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Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this
failure remains a major goal for clinical neurology. While an inhibitory CNS environment clearly
plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights.
Initial steps forward investigated the receptors and signaling pathways immediately downstream
of environmental cues, but recent work has also shed light on transcriptional control mechanisms
that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target
regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in
vivo, including p53, SnoN, E47, CREB, STAT3, NFAT, c-Jun, ATF3, Sox11, NFκB, and
Kruppel-like factors (KLFs). Revealing the similarities and differences among the functions of
these transcription factors may further our understanding of the mechanisms of transcriptional
regulation in axon growth and regeneration.

INTRODUCTION
Recent years have seen remarkable advances in our molecular understanding of the failure
of axon regeneration in the central nervous system (CNS). Soon after becoming post-
mitotic, neurons extend their axons to connect to their targets. When axons are damaged
either after injury or in degenerative diseases, their failure to reconnect, or regenerate back
to these original targets leads to permanent dysfunction and, ultimately, disability. The
capacity of neurons to regenerate their axons largely depends on the location of the axons in
the nervous system, and their stage of development. Axons in the peripheral nervous system
(PNS) can regrow to their peripheral targets, whereas axons in the central nervous system
(CNS) cannot. Glial-associated inhibitors of regeneration and their neuronal receptors and
downstream signaling pathways clearly contribute to CNS regenerative failure, but there is
also a role for cell-autonomous regulation of axon growth ability, which may depend on
environmental cues or be regulated intrinsically.

Transcription factors are uniquely positioned for cell-autonomous regulation of axon growth
ability, as they may regulate sets of gene targets that enhance or suppress regeneration.
Indeed, using methods to globally assay gene expression such as microarrays, a number of
groups have demonstrated genes expression regulation during development and after axon
injury, in different model systems and cell types, and in neurons that may or may not
regenerate. Furthermore, distinct changes in gene expression are observed at different
timepoints after injury. Immediately after injury, there are increases in the expression of
transcription factors, while structural and neurotransmission genes are downregulated (for
review, see (Bareyre and Schwab, 2003). This early activation of a transcriptional program
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is clearly important, as many subsequent target genes have been demonstrated to be critical
for successful regeneration. Blocking transcription at an early time point after injury changes
regenerative response (Smith and Skene, 1997). At later time points, there is an increase in
expression of stress-associated genes concurrent with a decrease in cytoskeletal and synaptic
genes (for review, see (Bareyre and Schwab, 2003). In neurons that regenerate, there is a
large increase in the expression of regeneration-associated genes after injury (Bosse et al.,
2001; Schmitt et al., 2003; Bosse et al., 2006). Furthermore, in peripheral sensory neurons,
injury of peripheral branches that regenerate leads to greater changes in gene expression
than injury of central branch of the same neurons, which do not regenerate (Hoffman, 2010).

What causes these changes in gene expression after axon injury? Transcription factors are
DNA-binding proteins able to activate or repress expression of their target genes. Their
effects are amplified by their ability to bind to multiple locations on the genome resulting in
a large number of genes being turned on or off by a single transcription factor. After injury,
the upor downregulation of transcription factors, and post-translational modification of
transcription factors already expressed in the cell, begin a cascade of signaling events
leading to specific gene expression changes.

While it is clear that transcriptional changes are important in axon growth and regeneration,
they are most often studied at the level of the genes that are modulated and not of the
transcription factors that regulate them. Studies mapping the promoter regions of genes
identified in microarray experiments can identify common binding sites for transcription
factors, leading to identification of gene expression programs elicited by specific
transcription factors in particular situations. This can also be studied by chromatin
immunoprecipitation (ChIP) experiments, allowing for identification of physiological
binding sites for that transcription factor in that specific circumstance. While most studies
focus on the specific downstream gene that could be involved in increasing regeneration, it
is highly likely that the combination of genes that are activated/repressed by a collection of
transcription factors lead to the specific regenerative abilities of neurons during development
or after injury.

Thus, transcription factors are powerful proteins, capable of orchestrating complex axon
growth and regenerative responses. Here we review transcription factors that have been
studied for their role in axon growth and regeneration. Many interesting complexities of
gene regulation are shared by these transcription factors, from competition to redundancy,
activation to repression, and co-factor recruitment to post-translational modification. We
will discuss some of these complexities as they relate to deciphering how transcriptional
control of axon growth may be modulated to enhance regeneration in the CNS.

p53
p53 is a member of a family of tumor suppressors together with p63 and p73. Its cellular
functions range from inducing apoptosis, to inhibiting cell cycle progression, to increasing
DNA repair. Associated with these functions, p53 is estimated to be mutated in over half of
all cancers (Vogelstein et al., 2000; Bargonetti and Manfredi, 2002). In the nervous system,
p53 has been studied primarily for its pro-apoptotic role, for example, after neurotrophin
withdrawal in sympathetic neurons, following injury, and in neurodegenerative diseases
(Miller et al., 2000; Morrison et al., 2003; Culmsee and Mattson, 2005). p53 family
members are also able to antagonize cell death (Jacobs et al., 2006). How and why p53
displays this bifunctional role in survival remain important, unanswered questions.
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Role of p53 in Neurite Growth and Regeneration
The close relationship between survival and axon regeneration in neurons has been difficult
to separate (Goldberg and Barres, 2000). In the CNS, p53 is developmentally regulated and
expressed more in the developing than the adult brain (Gottlieb et al., 1997; Komarova et al.,
1997). In vitro and in vivo, p53 promotes neurite growth. Overexpression of a dominant
negative form of p53 in primary cortical neurons leads to a decrease in neurite outgrowth.
This decrease in neurite growth is associated with a coincident decrease in the expression of
three p53 target genes whose protein products are growth cone-associated and also promote
neurite growth: Coronin1b, Rab13, and GAP-43 (Di Giovanni et al., 2005; Di Giovanni et
al., 2006). Other genes involved in axon guidance such as netrins and their receptors,
semaphorins and their receptors, ephrins and their receptors, and slits are also regulated by
p53 (Arakawa, 2005). In vivo in a peripheral facial nerve injury model, p53 knockout (KO)
mice demonstrated a significant decrease in the number of regenerating fibers when
compared with wildtype (WT) control animals, suggesting an in vivo role for p53 in axon
regeneration in the PNS (Di Giovanni et al., 2006). Associated with these effects,
overexpression of WT p53 leads to an increase in growth cone size, whereas overexpression
of a dominant negative form or a version of p53 lacking an export signal, causes growth
cone collapse, though this may be due to non-transcriptional mechanisms (Qin et al., 2009).
If p53 is important for neurite growth, then its absence in the adult CNS correlates with the
reduced regenerative ability of adult CNS neurons.

