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Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium used extensively for man-
ufacturing Swiss type and aged Italian cheese. In this study, the phenotypic and genotypic diversity of strains
isolated from different natural dairy starter cultures used for Grana Padano, Parmigiano Reggiano, and
Provolone cheeses was investigated by a classification tree technique. A data set was used that consists of 119
L. helveticus strains, each of which was studied for its physiological characters, as well as surface protein
profiles and hybridization with a species-specific DNA probe. The methodology employed in this work allowed
the strains to be grouped into terminal nodes without difficult and subjective interpretation. In particular, good
discrimination was obtained between L. helveticus strains isolated, respectively, from Grana Padano and from
Provolone natural whey starter cultures. The method used in this work allowed identification of the main
characteristics that permit discrimination of biotypes. In order to understand what kind of genes could code
for phenotypes of technological relevance, evidence that specific DNA sequences are present only in particular
biotypes may be of great interest.

Lactobacillus helveticus is a homofermentative thermophilic
lactic acid bacterium largely present in the natural starters
used in the production of aged Italian cheeses, such as Grana
Padano, Parmigiano Reggiano, and Provolone, which are
cheeses produced in geographically contiguous areas of North-
ern Italy. Parmigiano Reggiano and Grana Padano are aged
cooked cheeses with similar organoleptic characteristics (1).
They mainly differ in the scale of dairies and, consequently, in
the standardization of the phases of cheesemaking. Provolone
is an aged pasta filata cheese (11). All of these typical Italian
cheeses are obtained by using natural whey starter cultures in
which L. helveticus is the predominant species (21, 31). These
particular mixed lactic acid bacteria cultures are produced by
culturing the sweet whey resulting from everyday cheesemak-
ing. Whey is fermented at a naturally decreasing temperature,
decreasing in approximately 20 h from about 54°C to about
35°C, and a thermophilic selection is performed. Whey starter
is added to the vat milk, and sweet whey is recovered after curd
cooking at each cheese production. The dominant community
of L. helveticus in natural whey starters is composed of different
biotypes (3, 6–8, 14–16, 23, 24). Large differences in the ex-
pression of several technological characteristics were found
among L. helveticus strains isolated from natural dairy starter
cultures (3, 8, 25, 34).

Previous works have shown that these strains can be grouped
in relation to their phenotypic (10, 18) and genotypic (12, 18)
characteristics. The reasons of these differences have not been

elucidated, even if the results obtained indicated that they may
be related to the different technological cheesemaking param-
eters and whey fermentation which lead to the selection of
dominant strain populations. The competitive fitness of some
L. helveticus biotypes in the ecological niche of particular
cheese types may be the consequence of a single trait or a
combination of genotypic and phenotypic traits. A polyphasic
strain characterization therefore provides a more solid basis to
better understand the functional and ecological significance of
the diversity of biotypes in natural dairy starter cultures.

In this context, the basic goal of this study was to understand
what variables drive a specific phenomenon (the biodiversity
within L. helveticus species) and to simplify the conditions that
make an object (an L. helveticus strain) belong to one class
(based on its origin) rather than another.

The reduction of the number of significative variables as well
as the evaluation of their relative importance in the classifica-
tion procedure can help to understand biological mechanisms
on which the classification is based.

In food microbiology, classification studies often deal with
homogeneous phenomena characterized by data sets in which
all the variables are of the same type. When large data sets are
available, food microbiologists have to face the problem of
complexity, which can include high dimensionality of the data,
mixtures of data types, nonstandard data structures, and non-
homogeneity, which means different relationships between
variables in the different parts of measurement space.

Microbiologists have used some grouping techniques in or-
der to classify microbial populations on the basis of genotypic
and phenotypic measurements. Phenotypic characters have
frequently been used for bacterial characterization and are the
basis for numerical taxonomy (32). In the last several years, the
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introduction of specific molecular procedures, such as ribotyp-
ing, DNA-DNA hybridization, DNA homology, and restriction
fragment length polymorphism (RFLP) analysis (13, 20, 22,
27), has lead to the general use of genotypic characters for
taxonomic purposes.

A number of mostly nonhierarchical multivariate methods
have been used for pattern matching to identify operational
taxonomical units, which in turn can be circumscribed as a
genus, a species, or a strain (4). Principal component analysis
can furnish good dimensionality reduction and has found ap-
plication in numerical taxonomy (19). Hierarchical cluster
analysis is used to obtain dendrograms representing the simi-
larity of operational taxonomic units in multidimensional
spaces (32).

