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Abstract
Objectives/Hypothesis—Esophageal voice is a method of communication after total
laryngectomy. Previous research suggests that perturbation analysis may inaccurately measure
aperiodic voices and that nonlinear dynamic methods may be more appropriate for analyzing
signals of this type. Therefore, we hypothesized that nonlinear dynamic analysis would be more
capable than perturbation parameters for reliable measurement of the aperiodic esophageal voice.

Study Design—Acoustic comparison of esophageal and normal voice cohorts using nonlinear
dynamic and perturbation measures.

Methods—Twenty subjects in two age-matched groups participated in the study. Jitter, shimmer,
signal-to-noise ratio, correlation dimension, and second-order entropy were measured from audio
recordings of subjects’ voices.

Results—Jitter and shimmer values were significantly higher for esophageal voices and signal-
to-noise ratio values were significantly lower for esophageal voices than for normal voices. Error
count values, which indicate perturbation analysis reliability, were 0 in normal voices and
significantly higher in esophageal voices. Error was attributable to signal aperiodicity and
demonstrated that perturbation analysis yielded questionable results for esophageal voice.
However, nonlinear dynamics measures analyzed both cohorts reliably and indicated that
esophageal voice was significantly more chaotic than normal voice.

Conclusions—The results demonstrated the capability of nonlinear dynamic methods to reliably
quantify both aperiodic and periodic signals and to differentiate normal from esophageal voices. It
is suggested that nonlinear dynamic analysis be used preferentially for acoustic characterization of
aperiodic voices such as esophageal voice. Future research should focus on clarification of
perturbation analysis reliability and further application of nonlinear dynamic measures to
aperiodic voices.
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INTRODUCTION
Total laryngectomy is the removal of the entire larynx, including the thyroid and cricoid
cartilages, the upper tracheal rings, and the hyoid bone.1 This total excision of laryngeal
tissue drastically affects both respiration and phonation in the patient and typically requires
rehabilitative training. One method of voice rehabilitation and production after total
laryngectomy is the use of esophageal voice. Though usage of electrolarynx and other
speech aids is dominant in the United States, esophageal voice remains a significant
laryngectomee voice production method in some Asian countries, such as Japan and China.
Esophageal voice is generated using the esophagus as an air supply and the
pharyngoesophageal segment, located on the superior aspect of the esophagus, as a vibration
source.2 Air is deposited in the esophagus, and its controlled release leads to segment
vibration and sound production.3 Speech is produced by moving the articulators to mouth
words in the normal manner.4

The esophageal voice demonstrates perceptual qualities of harshness, hoarseness, gurgling,
short phonation duration and low pitch and volume,3 all of which are indicators of
aperiodicity in voice. Perturbation analysis of this perceptual abnormality has been
accomplished, with results confirming the severe irregularity of esophageal voices. Signal-
to-noise ratio, fundamental frequency, and intensity values were found to be lower and jitter
and shimmer values were found to be higher in esophageal speech than in laryngeal
speech.2–3,5 However, recent research suggests that the validity of perturbation analysis is
highly questionable when these measures are applied to aperiodic signals.6–7

In contrast, nonlinear dynamic methods of acoustic analysis have shown potential to reliably
quantify both periodic and aperiodic signals. The concept of human voice production as a
chaotic system has been established in recent years through computer modeling, excised
larynx experiments, and human voice analysis.8–12 A chaotic voice often exhibits an
irregular and aperiodic waveform, poor perceptual qualities, and extreme perturbation
values. Because all human vocal folds exhibit some inherent chaotic properties, nonlinear
dynamic methods are useful for quantifying the degree of aperiodicity and irregularity.

Previously, nonlinear dynamic analysis had not been applied to esophageal voices. Nor had
the effectiveness of nonlinear dynamic analysis and perturbation analysis when quantifying
the highly aperiodic esophageal voice been addressed. In this study, alaryngeal esophageal
voice was compared to normal voice using perturbation and nonlinear dynamic analyses. It
was hypothesized that nonlinear dynamic parameters would measure the highly aperiodic
signals of esophageal voice more capably than perturbation measures, while still effectively
distinguishing between esophageal and normal voice.