Effects of Post-Translational Modifications on Function
Post-translational modifications regulate p53's ability to increase neurite growth (Tedeschi
and Di Giovanni, 2009). p53 can undergo multiple types of post-translational modifications
including acetylation, phosphorylation and ubiquitination (Lavin and Gueven, 2006), which
can affect localization and function. For example, in a non-transcriptional setting,
phosphorylated p53 associates with Tau but not MAP2 and is primarily localized to axons
and growth cones, whereas acetylated p53 is present in axons, but not in growth cones (Qin
et al., 2009). Looking at target gene regulation, overexpression of p53 mutated to include an
acetylation mimic at lysine 320 (K320Q) but not at lysine 372 increases expression of
downstream targets. The p53K320Q acetylation mimic in cortical neurons increases neurite
length, whereas a non-acetylatable p53 mutant decreases neurite growth. The acetylation of
p53 at specific lysines by the acetyltransferase CBP/p300 results in an increased ability of
the transcriptional unit CBP/p300/Ac-p53 to occupy the GAP-43 promoter and increase
GAP-43 expression. p53 is acetylated at multiple sites (K372, K373, and K382) by CBP/
p300 and together they are recruited to bind to the GAP-43 promoter (Tedeschi et al., 2009).
Interestingly, acetylation at p53's C terminus does not lead to cell death in cortical neurons
(Tedeschi and Di Giovanni, 2009), but leads to apoptosis in cell lines (Gu et al., 2004;
Knights et al., 2006; Tang et al., 2008; Yamaguchi et al., 2009). Thus, the function of this
transcription factor depends largely not only on its post-translational modifications, but also
the cell-specific intracellular environment.

Taken together, these studies suggest a role for p53 in modulating neurite growth and
regeneration. These effects may be largely mediated through p53's downstream targets;
however, a local function for p53 at the growth cone may also contribute. Given p53's well-
described role in apoptosis in neurons and non-neuronal cells, it will be important to
continue to monitor for effects on neuronal survival even while studying neurite growth and
axon regeneration.
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c-JUN
The activator protein-1 (AP-1) transcription factor complex is made up of homo- and
heterodimers from the Jun family of proteins (c-Jun, JunB, JunD), Fos proteins (c-Fos,
FosB, Fra-1, Fra-2), the ATF family, and other bZIP-containing transcription factors
(Jochum et al., 2001), as well as MyoD, NFAT, and CBP (Herdegen and Leah, 1998). As
there are many AP-1 binding sites throughout the genome, dimerization variety likely
contributes to specificity in transcriptional target regulation.

c-Jun Expression in the Nervous System
c-Jun expression is induced after injury or stress (Herdegen and Waetzig, 2001; Raivich,
2008). Developmentally, it is highly expressed during embryogenesis (Wilkinson et al.,
1989; Bennett et al., 1997) and through postnatal day 15 (P15) in the CNS (Mellstrom et al.,
1991), after which expression decreases to a lower basal level throughout adulthood
(Herdegen et al., 1991; Raivich and Behrens, 2006).

c-Jun Response After Injury
What is c-Jun's function after injury? In many neurons, inhibition of c-Jun after axotomy
delays cell death (Crocker et al., 2001; Lingor et al., 2005). Conversely, an
unphosphorylatable c-JunAA mutant expressed in CA3 pyramidal hippocampal neurons
protects against kainic acid-induced cell death, suggesting phosphorylated c-Jun contributes
to apoptosis after injury (Behrens et al., 1999). Despite these data, in other models c-Jun
upregulation is associated with surviving neurons (Herdegen et al., 1993). For example, after
optic nerve injury and subsequent peripheral nerve graft, surviving RGCs express c-Jun for
up to a month (Hull and Bahr, 1994; Robinson, 1994; Robinson, 1995).

c-Jun may also be involved in the axonal regenerative response after injury in the nervous
system. Regenerating neurons upregulate c-Jun (Herdegen et al., 1991; Jenkins and Hunt,
1991; Leah et al., 1991; Herdegen et al., 1997; Lindwall and Kanje, 2005). For example,
peripheral neurons upregulate c-Jun after peripheral, sciatic nerve lesion, but not after a
central lesion of these same neurons’ axons, correlating with regenerative response (Broude
et al., 1997). Manipulations to increase central regeneration such as transplanting embryonic
spinal cord tissue (Broude et al., 1997) or grafting peripheral nerves into injury sites (Hull
and Bahr, 1994; Robinson, 1994; Robinson, 1995; Vaudano et al., 1998) are similarly
associated with an increase in c-Jun expression, but typically only in successfully
regenerating neurons.

How does axon injury lead to c-Jun expression and/or activation? Treatment with antibodies
against the neurite growth inhibitor Nogo increase c-Jun expression in Purkinje cells, as
does application of colchicine to block axonal transport, suggesting an inhibitory signal may
be retrogradely transported from the axon to stop c-Jun expression and regeneration-
associated genes (Zagrebelsky et al., 1998). On the other hand, c-Jun N-terminal kinase
(JNK) is retrogradely transported in injured axons to activate c-Jun in the nucleus after
peripheral nerve injury, as blockade of retrograde transport inhibits c-Jun activation
(Lindwall and Kanje, 2005). These opposing results could be due to differences between the
PNS and CNS, and further studies may address the function of retrograde transport on c-Jun
expression and activation after injury.

Role of c-Jun in Neurite Growth and Regeneration
c-Jun expression correlates with axon regeneration, but does it play a functional role?
Conditional c-Jun knockout mice as well as transgenic mice overexpressing c-Jun have been
studied to address c-Jun's role in survival and regeneration. In nestin-promoted c-Jun
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knockout mice, there was a decrease in regeneration and sprouting following facial nerve
axotomy and in expression of regeneration-associated target genes such as CD44, galanin
and α7β1 integrin (Raivich et al., 2004). In contrast, c-Jun overexpressing transgenic mice
did not demonstrate increased Purkinje cell regeneration into a growth-permissive graft
(Carulli et al., 2002). Taken together, these transgenic models suggest that c-Jun may be
necessary but not sufficient to increase regeneration in CNS neurons.

Effects of Post-Translational Modifications on Function
c-Jun activity can be up- or downregulated by post-translational modifications. For example,
mutating the Ser-73 phosphorylation site leads to a reduced number of PC12 cells with
neurites, whereas mutation of the Ser-63 phosphorylation site leads to an increased number
of cells with neurites (Dragunow et al., 2000). One of the upstream kinases responsible for
phosphorylating c-Jun is the c-Jun N-terminal kinase (JNK), a member of the stress-
activated protein kinases (SAPKs) and mitogen-activated protein kinases (MAPKs). JNKs
have many targets, but they can, at a minimum, activate c-Jun by phosphorylation on both
serines 63 and 73 (reviewed by (Waetzig et al., 2006). Neuronal injury increases JNK-
mediated c-Jun phosphorylation (Herdegen et al., 1998), and application of a JNK inhibitor
to explants of injured DRGs or nodose ganglia (NG) reduces c-Jun phosphorylation, ATF3
expression, and neurite outgrowth, without affecting survival (Lindwall et al., 2004). This
demonstrates that after peripheral nerve injury, activation of JNK leads to phosphorylation
of c-Jun and an increase in neurite outgrowth.

Thus, the majority of reports suggest that c-Jun is upregulated in regenerating neurons after
injury, and that it can function to increase neurite growth. In addition, c-Jun expression
decreases during development in a manner reflective of the loss of axon growth and
regenerative ability in the mammalian CNS.