All of these techniques make use of an unsupervised ap-
proach to classification. In fact, groups of observations are
identified by means of covariates, and their compliance with a
known classification criterion is a posteriori verified. In this
study, we use a supervised approach to classification. Trees
made with the classification and regression tree (CART) sys-
tem (2) have been used as a technique to exploit the polyphasic
strain characterization of L. helveticus.

A collection of 119 L. helveticus strains isolated from Pro-
volone, Grana Padano, and Parmigiano Reggiano whey natu-
ral cultures was used, each of which was studied for its physi-
ological characters, as well as surface protein profiles and
hybridization with a species-specific DNA probe. The total
number of potential predictors, 71, is high, but few are infor-
mative. Thus, in the first instance, the aim of this work was to
classify the strains of L. helveticus in relation to their origin.
The innovation in this work consisted of the identification of
the most important variables, among those considered, that
group the strains on the basis of their isolation source through
a robust classification procedure.

MATERIALS AND METHODS

Strains. A total of 119 different L. helveticus strains, isolated from whey starter
cultures and belonging to the collection of the Istituto Sperimentale Lattiero
Caseario of Lodi, Lodi, Italy, were used. Forty-four strains were isolated from 19
Grana Padano natural whey starter cultures, 17 strains were isolated from 7
Parmigiano Reggiano natural whey starter cultures, and 58 strains were isolated
from 14 Provolone natural whey starter cultures. The strains were identified with
biochemical tests (17), surface proteins (9), and species-specific PCR (30). The
strains were stored in MRS broth (Difco, Detroit, Mich.), with 15% glycerol
added, at �80°C. Working cultures were prepared through two overnight trans-
fers at 42°C in MRS medium.

Acidifying activity assay. Acidifying activity was evaluated in sterilized skim
milk (SSM) and SSM fortified with 0.6% (wt/vol) yeast extract (Difco) (YE) at
42°C as previously described (10). pH was measured after 3, 6, and 24 h. (pHme-
ter Metrhon 654; Metrhon, Ltd., Herisau, Switzerland), and values were ex-
pressed as pH decrease, calculated as the difference between the value immedi-
ately after inoculation and values at three successive times (3, 6, and 24 h) in
SSM (SSM3, SSM6, and SSM24, respectively) and in SSM-YE at the same times
(YE3, YE6, and YE24).

Peptidase activity assay. Peptidase activity was evaluated as described in a
previous work (10) with 0.656 mM solutions of phenylalanine-proline-�Na (Phe-
Pro), arginine-�Na (Arg), and lysil-�Na (Lys) (Bachem Feinchemikalien AG,
Bubendorf, Switzerland) substrates at pH 6.5 after 1 h of incubation at 37°C.
Aminopeptidase activity was evaluated by measuring the optical density at 580
nm (OD580) with a Diode Arrays Spectrophotometer (Hewlett Packard no.
84524; Cermusco su Naviglio, Italy).

Extraction and analysis of surface proteins. Surface proteins were extracted
from cells growing in the exponential growth phase, which were washed twice
with sterile distilled water, resuspended in 5 ml of sterile distilled water to obtain

an OD600 of 2.0, and centrifuged (3,000 x g for 10 min at 4°C). Surface proteins
were extracted from final pellets with 10 mM Tris-HCl, 10 mM EDTA, 10 mM
NaCl, 2% sodium dodecyl sulfate (SDS [pH 8.0]) at 100°C for 5 min, and finally
analyzed by SDS-polyacrylamide gel electrophoresis as described by Gatti et al.
(9). They were defined according to their molecular mass (in kilodaltons). The
presence or the absence of the resulting bands was evaluated by observation of
electrophoretic gels. Using Coomassie blue staining, six different bands of about
35 (P35), 48 (P48), 50 (P50), 66 (P66), 110 (P110), and 120 (P120) kDa were
detected.

Total DNA extraction. Total DNA from the strains was extracted from 5-ml
samples of fresh overnight MRS broth cultures by an alkaline lysis method
according to the method of de los Reyes-Gavilàn et al. (5). The quantity and
purity of DNA were assessed by A260 and A280 as described by Sambrook et al.
(26).