METHODS
Subjects

The Institutional Review Board at Shanghai EENT Hospital approved the protocol and
consent procedure used in this study. Ten male speakers with esophageal voices participated
in the study. All esophageal voice subjects were native speakers of Mandarin Chinese
ranging in age from 50 to 65 years old (mean = 55.4). Esophageal speakers underwent total
laryngectomy for cancer of the larynx and received esophageal voice training to improve
post-surgical vocal quality. In addition to the esophageal speakers, ten age-matched male
Mandarin Chinese speakers (age range = 42–60, mean age = 50.7) with normal voices were
included for comparison. The normal voice subjects were healthy volunteers with no current
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or past evidence of voice disorders and normal larynges, as determined by clinical
examination performed by an otolaryngologist.

Recording Procedure
Audio recordings of the ten laryngectomized patients’ voices were collected at an average of
5.78 months after commencement of esophageal voice training (st. dev. = 4.27). At each
recording session, both normal and esophageal speakers were instructed to sustain
phonations of /a/ at a comfortable pitch and volume for as long as possible. Recordings were
made in a soundproof room with the recording microphone (AKG Acoustics, Vienna,
Austria) positioned 10 cm from the subject’s mouth. Audio files were recorded at a sampling
rate of fs = 44.1 kHz using the Multi-Dimensional Voice Program, Model 3650 (Kay
Elemetrics Corp., Lincoln Park, NJ). A middle stationary segment x(ti), ti = iΔt, Δt=1/fs, i
=1,2,· · ·, with a length of 1 second was selected for analysis from each subject’s recording.
Voice onset and offset were excluded to avoid effects of speech intonation or interactions
between the larynx and vocal tract on analyses. Perturbation and nonlinear dynamic
measures were then applied to these normal and esophageal voices.

Perturbation Analysis
Perturbation analysis was conducted on the voice segments with CSpeech software, version
4.0 (Milenkovic and Read, Madison, WI). Two common measures of perturbation are jitter
and shimmer. Jitter measures the cycle-to-cycle frequency variation of a voice signal, while
shimmer measures the cycle-to-cycle amplitude variation. Signal-to-noise ratio (SNR),
measured in decibels, reflects the dominance of the harmonic signal over aperiodic noise.
Percent jitter, percent shimmer, and SNR values were obtained for each voice segment using
CSpeech.

Reliability of perturbation measurements was determined by using error in perturbation
measurement (err), a parameter calculated by the CSpeech program. Err counts “the number
of times the analysis algorithm failed to compute a pitch period consistent with the peak of
the autocorrelation function.”13 The autocorrelation function is used to calculate percent
jitter, percent shimmer, and SNR values in CSpeech;14 therefore, err describes the validity
of all three measures. Algorithm failure can be attributed to inaccurate pitch estimation or a
failed attempt to analyze a highly aperiodic waveform.13 In comparing the error count of
signals, Karnell et al. found that signals with err > 0 produced significantly higher
perturbation values and were more aperiodic than signals with err = 0.15 An error count of 0
indicates that the analysis algorithm did not fail to compute pitch period intervals, meaning
that error was sufficiently low and the signal was analyzed reliably via perturbation
methods. Although minor algorithm failure corresponding to err = 0 is considered
acceptable, err > 10 indicates loss of pitch track13 and indicates the unreliability of
perturbation results.

Nonlinear Dynamic Analysis
Detailed descriptions of nonlinear dynamic analysis methods such as phase space
reconstruction, correlation dimension, and second-order entropy to human voice production
are widely found in the literature.8–12,19–22 These types of measures have complemented
traditional perturbation measurements due to an ability to describe chaotic, aperiodic
voices.8–9,11

A reconstructed phase space can be created by plotting a voice signal against itself at some
time delay. The reconstructed phase space qualitatively shows the dynamic behavior of a
signal, as a periodic signal produces a closed trajectory while an aperiodic signal appears
irregular.16 Correlation dimension D2 specifies the number of degrees of freedom needed to
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describe a system; a more complex system has a higher dimension, which means that more
degrees of freedom are needed to describe its dynamic state.17 The correlation dimension
quantifies the irregularity of the reconstructed phase space: D2 = 0 corresponds to a static
state; D2 = 1 corresponds to a periodic oscillation; D2 = 2 describes a quasi-periodic tori
(superposition of two or more oscillations with no rational fundamental frequencies or
biphonation), and fractal D2 describes an aperiodic or chaotic oscillation. Kolmogorov
entropy quantifies the rate of loss of information about the state of a dynamic system as it
evolves.18 Second-order entropy (K2) indicates the rate of loss of information about the state
of a dynamic system over time. For periodic behavior, this entropy is equal to zero. A
chaotic system with a finite degree of freedom has a finite K2 value, while the K2 value of
true random behavior approaches infinity.18