ATF3
Activating transcription factor 3 (ATF3) is a member of the ATF/CREB (cAMP-responsive
element binding protein) family of basic leucine zipper domain (bZIP) transcription factors.
All members of this group possess bZIP DNA binding domains, however, the homology of
the rest of the protein separates the factors into specific subgroups (Hai et al., 1999).
Interestingly, the consensus binding site for ATF factors is identical to the CRE consensus
binding site (Hai and Hartman, 2001). Other names for ATF3 (in human) include LRF-1 (in
rat), and LRG-21, CRG-5, and TI-241 (in mouse). ATF/CREB proteins can form
heterodimers either with each other or with other bZIP proteins like members of the AP-1
family (such as Fos and Jun) and CCAAT-enhancer-binding proteins (C/EBPs), including
ATF2, JunB, JunD, c-Jun, and gadd153/CHOP10 (reviewed by (Hai et al., 1999; Hai and
Hartman, 2001). Heterodimer formation can selectively affect transcriptional regulation,
leading to either activation or repression at specific promoters. ATF3 homodimer
interactions generally result in transcriptional repression, and ATF3 can repress its own
promoter creating a negative feedback loop (Wolfgang et al., 2000). Interestingly, ATF3 can
activate promoters with no functional binding sites for ATF3, suggesting a function in
sequestering co-repressors away from such promoters, and a naturally occurring ATF3
isoform lacking its DNA-binding domain (ATF3 delta Zip) activating transcription (Chen et
al., 1994).

ATF3 Expression in the Nervous System
ATF3 expression levels are low in most cell types but increase with injury or stress. In the
nervous system, for example, ATF3 is induced following seizures in the brain (Chen et al.,
1996; Francis et al., 2004), peripheral nerve injury (Tsujino et al., 2000; Isacsson et al.,
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2005; Seijffers et al., 2006), optic nerve injury (Takeda et al., 2000), and NGF depletion
(Mayumi-Matsuda et al., 1999). Several pathways have been implicated in activating ATF3
expression following stress, such as JNK/SAPK and p53-dependent mechanisms. In
addition, extracellular signals such as serum, FGF, EGF, HGF, PMA, cytokines and
forskolin can also lead to ATF3 activation (reviewed in (Hai et al., 1999).

Role of ATF3 in Neurite Growth and Regeneration
Is ATF3 involved in neurite growth and regeneration? Similar to c-Jun, ATF3 is upregulated
in regenerating neurons, for example after peripheral nerve transplantation to thalamic
neurons (Campbell et al., 2005) or after intracortical but not spinal axotomy of layer V
corticospinal neurons, in correlation with axon sprouting and growth (Mason et al., 2003).
Similarly, injury to the central axons of DRG neurons results in very minimal increases in
ATF3 expression (Seijffers et al., 2006). These studies suggest that ATF3 is upregulated in
neurons that are successfully regenerating.

Can ATF3 overexpression increase regeneration? Transgenic overexpression in DRG
neurons results in an increase in neurite outgrowth in vitro and increased peripheral nerve
regeneration in vivo, similar in effect to a pre-conditioning lesion (Seijffers et al., 2007).
Unlike pre-conditioning lesioned neurons, however, ATF3 overexpression did not increase
DRG neurons’ ability to grow on an inhibitory substrate, suggesting the mechanisms
responsible for regenerating an axon are separate from those involved in overcoming glial-
associated inhibition. Interestingly, injury to the central axons of DRG neurons resulted in
no increase in regeneration in these same animals (Seijffers et al., 2007).

Mechanisms of Transcriptional Control
ATF3's repressed targets in non-neuronal cells include fibronectin, decorin, thrombospondin
2, and the pro-apoptotic Par-4 in transformed primary cultures of chick embryo fibroblasts
(Perez et al., 2001), as well as p53 in human umbilical vein endothelial cells (HUVECs)
(Kawauchi et al., 2002). In neurons, comparison of uninjured DRGs of WT and ATF3-
transgenic mice, to sciatic nerve injured WT DRGs revealed increases in the expression of
hsp27, Sprr1a, and c-Jun in ATF3-transgenic DRGs, though this was still considerably less
than that seen with sciatic nerve-injured DRGs. Interestingly, other genes typically
upregulated after peripheral nerve injury, such as GAP-43, CAP-23 and STAT3, were not
increased in the ATF3-transgenic mice (Seijffers et al., 2007). This suggests that ATF3
overexpression alone in uninjured DRGs leads to a slight upregulation of some but not all
growth-associated gene targets, and that ATF3 upregulation on its own is not enough to fully
recapitulate the peripheral nerve regeneration program (Seijffers et al., 2007).

c-Jun and ATF3: A Special Combination
Are ATF3 and c-Jun expression coordinately regulated after injury and during neurite
growth? ATF3 and c-Jun can form heterodimers, leading to transcriptional activation (Hai
and Curran, 1991; Hsu et al., 1991; Hsu et al., 1992; Chu et al., 1994). Additionally, they are
both induced following injury (Tsujino et al., 2000; Isacsson et al., 2005; Raivich and
Behrens, 2006). Whereas ATF3 expression is virtually undetectable in naïve DRG and
spinal cord, it is induced in both DRG and spinal cord motorneurons in vivo after peripheral
injury, and phosphorylated c-Jun co-localizes with these ATF3-positive neurons (Tsujino et
al., 2000; Lindwall et al., 2004). This suggests the possibility of heterodimerization,
supported by co-immunoprecipitation in PC12 cells (Pearson et al., 2003). In addition,
inhibiting JNK in this model leads to decreased activation of c-Jun and ATF3 expression as
well as to decreased axon growth (Lindwall et al., 2004), though the specific mechanism
behind this decreased axon growth is not clear.
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Taken together, these studies suggest that ATF3 and c-Jun can act together to regulate
transcription through heterodimerization. While their specific relationship in axon
regeneration is still unclear, these studies suggest that their coincident upregulation may act
synergistically to increase axon growth.

CREB
CREB (cAMP response element binding protein), a member of the ATF/CREB family of
bZIP transcription factors (Hai and Hartman, 2001), is a transcriptional mediator of cAMP
signaling in the nervous system (Hannila and Filbin, 2008). Together with CREM (cAMP
response element modulator), ATFs and various CREB and CREM isoforms generated by
alternate promoter usage and alternative exon splicing (Walker et al., 1996; Walker and
Habener, 1996), CREB binds cAMP response elements (CREs) in DNA (Lonze and Ginty,
2002). As with all bZIP transcription factors, there is a requirement for homo- or
heterodimerization through their zipper domain. CREB is necessary for activity-dependent
transcriptional changes in learning and memory processes (for review (Kandel, 2001), and
also plays important roles in addiction, circadian rhythms, and neuroprotection (for review
(Lonze and Ginty, 2002).

Role of CREB in Neurite Growth and Regeneration
What is the effect of CREB on axon outgrowth and regeneration? CREB null mice display
peripheral axon outgrowth deficits in vivo, and in vitro cultured DRG and SCG neurons
from these mutants elaborate shorter neurites than controls. This suggests an importance of
CREB for axon growth in PNS neurons (Lonze et al., 2002). In the CNS of CREB null mice,
there were abnormalities in the development of the corpus callosum and anterior
commissure (Rudolph et al., 1998). The importance of CREB for neurite growth in cultured
neurons has been demonstrated in other studies using overexpression of a dominant negative
CREB, which resulted in decreased dendritic outgrowth in cortical neurons and loss of the
ability of cAMP or neurotrophins to increase neurite growth on an inhibitory substrate
(Redmond et al., 2002). Conversely, injection of virus carrying a constitutively active CREB
construct into the DRG prior to a dorsal column lesion increased axon regeneration through
the lesion site at least 3 times greater than controls (Gao et al., 2004). Thus, CREB function
plays an important role in neurite outgrowth in both the PNS and CNS.