DNA hybridization with the L. helveticus probe. RFLP of L. helveticus isolates
was performed by using a species-specific DNA probe in Southern blot (26)
hybridization experiments as described in a previous work (12). Total DNA was
cleaved by EcoRI (Life Technologies Italia, Milan, Italy). Restriction was carried
out during 2 h at 37°C in 20-�l volumes of incubation buffer (Life Technologies)
containing 10 U of EcoRI restriction enzyme and 0.25 �g of total DNA.

DNA restriction fragments were separated electrophoretically in agarose gels
(1% [wt/vol]) and blotted on a Hybond N� membrane (Amersham Pharmacia
Biotech Italia, Milan, Italy) under alkaline conditions (0.4 N NaOH). DNA-
DNA hybridization was subsequently performed with the enhanced chemilumi-
nescence (ECL)-direct nucleic acid labeling and detection systems (Amersham
Pharmacia Biotech Italia), according to the supplier’s instructions. Overnight
hybridization was carried out at 42°C by using an internal PCR-amplified 388-bp
fragment of IS1201 as a DNA probe. IS1201 is a 1,387-bp insertion sequence
isolated from L. helveticus (5, 28), which was kindly provided by P. Tailliez (Unité
de Recherches Laitières et Genetique Appliquée, Jouy-en-Josas, France).
IS1201 was obtained from a BssHII-digested pBluescript plasmid, which had
been cloned in Escherichia coli CNRZ 1814 as described by Tailliez et al. (28).
The 388-bp internal fragment was amplified from plasmid DNA of strain CNRZ
1814 by using the primers 5� GCTGAGCGATAAGTTCTT 3� and 5� ATTGG
CTTGCTGGTGAAT 3�. The two primers were designed to amplify the region
594 to 981 of the published IS1201 DNA sequence (24). After signal generation
and detection, autoradiography films (Hyperfilm-ECL; Amersham Pharmacia
Biotech Italia) were exposed to generate light according to the manufacturer’s
instructions. Approximate mole sizes (in base pairs) of the restriction fragments
on the Southern blots were calculated by comparing migration distances with a
HindIII-digested lambda DNA size marker (Life Technologies).

Analysis of the DNA-DNA hybridization fingerprints. Exposed autoradiogra-
phy films of Southern blot fingerprinting profiles from the RFLP experiment
were scanned (Scanjet 6100 C/T; Hewlett Packard Italia, Milan, Italy), and the
TIFF-formatted image was taken into the software package GelCompar, version
4.2. The bands were identified and sizes were determined for the statistical
analysis according to the size (kilobases) calculated with respect to � DNA/
HindIII fragments. The bands were designated with a C followed by their size in
kilobases.

The resulting densitometric traces of band profiles were analyzed by cluster
analysis (GelCompar version 4.2). Calculation of similarity of the band profiles
was based on the Pearson similarity coefficients. A dendrogram was deduced
from the matrix of similarities by the unweighted pair group method using
arithmetic average (UPGMA) clustering algorithm (33).

Classification trees. In this section, we give a brief overview of binary classi-
fication trees methodology introduced by Breiman et al. (2).

Consider a population whose elements belong to C different classes, and let X
be the sample space spanned by a set of p variables measured on the elements of
the population. A classification rule is a function that assigns each x � X to one
of the C classes; the classification rule is usually defined on the basis of a training
set: that is a sample for which class membership is known.

The idea underlying classification trees is very simple: we start considering the
whole training set, then we search the best binary split: that is the split that
divides the set in the two most homogeneous subsets. At the second step, we
reapply the search of the best split to the two subsets previously created. In
successive steps, partition continues recursively until some stopping rule (i.e.,
until a minimum size for the subsets is reached) is met. The subsets created by
partitioning are called “nodes,” or “leaves” if they are terminal and if it is not
possible, or reasonable, to split them further. Each of the leaves is assigned to a
class minimizing the misclassification cost.

To complete the description, we point out how homogeneity is measured, how
the best split is found, and how a stopping rule can be defined.

The homogeneity of a node is maximum when it contains only elements from
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a single class, while minimum homogeneity is reached when the units in the node
are uniformly subdivided among the C classes. Intermediate situations are mea-
sured by impurity indexes, impurity being the dual of homogeneity. Formally,
impurity indexes are concave, symmetric, and bounded real functions. The most
common impurity indexes in the literature are the Gini index and the Shannon
entropy measure (2).

