2010). In particular, the comparison with Lasso-Cox is focused on c statistics. Again, for
Lasso-SK, MSPE1 was not applicable and ϑ̂TZj was used to compute c statistic; for the
performance measure in each column, the range of standard errors was computed.

Table 3 summarizes the prediction performance for d = 100, d = 500 and d = 1500 over 400
Monte Carlo data sets. In the presence of high-dimensional data, Table 3 shows that the
proposed Lasso-PL always achieves the best prediction performance in terms of the c
statistic as well as MSPE1 and MSPE2, and Lasso-Cox always has lower c than Lasso-PL
and Lasso-L. By and large, the prediction performance of Lasso-SK is comparable to that of
Lasso-L and is considerably worse than Lasso-PL in all cases, and in particular, the absence
of the estimated nonlinear effect in X leads to substantial loss in the c statistic. While Lasso-
PL estimates the nonlinear effect of X well in all cases, the prediction error due to the linear
predictors (MSPE2) starts to dominate as d increases. Since all significant predictors are in
the first 100 predictors, the cases of d = 1500 and d = 500 simply add 1100 and 400 noise
predictors, respectively, compared to the case of d = 100. Our results indicate that as the
noise level increases the prediction performance deteriorates for all models. For Lasso-L
models, the prediction error due to mis-specified nonlinear effect of X remains substantial in
all cases. In this setup, when correlation is weak or moderate (ρ = 0 or 0.5), the impact of
correlation on prediction performance is moderate, in particular, in terms of c; however, as
correlation becomes very strong (ρ = 0.9), the prediction performance improves
considerably in terms of c for all methods.

We performed additional simulations for a higher censoring rate, 60%, and for different
regression coefficient values, e.g., ϑ1 = ϑ2 = ϑ3 = ϑ50 = 1 and all other ϑ's set to 0, i.e., the
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first three significant predictors are highly correlated. Under all scenarios, the results on
comparisons between different models remain the same, but the prediction performance
worsens as the censoring rate increases.

In summary, the proposed lasso partly linear AFT model achieves best performance in all
three areas: estimation, feature selection and prediction. While the lasso stratified estimator
performs reasonably well in estimation, its performance in feature selection and prediction is
not satisfactory. When a covariate effect is nonlinear, the performance of Lasso-L worsens,
and the deterioration can be substantial in terms of prediction. When the PH assumption
does not hold, the performance of Lasso-Cox is considerably worse than Lasso-L.
Furthermore, if prediction is of primary interest, our results suggest that it is advantageous to
build prediction scores using data with less noise variables.

4. Data Analysis: the Prostate Cancer Study
We analyzed the data from the prostate cancer study, which included 78 patients. The
outcome of interest is time to prostate cancer recurrence, which starts on the day of
prostatectomy and is subject to censoring; the observed survival time ranges from 2 months
to 160 months and the censoring rate is 57.7%. In the data analysis, the log-transformed
survival time was used to fit AFT models. Gene expression data using 1536 probes and two
clinical variables (PSA and gleason score) were measured from samples collected at the
baseline (i.e., right after the surgery) and were used in our analysis. Since replicate RNA
samples were collected and measured from some subjects, we averaged the gene expression
data over multiple RNA samples from a same subject before subsequent analysis. The
gleason score in this data set ranges only between 5 and 9 and 91% of patients had a score of
either 6 or 7; combining this with suggestions from the investigators, the total gleason score
was dichotomized as ≥ 7 or not.

Before the data analysis, all gene expression measurements were preprocessed and
standardized to have mean 0 and unit standard deviation. Subsequently, Cox PH models
were fit for each individual probe and all probes were then ranked according to their score
test statistics from the largest (J = 1) to the smallest (J = 1536). This ranking procedure
serves two purposes. First, it simplifies the presentation of the results, since we can refer to
each probe using its ranking. Second, a pre-selection step using this ranking procedure is
used when evaluating the prediction performance in Section 4.2, which is similar to what is
often used in detecting differentially expressed genes. We note that the use of Cox PH
models is of no particular importance, which simply provides a way to rank the probes; one
can use other models such as AFT models.