Mechanisms of Transcriptional Control
What are the downstream targets of CREB signaling? One important target may be the
enzyme arginase I (Arg I), important in the synthesis of polyamines which promote axon
regeneration, for example of RGCs in vivo (Deng et al., 2009). Overexpression of a
dominant negative CREB blocks the cAMP-mediated increase in Arg I expression, whereas
overexpression of a constitutively active form of CREB significantly increases Arg I
expression. It has not been determined if CREB activates Arg I expression through direct or
indirect means, however, as Arg I has only a CRE half-site in its promoter (Gao et al.,
2004). These studies suggest that activated CREB can regulate the expression of Arg I.

Other targets downstream of CREB include BDNF (Shieh et al., 1998; Tao et al., 1998;
Finkbeiner, 2000; Mayr and Montminy, 2001) and many others identified by serial analysis
of chromatin occupancy (SACO) in PC12 cells (Impey et al., 2004). It will also be important
to study specific neuronal types, as gene targets of activated CREB may differ depending
upon the cellular milieu, as, for example, CREB-regulated tyrosine hydroxylase (TH) is
induced in sympathetic neurons, but not in hippocampal neurons (reviewed in (Lonze and
Ginty, 2002). CREB's recruitment to DNA and effects on gene expression after neurotrophin
treatment or activity may also be influenced by nitric oxide (NO) nitrosylation of HDAC2,
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releasing it from DNA, thus leading to net acetylation and opening up new CREB targets
(Riccio et al., 2006; Nott et al., 2008). This suggests that the gene regulation we see from
transcription factors is highly reliant on the chromatin state and what promoters are available
for binding. Interestingly, the CRE site contains a CpG dinucleotide which can be
methylated, resulting in an inability of CREB to bind and activate transcription in vitro
(Iguchi-Ariga and Schaffner, 1989). Thus chromatin state and the intracellular environment
of each specific neuron may play a role in CREB's ability to regulate downstream targets.

CREB's Subcellular Localization
Recently, exciting work has suggested that axonal translation of CREB mRNAs may be
involved in the nuclear phospho-CREB response leading to an increase in survival (Cox et
al., 2008). Application of NGF to DRG axons in compartmentalized cultures activated TrkA
receptors which induced local translation of CREB mRNA. Axonally derived CREB protein
was then actively retrogradely transported along the axon to the cell body, possibly through
association with the NGF-pTrkA signaling endosome. CREB became phosphorylated and
once to the nucleus activated transcription of pro-survival genes (Cox et al., 2008). CREB
mRNA is also present in dendrites of hippocampal neurons and can be locally translated,
possibly phosphorylated, and transported to the nucleus (Crino et al., 1998). Interestingly,
these authors did not see this effect in the axons, suggesting that there could be different
regulation in different types of neurons and neurites. In any case, both of these studies
suggest that transcription factors can be synthesized outside of the nucleus, and still
contribute to nuclear gene expression regulation.

Effects of Post-Translational Modifications on Function
There are multiple phosphorylation sites on CREB that regulate CREB's ability to bind co-
factors (Kornhauser et al., 2002). Phosphorylation of CREB at Ser-133 has been most
studied. Neurotrophin treatment leads to CREB phosphorylation on Ser-133 (Riccio et al.,
1997; Watson et al., 1999; Watson et al., 2001; Lonze et al., 2002; Arthur et al., 2004;
Riccio et al., 2006; Spencer et al., 2008), which is then necessary for recruitment of the co-
activator CBP (Chrivia et al., 1993; Kwok et al., 1994). CREB can be phosphorylated and
activated by many kinases, including PKA, PKC, CAMKII, CAMKIV, AKT, MAPKAP K2,
and members of both the RSK and MSK families (for review (Mayr and Montminy, 2001),
and it is negatively regulated by phosphatases such as PP1 and PP2A, and possibly by
phosphorylation of different residues (Sun et al., 1994). Calcium influx leads to
phosphorylation of CREB at Ser-133, Ser-142 and Ser-143, important in CREB-dependent
transcription (Sun et al., 1994; Kornhauser et al., 2002). CREB co-activators p300 and CBP
act as adaptors for recruitment of RNA transcription machinery, and can also function to
acetylate histones and non-histone proteins, opening DNA for transcription (Shaywitz and
Greenberg, 1999). The co-activator CBP binds to CREB after its phosphorylation on
Ser-133, and the ability of this complex to drive transcription relies heavily on binding
strength (Shaywitz et al., 2000). These studies suggest an importance for specific
phosphorylation in CREB activation or function. There is still little known, however, about
how post-translational CREB modification regulates neurite growth and regeneration.

STAT3
Signal transducer and activator of transcription 3 (STAT3) is one of 7 mammalian STATs.
STATs are typically found as unphosphorylated monomers or occasionally in high
molecular weight complexes (Lackmann et al., 1998; Ndubuisi et al., 1999; Chatterjee-
Kishore et al., 2000; Sehgal, 2008), waiting in the cytoplasm until they are activated by
extracellular signals such as growth factors and cytokines. Ligand binding to cell-surface
receptors leads to activation of the associated receptor tyrosine kinase Janus kinases (JAKs),
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which phosphorylate tyrosine residues on receptor tails that act as binding sites for STAT
proteins. STATs dock onto the phospho-tyrosines via their SH2 domain, and are also
phosphorylated by JAK on a tyrosine residue. Immediately following phosphorylation, they
homo- and heterodimerize and tetramerize (Vinkemeier et al., 1996; John et al., 1999; Zhang
and Darnell, 2001). STATs are transported into the nucleus via importins (reviewed by
(Levy and Darnell, 2002) where they bind consensus SIE (sis-inducible element), GAS
(gamma activated sequence), or ISRE (interferon stimulated regulating element) sequences.
Other mechanisms of STAT activation include phosphorylation by non-receptor tyrosine
kinases such as Src, direct or indirect phosphorylation by receptors with intrinsic tyrosine
kinase activity (i.e. EGF, PDGF, and FGF receptors), and activation by G-protein coupled
receptors (GPCRs; reviewed by (Lim and Cao, 2006). Signaling is turned off when STATs
are dephosphorylated in the nucleus by phosphatases (Haspel and Darnell, 1999), and
exported back to the cytoplasm by nuclear export signals present within STATs’ DNA
binding domains (McBride et al., 2000; Bhattacharya and Schindler, 2003; Meyer et al.,
2003). Proteins that inhibit activated STATs (PIAS) negatively regulate STATs either by
interacting with their phosphorylated tyrosines and blocking DNA binding or by other
mechanisms as yet unknown (Chung et al., 1997; Shuai, 2000; Arora et al., 2003; Wormald
and Hilton, 2004). Arginine methylation of STATs disrupts their ability to interact with
PIAS, thus increasing their ability to affect transcription (Mowen et al., 2001). Additionally,
suppressor of cytokine signaling (SOCS) proteins are able to bind to JAK sites and inhibit
additional STAT activation (Krebs and Hilton, 2001).