For splitting a node, each of the p variables (called predictors) is considered
separately, and provided it is orderable, a cutoff value is searched, for which the
impurity of resulting nodes is minimum. Successively the p candidate splits are
compared, and the best is selected. Note that this splitting criterion relies on the
measure of impurity of the created nodes and can therefore be applied (with a
tentative search of the cutoff) to categorical unordered variables.

The described recursive partitioning can be continued until we obtain leaves
with only one element. Such a tree makes no classification errors, but is liable to
the effect of random sample fluctuations and thus poor performance in the
analysis of possible new data. A smaller tree (that is one with a smaller number
of leaves) would probably be more stable, at the price of some misclassification.

More-severe stopping rules can be set: imposing, for instance, a minimum size
for the leaves, but this would leave the question of what is the “right size” of the
tree unanswered. The solution can be found by introducing a pruning rule: that
is a criterion that selects the right-sized trees by pruning the more “unstable”
branches of the tree. The established methodology is tree cost-complexity prun-
ing, first introduced by Breiman et al. (2).

Let R(T) be the resubstitution estimate (i.e., the estimate carried out using the
training sample) of the true overall misclassification cost R* (T). We can intro-
duce the cost-complexity measure

R��T	 � R�T	 � ��T� � � 0

where �T� is the number of leaves and � is a real number called the “complexity
parameter.” For each value of �, it is then possible to find the tree T� (subtree
of T0) such that

R��T�	 � min R��T	
T � T0

(with T0 being simply the largest possible tree). It can be shown that there exists
a nested family {T0, T1,. . ., Tk,. . .Troot} of subtrees of T0 such that each of the
trees is optimal for a range of values of �: that is, we can find the optimal tree
by a sequence of snip operations on the current tree (for a detailed description
of the pruning computational algorithm see reference 2 by Breiman et al.).

Having obtained the sequence of pruned subtrees, the problem follows of
which tree to select out of this sequence. A tree is selected in order to maximize
the predictive power of the tree. To estimate this predictive power, the avail-
ability of an independent sample would in principle be the best option, but since
it is advisable to use all data to “instruct” the tree in the best possible way, a
cross-validation method is used (see reference 2 for details). Usually, the tree Tk0
with the minimum estimated prediction error is selected. A more severe pruning
rule consists of selecting the smallest tree with an estimated prediction error not
larger than the estimated prediction error of Tk0

plus its standard error (1-SE
rule).

The above description is based on the notion of misclassification cost R(T),
which can be defined as follows. We first impose the condition that R�T	

� �
a

R�a	, where a denotes the generic leaf of the tree. That is, we assume that

the misclassification cost of a tree is obtained as the sum of that of all its leaves.
The definition of R(a) can be written as

R�a	 � �
i
l

C

�iL�i,��a		
nia n
ni na

where �i is the a priori probability of class i, �(a) the class to which the leaf a is
assigned, L is a loss function such that L�i,i	 � 0 and L�i,j	 � 0 � j � i, nia, and
ni are the numbers of members of class i in leaf a and the population.

We note that in the simplest setting, associated with simple random sampling
from the population, prior probabilities estimated from the data (i.e., equal to
the observed class frequencies in the training set) and L�i, j	 � 1 for all i  j,
R(a) reduces to

R�a	 � �
i��a	

�nia/na	

which is minimized, assigning the leaf to the class to which the majority of its
members belong.
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In our application, we consider constant losses and prior probabilities, even
though the proportions of the various classes in the sample are not constant. In
fact, our aim is to equalize the misclassification rate (29). We also consider
constant losses, because there is no reason to suppose that the different types of
misclassification have different levels of relevance.

Statistical analysis. For building classification trees, the S-Plus routine RPart
was used. This routine is downloadable at StatLib (http:/lib.stat.cmu.edu) and
implements many of the ideas found in the CART book (29).

RESULTS

Polyphasic strain characterization. In this work, 119 strains
of L. helveticus isolated from natural whey cultures (44 from

Grana Padano, 17 from Parmigiano Reggiano, and 58 from
Provolone) were studied for their physiological characteristics,
surface proteins, and RFLP.

Table 1 summarizes the data relative to the strains isolated
from natural whey starters of each cheeses relative to their
technological characteristics (i.e., acidifying and peptidase ac-
tivities). Almost all of the variables considered were charac-
terized by different mean values in relation to their origin. In
addition, the strains with the same origin showed marked dif-
ferences in these activities, as indicated by the high variability
coefficient values and the minimum-to-maximum ranges.