In this study, correlation dimension and second-order entropy calculations were performed
using Nonlinear Dynamic Analysis software developed by the Laryngeal Physiology
Laboratory at the University of Wisconsin. Calculations made by the software were based
on the numerical algorithms described for studies analyzing excised larynx phonations8 and
pathological human voices.11,21–22 Briefly, an m-dimensional delay-coordinate phase space
Xi = {x(ti), x(ti − τ), · · ·, x(ti − (m − 1)τ)} was reconstructed using the time delay
technique,16 where m is the embedding dimension and τ is the time delay. m was determined
according to the embedding theorem23: when m > 2D+1 (D is the Hausdorff dimension), the
reconstructed phase space is topologically equivalent to the original phase space. The proper
time delay τ was estimated using the mutual information method proposed by Fraser &
Swinney.24 The improved algorithm proposed by Theiler25 was used to calculate the
correlation integral C(r), where r is the radius around Xi. Correlation integral C(r) measures
the number of distances between points in the reconstructed phase space that are smaller
than the radius r. C(r) has a power law behavior C(r) ∞ rD2e−mτK2, which reveals the
geometrical scaling property of the attractor.18 Based on C(r), D2 and K2 were estimated in
the scaling region of the radius r with the increase of the embedding dimension m. For
sufficiently large m, the correlation dimension and its standard deviation were derived using
a curve fit to the curve of log2 C(r) versus log2 r in the scaling region.

The reliability of nonlinear dynamic analysis calculations was determined for each voice
signal using the standard deviations of the estimated D2 and K2 values (hereafter referred to
as SDD2 and SDK2, respectively). For reliable estimation of dimension and entropy in a
particular signal, SDD2 and SDK2 values should be less than 5%. SDD2 and SDK2 values
greater than 5% indicate that the nonlinear dynamic analysis program was unable to reliably
calculate D2 and K2 values for a signal.

Statistical Analysis
SigmaPlot 8.0 and SigmaStat 3.0 software (Jandel Scientific, San Rafael, CA) were used to
statistically analyze and graph acoustic analysis data of esophageal and normal voices.
Nonparametric Mann-Whitney rank sum tests were employed to compare acoustic
parameters of esophageal voice with acoustic parameters of normal voice. Statistical
significance was set at the 0.05 level for all tests.

RESULTS
The typical results of acoustic analyses for a normal voice and an esophageal voice are given
in Figs. 1 and 2, respectively. The normal voice produces a periodic waveform and a
discrete frequency spectrum (Fig. 1(a)). Because err is zero, jitter (0.14%), shimmer (1.1%),
and SNR (26.7 dB) can be reliably calculated for the normal voice. The reconstructed phase
space in Fig. 1(b) shows a regular structure, where the proper time delay was estimated as
8Δt using the mutual information method. The correlation dimension and second-order
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entropy of the normal voice were calculated as 1.14 (SDD2 = 1%) and 0.096 (SDK2 =
0.1%), respectively. In comparison with the normal voice, the esophageal voice produces an
aperiodic waveform and a broadband spectrum, as shown in Fig. 2(a). Pitch extraction is
difficult for this aperiodic esophageal voice; therefore, the err parameter is 75 and the jitter
(3.65%) and shimmer (47.26%) values are abnormally high, with SNR at 2.9 dB. Thus, for
the aperiodic esophageal voice, jitter, shimmer, and SNR should be applied with caution,
and nonlinear dynamic analysis should be complementarily applied. Irregular phase space of
x(t) versus x(t+6) is shown in Fig. 2(b). The correlation dimension and second-order entropy
of this esophageal voice were calculated as 4.41 (SDD2 = 3%) and 0.403 (SDK2 = 0.1%),
respectively. It appears that the esophageal voice shows higher dimension and entropy
values than the normal voice, with low SDD2 and SDK2 values indicating reliability of
measurement. To confirm these findings, comparisons among all normal and esophageal
voices were made.