STAT3 Expression in the Nervous System
STAT3 is probably the best studied family member in the nervous system. STAT3 is
expressed in the cortex, striatum, basal forebrain, and hippocampus as early as embryonic
day 14 (E14) through adult (De-Fraja et al., 1998) in both neurons and glia (Gautron et al.,
2006). STATs can be activated by IL-6, CNTF, LIF, G-CSF, EPO, NGF, PDGF, estradiol,
and IGF-I, correlating with increased survival and neuroprotection (reviewed by (Dziennis
and Alkayed, 2008). STAT3 knockouts are embryonic lethal (Takeda et al., 1997),
necessitating targeted knockout to specific populations to determine its function. During
development, STAT3 knockout or constitutive activation can affect motoneuron pathfinding
in zebrafish (Conway, 2006). In the adult, there are low basal levels of STAT3 expressed in
neurons, except in a small population of neurons including areas of neurogenesis, and after
trauma such as ischemia or axotomy (reviewed by (Dziennis and Alkayed, 2008).

Role of STAT3 in Neurite Growth and Regeneration
What is STAT3's effect on regeneration? Following peripheral facial nerve axotomy, there is
a rapid increase in cytoplasmic STAT3 phosphorylation and translocation into the nucleus
which has been shown to remain up to 3 months in regenerating neurons (Schwaiger et al.,
2000). This was not seen after injury in neurons that are unable to regenerate, suggesting
that the presence of phosphorylated nuclear STAT3 may be a necessary part of peripheral
nerve regeneration (Schwaiger et al., 2000).

STAT3 has also been implicated in a conditioning lesion paradigm of regeneration. After
sciatic nerve injury, phosphorylated STAT3 was increased from 6 hours through 1 month,
whereas after a central dorsal column injury, there was no increase in phosphorylated
STAT3. Application of a JAK/STAT inhibitor for 4 weeks at the lesion site not only resulted
in a decrease in phospho-STAT3 in DRG neurons, but also in reduced expression of the
regeneration-associated protein GAP-43. Following a peripheral nerve conditioning lesion
concurrent with application of JAK/STAT inhibitors, in vitro DRG dissociation revealed
that while there was no difference in the number of cells with neurites, there was a
significant decrease in neurite length after inhibitor treatment. To test this in vivo, the same
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peripheral crush with concurrent JAK/STAT inhibition was followed by a dorsal column
crush and a month more of JAK/STAT inhibitor treatment at the lesion site. The
regenerative effect of the conditioning lesion was abolished in the presence of the JAK/
STAT inhibitors (Qiu et al., 2005). Taken together, these data suggest a role for STAT3 in
the conditioning effect of the peripheral lesion. This is similar to the results discussed above,
showing a role for cAMP and CREB in this same conditioning lesion effect (Gao et al.,
2004), suggesting that there may be cross-talk between these two signaling pathways in this
system.

IL-6 and LIF are two of the many upstream signals that can lead to downstream activation of
STAT3. When LIF was knocked out and a conditioning lesion paradigm of regeneration
studied, regeneration was impaired (Cafferty et al., 2001), with similar results in the same
paradigm in IL-6 knockout mice (Cafferty et al., 2004). A similar study using IL-6
knockouts, however, was unable to replicate these results, though they did demonstrate that
IL-6 was sufficient, but not necessary, to imitate the previously mentioned effects of cAMP
in the conditioning lesion injury (Cao et al., 2006). Thus, while the upstream players in the
STAT3 pathway that are responsible for conditioning injury-induced regeneration are still
unclear, the data strongly suggest that downstream STAT3 activation plays an important
role.

Is there a similar role in the CNS? In the eye, a lens injury concurrent with optic nerve crush
increases the ability of RGCs to grow their axons in vitro and regenerate in vivo (Fischer et
al., 2000; Leon et al., 2000; Fischer et al., 2001). Lens injury increases CNTF levels in
retinal astrocytes, which corresponded with an increase in phospho-STAT3 in RGCs.
Application of antibodies against CNTF or JAK inhibitor treatment after lens injury and
optic nerve crush reduced not only the levels of phospho-STAT3 in RGCs, but also reduced
axon growth from retinal explants. This suggests that most of the effect of lens injury may
be due to JAK/STAT signaling. Interestingly, STAT3 remained activated over the entire 2
week observation period (Muller et al., 2007). In concordance with these data, in microarray
analyses of genes upregulated by lens injury and optic nerve crush, two of the highest
expressed genes are both targets of STAT3 (Fischer et al., 2004). STAT3 has also been
shown to be important for neurite growth outside of the conditioning lesion/treatment
phenomenon. In vitro knockdown of STAT3 in hippocampal neurons led to decreased
BDNF-induced neurite growth (Ng et al., 2006). Therefore STAT3 may have a global
function in promoting neurite growth in multiple systems.

Other treatments using CNTF have been performed to increase axon regeneration in RGCs
(Harvey, 2007). While not directly showing a dependence on STAT3, these results suggest
that CNTF application followed by increased activated STAT3 may increase axon
regeneration in RGCs. Importantly, knocking out the suppressor of cytokine signaling-3
(SOCS-3) greatly enhances regeneration, suggesting that a break on JAK/STAT signaling
normally limits RGCs’ regenerative capacity (Smith et al., 2009). Thus STAT3 is expressed
in regenerating neurons, and plays an important role in the pre-conditioning lesion and lens
injury models of axon regeneration in the PNS and CNS, respectively.

STAT3's Subcellular Localization
STAT3 activation after sciatic nerve injury occurs in axons within 15 minutes of lesioning,
leading to retrograde signaling to the nucleus (Lee et al., 2004). In compartmentalized
cultures of sympathetic neurons, LIF treatment at the end of axons triggers phosphorylation
of local STAT3, as well as translocalization of phospho-STAT3 to the nucleus, though this
translocation was not necessary for retrograde signaling. Retrograde transport and signaling
is carried by signaling endosomes containing LIF/gp130/LIFR/JAK that are retrogradely
transported to the cell body to activate nuclear STAT3 (O'Brien and Nathanson, 2007).
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Phosphorylated STAT3 has also been found in focal adhesions and pseudopodial protrusions
(Silver et al., 2004; Jia et al., 2005). Additionally, STAT3 has been found in post-synaptic
densities (PSD) in P21 rat brain, where it can be tyrosine phosphorylated by local JAK2.
Surprisingly, this phosphorylation did not release STAT3 from the PSD (Murata et al.,
2000). Therefore, it is unclear whether activated STAT3 in injured axons acts only as a
retrograde signal, or also in axon growth or related functions.

Effects of Post-Translational Modifications on Function
Other than phosphorylation, additional post-translational modifications include acetylation
by co-activators such as p300/CBP, which increases STATs’ transcriptional efficacy, and
deacetylation by histone deacetylases (HDACs; (McDonald and Reich, 1999; Paulson et al.,
1999; Shankaranarayanan et al., 2001; Wang et al., 2005; Yuan et al., 2005). Some STATs
can also be sumoylated or ubiquitinated, though this has not yet been determined for all of
the STAT family members (reviewed by (Lim and Cao, 2006). Serine phosphorylation can
affect STATs differently, such that it can enhance DNA binding and transcriptional
activation, allow binding to the co-activator p300, decrease transcriptional activation or the
rate of tyrosine phosphorylation, or enhance neurite growth (Decker and Kovarik, 2000;
Schuringa et al., 2001; Ng et al., 2006). Interestingly, the serine phosphorylated version of
STAT3 has been shown to be induced after spinal cord injury (Tsai et al., 2007).