Table 2 reports the distribution of surface proteins of the
strain collection in relation to their molecular weight. In this
case, the data are reported as the percentage of strains with
detectable levels of each size class. The most interesting vari-
ables seem to be P66, characteristic for Grana Padano and
Parmigiano Reggiano, and P110, which is present in 59% of
strains from Parmigiano Reggiano and 5% of strains from the
other cheeses. In addition, P50 was found in 2.3% of strains
from Grana Padano, 17.7% of strains from Parmigiano Reg-
giano, and 81% of strains from Provolone.

The study of the profiles from RFLP analysis carried out on
all the strains allowed the identification, on the basis of their
size, of 56 bands. These bands are shown in Table 3, which also
reports the percentage of their presence in the strains isolated
from the different cheeses.

TABLE 2. Presence of surface proteins with different molecular
masses in strains of L. helveticus

Proteina

% of proteinsb

Grana
Padano

(n 
 44)

Parmigiano
Reggiano
(n 
 17)

Provolone
(n 
 58)

Total
(n 
 119)

P120 6.82 17.65 0.00 5.04
P110 4.55 58.82 5.17 12.61
P66 79.55 82.35 18.97 50.42
P50 2.27 17.65 81.03 42.86
P48 100.00 82.35 84.48 89.92
P35 18.18 0.00 1.72 7.56

a The number of each surface protein represents its molecular mass in kilo-
daltons.

b n, number of strains.

TABLE 3. Presence of DNA fragments with different molecular sizes in L. helveticus

DNA
fragmenta

% of fragmentsb

DNA
fragmenta

% of fragmentsb

Grana
Padano
(n 
 44)

Parmigiano
Reggiano
(n 
 17)

Provolone
(n 
 58)

Total
(n 
 119)

Grana
Padano
(n 
 44)

Parmigiano
Reggiano
(n 
 17)

Provolone
(n 
 58)

Total
(n 
 119)

C16.7 11.36 52.94 12.07 17.65
C17.6 40.91 23.53 1.72 19.33
C18.4 34.09 0.00 6.90 15.97
C19.6 13.64 11.76 5.17 9.24
C20.4 34.09 5.88 6.90 16.81
C21.9 4.55 29.41 8.62 10.08
C23.5 2.27 5.88 15.52 9.24
C24.4 0.00 29.41 1.72 5.04
C25.9 59.09 41.18 17.24 36.13
C26.7 52.27 23.53 55.17 49.58
C27.7 27.27 35.29 13.79 21.85
C28.4 72.73 5.88 55.17 54.62
C29.5 54.55 11.76 20.69 31.93
C30 38.64 5.88 6.90 18.49
C31 4.55 29.41 89.66 49.58
C32.2 20.45 11.76 3.45 10.92
C33.1 54.55 0.00 8.62 24.37
C34.8 61.36 58.82 63.79 62.18
C36 22.73 29.41 15.52 20.17
C36.9 2.27 5.88 56.90 29.41
C37.6 20.45 5.88 5.17 10.92
C39.5 11.36 17.65 12.07 12.61
C40.4 70.45 47.06 72.41 68.07
C41.7 20.45 64.71 15.52 24.37
C42.8 9.09 17.65 62.07 36.13
C44 18.18 17.65 50.00 33.61
C44.7 65.91 23.53 41.38 47.90
C45.4 38.64 76.47 13.79 31.93

a The number of each DNA fragment represents its size in kilobases.
b n, number of strains.