Results of perturbation analysis of normal and esophageal voices are summarized in Table 1.
Mean jitter and shimmer values for esophageal voice were 6.374% and 53.61%,
respectively, and mean SNR was low at 3.55 dB. Err values for esophageal voice were high
and extremely variable (mean = 86.8, st. dev. = 62.939), as shown in Fig. 3(d), and all err
values for esophageal voice were greater than the acceptable value of 10.13 Because err
indicates reliability of results, values of jitter, shimmer, and SNR calculated for esophageal
voices were considered to be highly questionable. In contrast, mean jitter and shimmer
measures in normal voice were 0.447% and 3.075%, respectively, as shown in Figs. 3(a) and
3(b). Mean SNR was higher in normal voice (20.08 dB) than in esophageal voice, as shown
in Fig. 3(c). Error count for perturbation analysis of all normal voices was 0 (Fig. 3(d)),
indicating that perturbation measures were reliably calculated for these nearly periodic
signals. Nonparametric Mann-Whitney rank sum tests on perturbation data indicated
significant differences between normal and esophageal voice for all measures (p < 0.001).
However, given the highly questionable reliability of these measures for analysis of the
aperiodic esophageal voice, results could not be interpreted as accurate quantification of
esophageal voices.

Table 2 summarizes results of nonlinear dynamic analysis. Mean correlation dimension was
lower for normal voice (D2 = 2.349) and higher for esophageal voice (D2 = 3.401), as shown
in Fig. 4(a). SDD2, an indication of the stability and reliability of the calculated measure,
was low for both esophageal and normal voices (mean values of 2.99% and 1.23%,
respectively), as shown in Fig. 4(c). Mean second-order entropy was higher for esophageal
voice (K2 = 0.472) than for normal voice (K2 = 0.185), as shown in Fig. 4(b). SDK2 was low
for esophageal and normal voices (mean values of 0.2% and 0.01%, respectively), indicating
the reliability of second-order entropy calculations. Mann-Whitney rank sum tests proved
the differences in D2 and K2 between voice types to be statistically significant (D2: p =
0.003; K2: p < 0.001), indicating that esophageal voices exhibited greater chaos than normal
voices.

DISCUSSION
Upon viewing typical waveforms (Figs. 1(a) and 2(a)), it is qualitatively apparent that the
esophageal voice signal is far more aperiodic than the normal voice signal. This difference is
largely due to the physiological limits of esophageal voice production; the
pharyngoesophageal segment, unlike the natural vocal folds, has a large mass and is not
specialized for vibration. This results in imprecise and slow pharyngoesophageal segment
movement2 and causes significant acoustic differences from normal vocal fold vibration.
The aperiodicity present in esophageal voice and other pathological voice has been
measured via perturbation analysis methods. Using several parameters, studies have found

MacCallum et al. Page 5

J Voice. Author manuscript; available in PMC 2011 November 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



esophageal voice to have characteristics indicative of significantly poorer quality than
alternative forms of alaryngeal speech and normal speech.2–3,5 However, studies using
perturbation measures for analysis of extremely aperiodic voices such as esophageal voice
seldom quantify the reliability of results.

It has been determined that values of percent jitter and shimmer are incapable of reliably
evaluating aperiodic voice samples. As a practical guideline, it was established that signals
demonstrating greater than 5% jitter or shimmer levels produce invalid perturbation values
due to aperiodicity.6,13 An additional measure of perturbation analysis reliability is the error
count quantified by the CSpeech program, an indicator of either inaccurate pitch estimation
or highly aperiodic signal waveform.13 All esophageal voice samples exhibited err values
greater than 10, the set limit for acceptable error,13 as shown in Fig. 3(d). Conversely, all
normal voice samples exhibited err values of 0, indicating low error in analysis. Therefore,
CSpeech err measurements further support the assertion that perturbation analysis must be
applied with caution to aperiodic signals such as esophageal voice. This comparison of
normal to esophageal voice provides evidence that while normal voice can be reliably
measured, traditional measures of jitter, shimmer, and SNR are insufficiently reliable to
quantify the aperiodicity present in esophageal voice. Although perturbation measures were
able to significantly differentiate between normal and esophageal voice, this finding is of
questionable importance if it is determined that the aperiodic esophageal signal is unreliably
calculated.

Although nonlinear dynamic parameters have been applied to distinguish normal voice from
types of pathological voice,11–12 the efficacy of nonlinear dynamic measures in measuring
esophageal voice and distinguishing this aperiodic signal from normal voice has not been
previously analyzed. Esophageal voice was significantly differentiated from normal voice in
the present study using measures of correlation dimension and second-order entropy. These
nonlinear dynamic measures defined esophageal voice as significantly more chaotic than
normal laryngeal voice. The finite dimension values of esophageal voices in Fig. 4(a)
suggest finite degrees of freedom might be needed to model the dynamics of esophageal
voices. Importantly, significantly low SDD2 and SDK2 values indicate the reliability of
nonlinear dynamic measures in quantifying both normal and aperiodic esophageal voices.