NFATc
The nuclear factor of activated T cells (NFAT) transcription factor family consists of 5
members, including the NFATc1-4 proteins, which respond to changes in calcium through
calcineurin, and NFAT5, which though somewhat structurally homologous, does not
respond to changes in calcium but to changes in tonicity. All NFATs possess a Rel DNA-
binding domain similar to the NFκB/Rel family (reviewed in (Hogan et al., 2003). In 2000,
the official naming of the NFATs was revised and standardized by the Hugo Nomenclature
Committee, replacing the multiple names previously used in the literature.

NFATc1-4 (hereafter simply called “NFAT”) respond to increases in intracellular calcium,
mediated in neurons by L-type calcium channels (Graef et al., 1999). Calcium increases lead
to activation of the phosphatase calcineurin which can dephosphorylate NFATs, thereby
activating them by revealing their nuclear localization signal (NLS). NFATs can be
regulated by inhibition of calcineurin (Coghlan et al., 1995; Miyazaki et al., 1996; Lai et al.,
1998; Sun et al., 1998; Lin et al., 1999; Fuentes et al., 2000; Rothermel et al., 2000), or by
phosphorylation by GSK-3 (Beals et al., 1997; Neal and Clipstone, 2001; Sheridan et al.,
2002), DYRK1A or 2 (dual-specificity tyrosine-phosphorylation regulated kinase) (Gwack
et al., 2006), JNK (Chow et al., 1997), p38 MAPK (Gomez del Arco et al., 2000), and casein
kinase in combination with MEKK1 (Zhu et al., 1998). Besides phosphorylation, studies
have shown that sumoylation of NFATc2 is important for nuclear anchorage and for its
ability to regulate transcription (Terui et al., 2004). NGF, BDNF, and substance P have been
found to trigger NFAT-dependent transcription in neurons (Graef et al., 2003; Groth and
Mermelstein, 2003; Seybold et al., 2006; Groth et al., 2007). In neurons, NFAT is also
activated in response to synaptic activity or depolarization (Graef et al., 1999).

As their own DNA binding is relatively weak, NFATs require a partner to bind DNA
(Flanagan et al., 1991; Wolfe et al., 1997; Chen et al., 1998; Zhou et al., 1998) and provide
substrate specificity (for review, see (Crabtree and Olson, 2002). For this reason, NFATs are
often described as “coincidence detectors” and “signal integrators” (Graef et al., 2001). They
can interact with STAT3 (Manukyan et al, 2009), c-Jun (Behrens et al, 2001), CREB and
ATF3 (Kim et al, 2006).
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NFAT Expression in the Nervous System
NFAT is highly expressed in the brain (Plyte et al., 2001; Wilkins et al., 2004) and in the
spinal cord (Seybold et al., 2006; Groth et al., 2007). In the brain, NFATc2 expression
increases through development, from E10 to adulthood, NFATc3 expression remains low
throughout development, and NFATc4 expression is highest during the period from E10 to
P1 (Nguyen et al., 2009), suggesting that differences in expression of these family members
may be a clue to different roles they perform in the brain. Splice variants of each of these
family members result in 8 proteins from NFATc1, 6 from each of NFATc2 and c3, and up
to 24 isoforms of NFATc4, in humans, which could add to the complexity with which the
NFAT family acts (Vihma et al., 2008). It is very likely that these family members function
with some redundancy, as single NFATc knockout mice appear normal, whereas
combinations of NFATc3/c4 and NFATc2/3/4 lead to sensory axon projection defects
(Graef et al., 2003). Additionally, there may be cross-regulation within the family, as
NFATc2 levels in NFATc4 knockout mice were very different from wildtype (Nguyen et al.,
2009).

Role of NFAT in Neurite Growth and Regeneration
Axon growth during development requires at least some NFATc signaling, as removal of
NFATc2, c3, and c4 results in sensory neuron axon projection defects in vivo (Graef et al.,
2003). In addition, spinal cord explants from these mutant mice were unable to extend axons
in response to netrin (Graef et al., 2003). Interestingly, NFATc4 was shown to have a
repressive role in the CNS, opposite of other studies, repressing GAP-43 and CAP-23
expression in the absence of neurotrophin signaling (Nguyen et al., 2009). Thus, NFATs
respond to neurotrophins, netrins and electrical activity in neurons to regulate neurite
growth, and future studies focused on binding partners and downstream gene targets may
more completely define the role of NFATs in neurons.

NF-κB
NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is an inducible
transcription factor dimer made up of 5 possible subunits, bound as homo- or heterodimers:
RelA/p65, c-Rel, RelB, p50 and p52, with the last 2 proteolytically cleaved from larger
precursors. p65, c-Rel and RelB have a transcription activation domain (TAD) which allows
them to activate transcription, whereas p50 and p52 depend on dimerization with them to
positively regulate transcription. Each monomer has an N-terminal Rel homology domain,
similar to NFATs, responsible for DNA binding, dimerization, nuclear binding, and nuclear
localization (reviewed by (Hoffmann et al., 2006). NF-κB is regulated by the Inhibitor of κB
(IκB) family of proteins, which binds to the transcription factor dimer, keeping it in the
cytoplasm. Dissociation or proteasomal degradation of IκB reveals NFκB's nuclear
localization sequence (NLS), allowing it to translocate to the nucleus and affect gene
transcription by binding κB sequences in promoters and enhancers (reviewed by (Perkins,
2007; Vallabhapurapu and Karin, 2009). There are many signals that can activate NFκB
signaling, including growth factors, neurotransmitters, cytokines, electrical activity and
synaptic transmission, and inhibit NFκB signaling, including TGFβ, GSK-3β,
glucocorticoids, IL-4, and IL-10 (reviewed by (Kaltschmidt et al., 2005; Mattson, 2005).

Expression of NFκB in the Nervous System
The most common NFκB dimer in the nervous system is p50:p65, but other dimers
including p65:c-Rel and p50:c-Rel are detected in the brain as early as E17 (reviewed by
(Kaltschmidt et al., 2005). In the brain, NFκB plays roles in cell survival, synaptic plasticity,
learning and memory, and is activated in stroke, seizures, traumatic brain injury,
Alzheimers, Huntingtons and Parkinsons diseases (reviewed by (Mattson, 2005; Romano et
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al., 2006). Reporter mice driven by various NFκB-dependent DNA elements also suggest
that the majority of NFκB activity in the brain begins after birth, in the cerebellum around
P6, and in hippocampus and cortex around P15, and into adulthood in multiple areas of the
brain (Schmidt-Ullrich et al., 1996). Other groups have shown NFκB activity by E13 in
multiple brain regions and in the olfactory lobes through adulthood (Bhakar et al., 2002). In
the adult PNS, activated NFκB is present in naïve DRG and spinal cord, and is significantly
upregulated after peripheral nerve crush in both areas (Ma and Bisby, 1998; Fernyhough et
al., 2005; Pollock et al., 2005).

NFκB's Subcellular Localization
What is the localization of NFκB in neurons? In embryonic hippocampal cultures, glutamate
receptor activation or depolarization can lead to relocalization of cytoplasmic NFκB to the
nucleus. p65 fusion experiments revealed that p65 in the neurites can retrogradely travel to
the nucleus after stimulation with glutamate, kainate or KCl, and this requires its NLS. The
addition of high levels of IκBα lead to a cytoplasmic accumulation of NFκB (Wellmann et
al., 2001). This suggests that NFκB can respond to a stimulus in neurites and retrogradely
travel to the nucleus to affect gene transcription.