C46.8 88.64 52.94 46.55 63.03
C48 22.73 64.71 20.69 27.73
C48.7 75.00 47.06 44.83 56.30
C50.1 31.82 41.18 37.93 36.13
C51.7 15.91 64.71 1.72 15.97
C53 31.82 41.18 74.14 53.78
C53.7 0.00 35.29 8.62 9.24
C54.9 52.27 35.29 5.17 26.89
C56.5 90.91 64.71 32.76 58.82
C57.8 11.36 35.29 0.00 9.24
C59 100.00 70.59 43.10 68.07
C60.7 50.00 11.76 18.97 29.41
C61.9 47.73 17.65 31.03 35.29
C63.1 34.09 29.41 37.93 35.29
C64.1 15.91 11.76 8.62 11.76
C64.9 40.91 0.00 36.21 32.77
C65.9 50.00 0.00 5.17 21.01
C66.6 15.91 5.88 34.48 23.53
C67.6 45.45 23.53 25.86 32.77
C68.5 9.09 5.88 39.66 23.53
C69.1 13.64 11.76 13.79 13.45
C70.4 9.09 5.88 56.90 31.93
C71.4 13.64 17.65 18.97 16.81
C73 56.82 29.41 3.45 26.89
C74.5 11.36 0.00 55.17 31.09
C75.9 4.55 0.00 24.14 13.45
C77.2 9.09 23.53 3.45 8.40
C79.9 9.09 0.00 6.90 6.72
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The comparison by means of cluster analysis among the
RFLP patterns of L. helveticus strains isolated from Parmi-
giano Reggiano, Grana Padano, and Provolone whey starter
cultures showed great biodiversity (Fig. 1). The value obtained
for the cophenetic correlation value for the whole dendrogram
(79%) indicated a not very good consistency of the dendro-
gram. As reported by Giraffa et al. (12), the clusters with
similarity coefficients below 90% can be considered different.
At such a similarity level, 91 clusters were found. Forty-four
Grana Padano strains were split up among 23 clusters, and 58
Provolone strains were split up among 48 clusters. Parmigiano
Reggiano strains, despite the low number of strains analyzed
(17 strains), were split up among 17 different clusters. Only
upon reducing the similarity level (40%) were L. helveticus
biotypes clustered in 12 groups. In particular, 73% of Grana
Padano strains were split up in one cluster, and the others are
in other two clusters. Sixty-five percent of Provolone strains are
in one cluster, and the others were split up in seven different
clusters. Strains from Parmigiano Reggiano could be consid-
ered more biodiverse, because, despite the low number of
strains analyzed, even at a low similarity level, they were split
up among seven different clusters.

In some cases, the patterns obtained seem to be character-
istic for some cheeses rather than others, but it is not possible
to extrapolate a general and unequivocal rule able to distin-
guish the strains in relation to their origin.

The great variability in relation to the strain source of the
variable considered has induced us to exploit all of these data
with a supervised statistical procedure able to give clear re-
sponses about the factors that can differentiate the strains on
the basis of their isolation. In a supervised approach to classi-
fication, the observed groups (Grana Padano, Parmigiano Reg-
giano, and Provolone) are used in order to identify a classifi-
cation rule. Moreover, in the CART supervised approach, the
classification rule splits the measurement space into homoge-
neous groups. In this way, a classification rule and a cluster of
observation are jointly obtained. For this reason, attention has
been focused on the classification tree methodology.

Classification of the strains. The classification tree has been
built by considering all 71 of the variables characterizing the
119 strains of L. helveticus previously described in relation to
their origin.

In Table 4, the statistics relative to the sequence of trees
obtained by the algorithm CART are reported. On the basis of
the 1-SE rule (2) the tree with six terminal nodes has been
chosen. The resubstitution and the cross-validated misclassifi-
cation costs are reported in the same table as well as the
relative costs compared to the tree with only one terminal
node.

The results obtained are graphically shown in Fig. 2. The
final tree used only five variables: four DNA fragments (C31,
C51.7, C53.7, and C59) and one surface protein band (P50).
This confirms that there are only a few informative characters
in the analysis. The tree has six terminal nodes: three identified

as Parmigiano Reggiano, PARM1, PARM2, and PARM3
(grouping 3, 6, and 5 strains, respectively); two identified as
Provolone, PROV1 and PROV2 (8 and 54 strains, respec-
tively); and one identified as Grana Padano, GRPA1 (43
strains).

The resubstitution classification table (Table 5) shows the
actual versus predicted classes to which the strains are attrib-
uted in relation to their origin. Nine strains out of 119 were not
correctly classified, with a misclassification rate of 7.6%. It is
interesting to observe that five of the nine strains not correctly
classified were isolated from Parmigiano Reggiano whey
starter cultures, so that the specific misclassification rate rela-
tive to Provolone and Grana Padano isolates is considerably
lower (3.9%).

Table 6 reports the misclassified cases by node. Of the 5
strains out of 17 from Parmigiano Reggiano cheese not cor-
rectly assigned to the terminal nodes PARM1, PARM2, and
PARM3, 1 strain was assigned to the Grana Padano terminal
node (GRPA1) and 4 were assigned to Provolone nodes. In
addition, two Grana Padano isolates were attributed to the
Provolone node PROV2, while two Provolone isolates were
misclassified in the Parmigiano Reggiano nodes PARM1 and
PARM3.