4.1. Feature Selection
Before building prediction scores, we conducted feature selection using the following
models, the Lasso-PL with r = 10, Lasso-SK, Lasso-L, and Lasso-Cox. In the Lasso-PL
model (3), Xi is PSA, which is modeled using penalized splines, and Z include the binary
clinical variable, gleason score, as well as the complete set or a subset of 1536 probes.
Similarly, in the Lasso-SK model, stratification is based on PSA.

We first conducted an analysis using the complete set of 1536 probes. The results on feature
selection are summarized in Table 4. A linear effect of PSA was included in the Lasso-L
model and was estimated to be nonzero, which further justifies the inclusion of PSA in other
models; on the other hand, the total gleason score is not selected by any of the methods.
Figure 1 shows the estimated effect of PSA using Lasso-PL; specifically, the time to
recurrence initially decreases as PSA increases and then starts to increase slightly as PSA
goes beyond 11. After further examination of the data, we found that most patients had PSA
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values ranging from 0-15.2, but three had PSA values of 18.43, 26 and 32.10. More
importantly, all subjects with PSA> 15.2 had censored outcomes; consequently, it is not
appropriate to project the estimated φ(X) beyond 15.2. We also suspect that the increasing
trend towards the right tail is an artifact of the data and the effect of PSA instead levels off
when it is greater than 11, given that an increase in the time to recurrence as PSA increases
does not seem plausible clinically.

In terms of feature selection for the probe data, the Lasso-PL model selects the least number
of features, among which Probe 4, 16, 31, and 46 are selected by all six models, Probe 1
selected by five models, Probe 63 selected by four models and Probe 2, 12 and 38 selected
by three models. In other words, all probes selected by Lasso-PL are selected by at least half
of all models, whereas other models select some probes that are not shared by the rest of the
models and are likely to be noise. This agrees with the simulation results, i.e., in the
presence of moderate to strong correlation among predictors, the other models tend to select
a larger number of noise features. In addition, the difference between the Lasso-PL method
and the Lasso-L method is likely due to the nonlinear effect of PSA.

4.2. Prediction Performance
To internally evaluate the prediction performance, the data were randomly split into a
training sample (60%) and a validation sample (40%). Due to the high censoring rate, this
step was stratified on the censoring status to avoid extreme imbalance of censoring rates
between the training and validation samples. The models of interest were fit using the
training sample and were then used to construct the predictive risk score for cancer
recurrence, say, φ ̂(X) + ϑ̂TZ for Lasso-PL, for subjects in the validation sample.
Subsequently, the c statistic was computed in the validation sample. This procedure was
repeated 1000 times and the average c statistic is used for evaluating the prediction
performance of different models.

We compared the following model and data combinations: Lasso-PL with r = 10 using 1536
probes and 2 clinical variables with PSA modeled non-linearly; Lasso-L and Lasso-Cox
using 1536 probes and 2 clinical variables; Lasso-PL with r = 10 using 2 clinical variables
plus top 25 probes with PSA modeled nonlinearly, where the top 25 probes were selected
within each training sample; Lasso-L and Lasso-Cox using 2 clinical variables plus top 25
probes; partly linear AFT and Cox models (PL-AFT and PL-Cox) using 2 clinical variables
only with PSA modeled nonlinearly through a penalized spline; linear AFT and Cox model
(AFT and Cox) using 2 clinical variables only. Note that we did not use Lasso-SK, since it
does not estimate the nonlinear effect of PSA.

Table 5 presents the mean c statistic computed using each model and data combination.
Partly linear models have higher average c than linear models in all settings and for both
AFT and Cox models, indicating that the mis-specified effect of PSA leads to worse
prediction performance. In all cases, AFT models have similar or higher average c compared
to their corresponding Cox models. The average c for Lasso-PL using all 1536 probes is
slightly less than PL-AFT using only clinical variables, whereas Lasso-L and Lasso-Cox
using all 1536 probes have substantially lower c than AFT and Cox using only clinical
variables. Furthermore, when a pre-selection step was included to choose the top 25 probes
first, we observe small improvement in c for Lasso-L and Lasso-Cox and no improvement
for Lasso-PL, which is likely due to that the correctly modeled PSA effect plays the most
important role in prediction and the addition of gene expression data does not seem to
further improve prediction.