Role of NFκB in Neurite Growth and Regeneration
Does NFκB play a role in neurite growth? Inhibition of NFκB DNA binding by preventing
IκB-α mediated release of NFκB transcription dimers leads to inhibition of neurite growth in
nodose sensory neurons without affecting survival (Gutierrez et al., 2005). Interestingly, this
effect was seen only in neurons between E18 and P1, suggesting a specific developmental
window where NFκB is required for elongation and arborization. This suggests that NFκB
activation can affect neurite growth, however, it may function differentially at different
times in development, or as discussed below, in specific cell types.

Similar results were seen with CNTF supplemented sensory neuron cultures, where
inhibition of NFκB DNA binding decreased CNTF-induced neurite growth and branching,
although this effect was mediated through a non-classical pathway targeting the
phosphorylation of Tyr-42 of IκBα by CNTF-induced signaling through spleen tyrosine
kinase (SYK) (Gallagher et al., 2007). There was no effect on survival in any treatment.
Thus, in sensory neurons, CNTF functions to activate SYK which phosphorylates the Tyr-42
of IκBα to release NFκB for translocation to the nucleus, leading to transcriptional changes
that are essential to CNTF-mediated increases in neurite growth and branching (Gallagher et
al., 2007).

NFκB is also the downstream modulator of neurite growth for fas apoptosis inhibitory
molecule (FAIM) signaling (Sole et al., 2004). In multiple neuronal types, overexpression of
FAIM-S (short isoform) not only promoted NFκB activation, but also increased neurite
length (Sole et al., 2004). Blocking NFκB activation prevented the increase of neurite
growth seen with FAIM-S overexpression. Knockdown of FAIM-S decreased both neurite
length and branching. Whereas overexpression of FAIM-S increased growth in WT cortical
neurons, overexpression in a p65-/- background resulted in neurite growth more similar to
controls. These data suggest that FAIM-induced changes in neurite growth rely on NFκB-
driven changes in transcription.

Effects of Post-Translational Modifications on Function
Phosphorylation of p65 can increase or decrease neurite growth of primary neurons.
Blocking NFκB signaling in cultured sympathetic neurons did not affect neurite growth, in
contrast to what was shown with sensory neurons (Gutierrez et al., 2008). Interestingly,
overexpression of the p50:p65 dimer decreased neurite growth in sympathetic neurons,
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whereas in sensory neurons it increased growth (Gutierrez et al., 2008). In both situations,
however, NFκB -dependent gene transcription was increased. Why does this overexpression
of NFκB function differently in different types of neurons? One difference between the
neuronal types is that IKKβ activation was higher in sympathetic neurons and virtually
undetectable in sensory neurons (Gutierrez et al., 2008). IKKβ can phosphorylate p65 on
Ser- 536 (Sakurai et al., 1999), and in agreement, p65 was constitutively phosphorylated in
sympathetic neurons, but not in sensory neurons. Indeed, the overexpression of the WT
versions of p50:p65 led to increased phospho-p65 in sympathetic neurons, but not sensory
neurons (Gutierrez et al., 2008). Overexpression of the p50:phosphomimic Ser-536-p65 in
sensory neurons decreases neurite growth, whereas overexpression of wildtype p50:p65
increases growth (Gutierrez et al., 2008). Phospho-Ser-536-p65 can regulate specific gene
targets (Buss et al., 2004; Sasaki et al., 2005), suggesting these genes could reveal molecular
mechanisms behind phenotype changes in neurite growth both in NFκB signaling, and in
general. Thus, in neurons with active IKKβ and thus phosphorylated p65, there is reduced
neurite growth, and in neurons without this IKKβ activity, the unphosphorylated p65 can
lead to enhanced neurite growth, suggesting a switch that can control neurite growth
depending on a post-translational modification (Gutierrez et al., 2008).

An interesting developmental switch occurs in the mechanisms of BDNF-promoted NFκB
signaling in sensory neurons at birth. Before birth, cultured sensory neurons respond to
BDNF through TrkB with an increase in Src-mediated tyrosine phosphorylation of IκBα,
leading to dissociation, though not proteasome-mediated degradation, from the NFκB dimer
and an increase in NFκB signaling by a dephosphorylated p65, and thus an increase in
neurite growth and branching. Overexpression of a phosphomimic p65 reduces neurite
growth in these E17 sensory neurons. Thus at E17, BDNF enhances NFκB activation and
promotes the dephosphorylation of p65 (Gavalda et al., 2009). After birth, however, BDNF-
promoted NFκB activation is constitutive and not further increased, IkBα is not tyrosine-
phosphorylated (Gavalda et al., 2009), though serine phosphorylation is still necessary
(Gutierrez et al., 2005). After birth, inhibition of the proteasomal machinery, not important
to neurite growth at E17, leads to decreases in neurite growth. p65 Ser-536 phosphorylation
is also unaffected by BDNF application after birth, and its low basal levels remain
unchanged (Gavalda et al., 2009). These studies suggest that the mechanism behind BDNF-
promoted NFκB signaling and neurite growth changes during development.

Mechanisms of Transcriptional Control
Although the gene targets behind NFκB's effects on neurite growth have not been identified,
several gene targets of NFκB have been identified in other systems (Pahl, 1999). Some of
these targets are cell adhesion molecules such as NCAM (Simpson and Morris, 2000),
tenascin C (Mettouchi et al., 1997), and β1 integrin (Wang et al., 2003). In neurons, genes
for Bcl-2, MnSOD, glutamate receptor subunits, BDNF, and calcium regulating proteins are
activated by NFκB transcription (reviewed by (Mattson, 2005). In addition, all of the IκB
proteins are targets of NFκB signaling (reviewed by (Hoffmann et al., 2006). Understanding
the transcriptional outcome of NFκB signaling in the context of different post-translational
modification states or developmental periods is necessary to further unravel the mechanisms
behind neurite growth and regeneration.

NFκB Interactions with Other Signaling Pathways
NFκB can interact with many transcription factors in other signaling pathways, including the
Jun, ATF, CREB and Fos transcription factor families. In addition, STAT3 can induce the
alternative NFκB pathway, and can bind DNA in a complex with p52, the proteolytic
product of p100, to induce transcription (reviewed by (Perkins, 2007). p53 can also interact
with p52, recruiting it to p53-regulated promoters for both interaction and recruitment of co-
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repressors and co-activators to regulate p53's target genes (Schumm et al., 2006). NFκB can
compete for the same co-activators: for example, p53 and NFκB compete for binding to
CBP (reviewed by (Perkins, 2007). IKKα can phosphorylate CBP at Ser-1382 and Ser-1386
in response to TNFα stimulation, resulting in a shift of CBP from p53 to phosphorylated
p65, switching CBP recruitment from p53- to NFκB-dependent promoters. This
phosphorylation of CBP also increases its intrinsic HAT activity, resulting in its ability to
acetylate histone tails and increase transcriptional activation (Huang et al., 2007).