In general, the strains isolated from Grana Padano and
Provolone whey starters were mainly grouped in two bigger
leaves (GRPA1 and PROV2, respectively). The PROV1 leaf
(eight strains) grouped five Provolone and three Parmigiano
Reggiano strains. The overall correct attributions of the strains
in relation to the origin are 95.5% for Provolone, 96.6% for
Grana Padano, and 70.6% for Parmigiano Reggiano.

When the predictive effectiveness of the model is evaluated
by means of cross validation (Table 7), it is possible to note
that, while the misclassifications of Provolone and Grana
Padano isolates reflect the resubstitution results (5.2 and 4.5%,
respectively), the number of errors for Parmigiano Reggiano
isolates is somewhat higher. In fact, 10 out of 17 strains are
misclassified (6 in the Grana Padano nodes and 4 in the Pro-
volone nodes). Therefore, the model shows a weaker predic-
tive power for Parmigiano Reggiano strains. In other words,

TABLE 4. Tree sequence obtained using the S-Plus routine Rpart

Tree
No. of

terminal
nodes

Cross-validated
relative cost

(SE)

Resubstitution
relative cost

1a 8 0.230 (0.053) 0.115
2b 6 0.246 (0.049) 0.148
3 5 0.328 (0.051) 0.180
4 4 0.344 (0.049) 0.230
5 3 0.393 (0.052) 0.311
6 2 0.410 (0.044) 0.410
7 1 1.000 (1.000) 1.000

a Tree with minimum cross-validated relative cost.
b Tree selected using the 1-SE rule.

FIG. 1. Dendrogram based on the UPGMA clustering of the Pearson association coefficient of RFLP patterns obtained after hybridization of
the internal PCR-amplified 388-bp fragment of IS1201 with total genomic DNA from all 119 L. helveticus strains following restriction with EcoRI.
The scale at the top right shows the Pearson correlation from 0 to 100% (RFLP insertion sequence).
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leaves labeled as Parmigiano Reggiano seem to be quite un-
stable. However, it is important to stress that the cross valida-
tion estimates tend to be conservative in the direction of over-
estimating misclassification costs (29).

DISCUSSION

The characterization of mixed microbial populations (in
which isolates belonging to different genera, species, or strains
of the same species can be found) is usually carried out by
measuring phenotypic or genotypic features. The data ac-
quired are commonly exploited with cluster statistical proce-
dures by comparing the unknown isolates with reference mi-
croorganisms.

Statistical approaches such as cluster analysis allow the dif-
ferent sampling units to be grouped, and the taxonomical af-
filiation of an isolate can be obtained by judging its similarity to
the reference microorganisms. Such a procedure does not con-
sider the a priori knowledge relative to the observations (i.e.,
the isolates under examination), and, for example, environ-
mental, technological, seasonal information is not considered.
Moreover, clustering techniques give a visual representation of
the groups obtained (based on similarity indices) without al-
lowing a simple and immediate evaluation of the relative
importance of the variables considered in the grouping proce-
dure. Dalezios and Siebert (4) stressed the need for classifica-

tion methods both tolerant of error and allowing imprecise
matching, primarily in relation to intermediate responses to
the test, which may not have a strictly binary choice.

The application of grouping techniques can be incorrect
because they treat a supervised problem as an unsupervised
one, and so a fundamental part of the information acquired is
not considered.

Unlike clustering techniques, discriminant methods, like
classification trees, base their classification potential on the
consideration of the whole population as belonging to a num-
ber of different classes. Starting from such a priori knowledge,
such methodologies try to identify classification rules that, on
the basis of the variables considered, allow the different sam-
pling units to be assigned to one of the classes identified.
Within discriminant techniques, the classification trees can be
particularly useful for the exploitation of microbiological data,
because they are very simple to interpret and easily manage
problems because of the high dimension of the space of pre-
dictors. Moreover they permit the treatment of different data
types, providing a solution to problems due to the nonhomo-
geneity that arises when different relationships hold between
variables in different parts of the space of predictors.

The most intriguing characteristic of classification trees is
the possibility of easily recognizing what data are most impor-

FIG. 2. Classification tree. Term., terminal.

TABLE 5. Resubstitution classification tablea

Actual class

No. in predicted class

Grana
Padano Provolone Parmigiano

Reggiano

Grana Padano 42 2 0
Provolone 0 56 2
Parmigiano Reggiano 1 4 12

a Shown is the class assigned by the tree (columns) versus the observed class
(rows).