It is likely that nonlinear dynamic parameters such as correlation dimension and second-
order entropy are more effective for analysis of aperiodic voice signals because these
measurements are not dependent on the temporal domain. For perturbation measures,
analysis programs must be able to define regular voice pitch periods in time in order to
calculate cycle-to-cycle variations such as jitter and shimmer.11 Since this is difficult or
impossible for signals exhibiting extreme irregularity, such as esophageal voice,
perturbation measures are unable to dependably characterize the entire signal. However,
correlation dimension and second-order entropy do not require cycles to be marked; instead,
the measures describe the geometric scaling property of a signal in phase space.11 This
makes it possible for nonlinear dynamic parameters such as these to quantify even severely
aperiodic voice.

It is necessary to establish the capabilities of acoustic analysis methods in order to improve
understanding of the qualities of pathological voice. This study has determined that the
aperiodicity present in esophageal voice is considerable and produces highly questionable,
possibly invalid perturbation analysis results. Conversely, the quantification of chaos in
audio signals via correlation dimension and second-order entropy analysis provides a
valuable measure of the irregularity of esophageal voice and should be applied clinically for
reliable acoustic analysis of esophageal and other similar highly aperiodic vocal signals.
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CONCLUSIONS
In this paper, we have applied acoustic measures of nonlinear dynamics and perturbation to
the aperiodic esophageal signal and to normal voice. Although perturbation measures of
jitter, shimmer, and SNR significantly differentiated between esophageal and normal voice,
error count demonstrated the insufficient reliability of these measures in quantifying the
aperiodic esophageal voice signal. Nonlinear dynamic measures of correlation dimension
and second-order entropy also significantly differentiated between esophageal and normal
voices. However, as evidenced by SDD2 and SDK2 results, these measures were able to
reliably quantify the aperiodic esophageal signal. Future research should focus on additional
clarification of the limits of commonly used perturbation analyses for measurement of
aperiodic voice, taking into account internal reliability measures such as the err
measurement of CSpeech. Furthermore, research should focus on clinical application of
nonlinear dynamic analysis as a valuable, reliable tool for measurement of extremely
aperiodic voice such as esophageal voice.
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Figure 1.
(a) Acoustic waveform and frequency spectrum of a normal voice.
(b) Reconstructed phase space of a normal voice.
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Figure 2.
(a) Acoustic waveform and frequency spectrum of an esophageal voice.
(b) Reconstructed phase space of an esophageal voice.
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Figure 3.
Distributions of perturbation analysis in normal and esophageal voice signals. (a) Percent
jitter; (b) Percent shimmer; (c) Signal-to-noise ratio (SNR); (d) Error count (err).
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Figure 4.
Distributions of perturbation analysis in normal and esophageal voice signals. (a)
Correlation dimension (D2); (b) Second-order entropy (K2); (c) Standard deviation of D2
(SDD2) (d) Standard deviation of K2 (SDK2).
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Table 1

Perturbation analysis: jitter, shimmer, signal-to-noise ratio (SNR), error (Err), and Mann-Whitney rank sum
test results

Normal voice Esophageal voice Rank sum test results

% Jitter M = 0.447
SD = 0.278

M = 6.374
SD = 3.83

T = 55
p < 0.001*

% Shimmer M = 3.075
SD = 1.525

M = 53.61
SD = 8.32

T = 55
p < 0.001*

SNR (dB) M = 20.08
SD = 3.939

M = 3.55
SD = 1.65

T = 155
p < 0.001*

Err M = 0
SD = 0

M = 86.8
SD = 62.939

T = 55
p < 0.001*

M = mean, SD= standard deviation

*
Statistically significant at the p = 0.05 level
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Table 2

Nonlinear dynamic analysis: correlation dimension (D2), second-order entropy (K2), D2 and K2 standard
deviation (SDD2 and SDK2), and Mann-Whitney rank sum test results

Normal voice Esophageal voice Rank sum test results

D2 M = 2.349
SD = 0.343

M = 3.401
SD = 0.972

T = 65
p = 0.003*

K2 M = 0.185
SD = 0.047

M = 0.472
SD = 0.178

T = 58
p < 0.001*

SDD2 M = 0.0123* M = 0.0299*

SDK2 M = 0.0001* M = 0.002*

M = mean, SD = standard deviation

*
Statistically significant at the p = 0.05 level
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