In summary, our analyses suggest that 1) the relationship between the baseline PSA and
prostate cancer recurrence is likely nonlinear, i.e., the time to recurrence decreases as PSA
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increases and it starts to level off when PSA becomes greater than 11; 2) the correct
specification of this nonlinear effect improves performance in prediction and feature
selection; and 3) the addition of gene expression data does not seem to further improve the
prediction performance. However, given that the sample size in this study is small, our
results need to be validated in a future study, preferably with a larger sample size.

5. Discussion
We have investigated statistical approaches for prediction of clinical end points that are
subject to censoring. Our research shows that correctly specifying nonlinear effects
improves performance in both prediction and feature selection for both low-dimensional and
high-dimensional data. While the proposed models can be used for high-dimensional data,
caution needs to be exercised in practice, since the sample size is often small in real-life
studies. This is especially true when prediction is of primary interest and feature selection is
less of a concern. As the regularized methods achieve sparsity, they shrink the coefficients
of the important predictors. In finite samples, such shrinkage becomes more pronounced as
the noise level (i.e., the number of noise predictors) increases; as a result, the prediction
performance deteriorates, which is reflected in our simulations and data analysis.

We investigated two numerical methods for fitting proposed models. The first algorithm is
implemented through a L1 regression, which is slow for large data sets or when the number
of predictors is large relative to the sample size and fails when d > n. These limitations are
especially serious for censored data. For example, in our data example, the first algorithm
started to have convergence issues if d > 25 probes were used, in particular, when cross-
validation was used or internal validation was performed for evaluating prediction
performance. The second algorithm as described in Section 2.5 can deal with high-
dimensional data, and its solutions are fairly close to those obtained using the first method
when both are applicable. Consequently, we recommend the use of the second algorithm in
practice.

In this paper, we focus on the performance for prediction as well as feature selection in finite
samples through extensive numerical studies, and the theoretical properties of the proposed
methods are likely inherited from those of regularized linear AFT models and penalized
splines, which are beyond the scope of this article and are a topic for future research.
Nevertheless, our numerical results provide empirical evidence to suggest that the proposed
approach is likely to enjoy the properties on feature selection that are possessed by
regularized estimation in linear AFT models (Cai, Huang and Tian, 2009) and in stratified
AFT models (Johnson, 2009).

Several metrics have been proposed for assessing the performance of prediction models, and
Steyerberg et al. (2010) provides a nice review on this subject; however, it is well known
that censoring presents additional challenges in developing such metrics (Begg et al., 2000;
Gonen and Heller, 2005; Steyerberg et al., 2010). In our simulations and data example, we
used the extended c statistic to evaluate the prediction performance in the presence of
censored data; despite its ease of use, this metric uses only concordant and disconcordant
information and hence leads to loss of information. Furthermore, while the existing metrics
for censored data are applicable for AFT models, no metric has been proposed to take
advantage of the unique feature of AFT models, namely, they model the log-transformed
outcome and can provide prediction on the log-transformed scale, which is not trivial and is
another topic for our future research.
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Fig 1.
Estimated nonlinear effect of PSA on the prostate cancer recurrence after surgery (φ̂(X)).
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Table 4
Feature selection for the prostate cancer study

Method Selected Probes

Lasso-PL 1, 2, 4, 12, 16, 31, 38, 46, 63

Lasso-S2 1, 4, 8, 12, 16, 31, 46, 63, 382, 906

Lasso-S4 1, 4, 12,16,29,31,36,38,46,56,70,78,310,382,390,591,1500

Lasso-S8 1, 4, 8, 9, 16, 18, 31,36,37,38,46,56,57,70,78,178,237,271,310,855,1500

Lasso-L 1, 2, 4, 8, 9, 16, 31, 46, 63, 70, 136

Lasso-Cox 2, 4, 8, 11, 14, 16, 22, 31, 46, 52, 63

Ann Appl Stat. Author manuscript; available in PMC 2011 November 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Long et al. Page 22

Table 5
Prediction performance in the data analysis: mean c statistic

All 1536 probes

Lasso-PL Lasso-L Lasso-Cox

0.653 0.561 0.553

Top 25 probes

Lasso-PL Lasso-L Lasso-Cox

0.653 0.567 0.572

Clinical variables only

PL-AFT AFT PL-Cox Cox

0.665 0.644 0.658 0.644
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