TABLE 6. Resubstitution misclassified cases by nodea

Terminal
node

No. in actual class

Grana
Padano Provolone Parmigiano

Reggiano

PARM1 1
GRPA1 1
PROV1 3
PARM2
PROV2 2 1
PARM3 1

a The labels of terminal nodes are those assigned by the tree.
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tant for discriminating objects. In this case, the results obtained
demonstrated the importance of four different DNA frag-
ments, whose physiological and/or metabolic significance is not
currently known, and one surface protein.

The approach used in this study appears to be a promising
tool for characterizing the presence of particular biotypes in
different natural microbial ecosystems and to identify strains
on the basis of their technological aptitudes. The method used
highlights the main characteristics that permit discrimination
of biotypes to be identified. In order to understand what kind
of genes could code for phenotypes of technological relevance,
the identification of specific DNA sequences present only in
particular biotypes is of great interest.

The observed discrimination between L. helveticus strains
isolated from Provolone and Grana Padano could be the result
of the different temperatures of curd cooking (48 to 52°C for
Provolone and 54 to 56°C for Grana Padano) that determine
the subsequent evolution of whey temperature during its incu-
bation. In addition, an initial temperature of whey lower than
50°C promotes the growth of Streptococcus thermophilus, a
microorganism usually found in Provolone and less frequently
found in Grana Padano and Parmigiano Reggiano whey starter
cultures (11).

The Parmigiano Reggiano strains were more difficult to dis-
tinguish than strains of other sources. This could be due to the
cheesemaking methods present in the Parmigiano Reggiano
production area, which are the most artisan. Probably the
smaller dimensions of Parmigiano Reggiano factories induce a
range of specific traits in cheesemaking processes that are
favorable to the selection in the natural whey culture of a wide
variety of wild biotypes. Previous works using separate pheno-
typic or genotypic methods suggested that cheese technology
parameters play a role in selecting dominant biotypes in nat-
ural starter cultures (10, 12, 18). The natural whey starter
cultures consist of a never interrupted selection of microbial
population by cheesemaking and whey fermentation parame-
ters. A higher degree of standardization induces a more spe-
cific selection of wild biotypes present in whey starter. The
higher the standardization process is, the lower the presence of
different biotypes could be expected. The range of variability
may be related to both the number of parameters involved in
cheese production and the amplitude of the range of variability
of each parameter.

It is interesting to observe that the factors able to discrimi-
nate the strains on the basis of their origin do not include the
phenotypic characters considered in this work. The values ob-
served for these variables in the strains isolated from different
cheeses are characterized by high variability coefficients (Table

1). This confirms the presence in natural cultures of different
biotypes of L. helveticus characterized by different levels of
phenotypic expression. The strains are selected by the specific
whey processing characteristics, which are not related to the
phenotypic characteristics of technological concern. The fun-
damental role in strain grouping of particular DNA fragments
and surface proteins leads to the hypothesis that the selection
could be based first on the resistance to the extreme conditions
found by bacteria and, in particular, resistance to thermal
stress. In other words, the whey colonization by specific bio-
types mainly depends on the ability of microorganisms to sur-
vive under prohibitive conditions, which characterize the suc-
cessive colonization. Thus, several biotypes, with some
common features, which enable them to survive in whey, col-
laborate and interact during the colonization of whey and
cheesemaking. The typical contribution of the selected micro-
flora to cheesemaking and ripening of each cheese relies on a
precise equilibrium of several biotypes of the same species with
different technological aptitudes and related by a few, but
fundamental physiological abilities.

In conclusion, the ability to discriminate strains of ecological
niches by studying simultaneously phenotypic characteristics
such as acidifying and peptidase activities, surface proteins,
and nonconserved DNA regions may be technologically and
ecologically noteworthy. The methodology employed in this
work demonstrates how the strains group into terminal nodes
without difficult and subjective interpretation. In particular,
good discrimination was obtained between L. helveticus strains
isolated, respectively, from Grana Padano and Provolone nat-
ural whey starter cultures.

The modality of preparation of the whey starter cultures
warrants the survival of different biotypes useful to the devel-
opment of the ecosystem itself, and a mixture of strains of the
same species is necessary to the natural starter evolution. A
more specific selection of biotypes for the phenotypes of
cheesemaking relevance could involve the presence of a lower
number of biotypes and consequently a decrease of natural
starter functionality.
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