SOX11
SRY-box containing gene 11 (Sox11) is one of more than 20 members of the Sox
transcription factor family, with homology to the high mobility group (HMG) domain of the
SRY gene and the ability to activate or repress gene transcription. The family members can
be separated into subfamilies on the basis of their homology in the DNA-binding HMG
domain, with Sox11, -4 and -12 as part of Group C (Prior and Walter, 1996; Kamachi et al.,
2000). The HMG domain of SOX family members is not only responsible for DNA binding,
but also for interactions with other transcription factors, as well as containing signals for
nuclear import, and in a few Sox proteins, nuclear export (reviewed in (Wilson and
Koopman, 2002). Sox proteins bind a 6 base pair DNA consensus sequence. Sox factors
regulate different genes in different cells through recruitment of partner proteins that bind
different DNA sequences flanking the Sox binding site. Most Sox transcription factors
possess an activation domain in their C terminus, but bind to DNA with low affinity. DNA-
binding co-factors increase Sox-DNA binding strength and thus their ability to affect
transcription (reviewed in (Kamachi et al., 2000). For example, Sox2 binds to the Fgf4
enhancer, though it cannot activate Fgf4 expression alone. Oct3/4 also cannot elicit
transcription alone, but Oct3/4 binding next to Sox2 leads to transcriptional activation,
dependent on close proximity between these binding sites (Yuan et al., 1995; Ambrosetti et
al., 1997). Sox11 may also partner with Brn1 or -2 to regulate transcription (Kuhlbrodt et al.,
1998; Tanaka et al., 2004).

Mechanisms of Transcriptional Control
A few relevant gene targets of Sox 11 have been identified. For example, Sox11 drives
expression of neurite growth-associated genes beta-III tubulin and MAP2 (Bergsland et al.,
2006) and actin-related protein complex 3 (Arpc3) (Jankowski et al., 2006), but overall there
has been limited study of Sox11 targets relevant to axon growth to date.

Effects of Post-Translational Modifications on Function
Sox proteins can be affected by post-translational modifications, though these have not yet
been well characterized. Many Sox factors have putative phosphorylation sites, however,
only Sox9 has been shown to be phosphorylated, leading to an enhancement of its
transcriptional and DNA binding activities (Huang et al., 2000; Huang et al., 2001). In
addition, other Sox proteins can be ubiquitinated and sumoylated in vitro, though there has
been no reports of relevant post-translational modifications of Sox11 to date (reviewed in
(Lefebvre et al., 2007).

Sox11 Expression in the Nervous System
Sox11's initial characterization was through its involvement in neuronal differentiation and
development (Uwanogho et al., 1995; Hargrave et al., 1997; Rex et al., 1998; Hyodo-Miura
et al., 2002). In the PNS, Sox11 is highly expressed in embryonic and regenerating DRGs
and at low levels in adult neurons (Hargrave et al., 1997; Tanabe et al., 2003; Jankowski et
al., 2006). Sox11 is also expressed in the developing CNS (Uwanogho et al., 1995; Hargrave
et al., 1997; Rimini et al., 1999; Cheung et al., 2000; de Martino et al., 2000), and is
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downregulated during development in RGCs (Wang et al., 2007). After optic nerve injury in
the regenerating zebrafish model, Sox11a and b were strongly upregulated (8 fold) in RGCs
as detected in microarray data (Veldman et al., 2007). Sox11 expression can also be
upregulated after neuronal depolarization in both embryonic cortical neurons in vitro and
adult brain in vivo (Sun et al., 2005). Thus, Sox11 expression is highest during periods of
axon growth and regeneration.

Role of Sox11 in Neurite Growth and Regeneration
In Neuro2a cells, Sox11 levels dramatically increased with the number of cells extending
neurites, suggesting a correlation between Sox11 and neurite outgrowth. After DRG injury,
when regenerative growth programs are initiated, Sox11 expression is highly increased
(Tanabe et al., 2003; Jankowski et al., 2006; Jankowski et al., 2009), but expression levels
are only slightly increased after central nerve injury, where regeneration is not observed
(Jankowski et al., 2009). In the PNS, in vitro knockdown of Sox11 in DRG neurons reduces
neurite growth, but it also increases apoptosis, making interpretation of these data more
complicated (Jankowski et al., 2006). Similarly, in the PNS in vivo after saphenous nerve
injury, knockdown of Sox11 results in a decrease in axon regeneration a week after crush
(Jankowski et al., 2009). In CNS regeneration, knockdown of Sox11a/b in zebrafish retinal
explants had no effect on axon outgrowth (Veldman et al., 2007), although there may
compensation by highly homologous family members.

Interestingly, Sox11 may work with other transcription factors to affect neurite growth and
regeneration. In vivo, Sox11 knockdown reduced the elevation of ATF3 following PNS
injury, whereas in vitro, this knockdown led to a decrease in ATF3 expression. ATF3
knockdown, however, did not affect Sox11 levels, suggesting Sox11 acts upstream of ATF3
to positively modulate its expression after peripheral nerve injury (Jankowski et al., 2009).

SnoN AND E47
SnoN is a member of the evolutionarily conserved ski/sno/dac gene family. The majority of
the members of the ski/sno/dac superfamily possess a highly homologous ski/sno/dac
domain as well as a SAND domain which does not directly bind DNA, but creates an
interaction loop through its zinc finger motif allowing for structural stability. SnoN and its
earlier discovered predecessor Ski, make up one subgroup of this family (reviewed by (Pot
and Bonni, 2008). Their N-termini are highly homologous, and their C termini mediate
homo- or heterodimerization (Cohen et al., 1999; Luo, 2004). There are 4 alternatively
spliced forms of the sno gene, with SnoN being the major isoform (reviewed in (Pot and
Bonni, 2008). SnoN and Ski have multiple functions in cell proliferation and differentiation
(reviewed in (Pot and Bonni, 2008).

SnoN's repressor function in TGFβ signaling has been well-characterized. SnoN can repress
TGFβ target genes through recruitment by Smads to Smad-binding elements in TGFβ
promoters. It complexes with multiple repressive proteins including N-CoR, HDAC and
mSin3 to repress these target genes. In addition, it can inhibit the interaction of Smads with
the transcriptional co-activator p300/CBP (reviewed in (Luo, 2004). Upon TGFβ pathway
activation, SnoN can become targeted for destruction by ubiquitination, thus relieving the
repression on the TGFβ target genes (Stroschein et al., 1999). SnoN contains a D-box motif
which allows it to be targeted for destruction. Its imperfect D box however, decreases its
affinity for the Cdh1/APC complex, thus requiring additional stability through Smad binding
for effective ubiquitination (Stroschein et al., 2001). SnoN proteosomal degradation is
regulated through the E3 ubiquitin ligases anaphase promoting complex (APC), SMAD-
specific E3 ubiquitin protein ligase 2 (Smurf2) or Arkadia (Bonni et al., 2001; Stroschein et
al., 2001; Wan et al., 2001; Levy et al., 2007; Nagano et al., 2007). It has also been
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suggested that phosphorylation by TAK1 can prime SnoN for degradation (Kajino et al.,
2007).

Role of SnoN in Neurite Growth and Regeneration
Recent studies have found an important role for APC mediated degradation of SnoN in
regulating neurite growth and regeneration. Normally, APC is targeted to its substrate by its
co-activator protein Cdh1 and regulates cell cycle transitions by ubiquitinating its targets,
leading to their degradation (Kim and Bonni, 2007). Using cerebellar granule neurons,
Cdh1/APC was found to inhibit axon growth (Konishi et al., 2004), partially through its
interaction with SnoN (Stegmuller et al., 2006). In neurons, Cdh1 interacts with SnoN in the
nucleus, targeting it for degradation. Knockdown of SnoN mimics this effect, decreasing
neurite growth. When SnoN knockdown is combined with the axon growth-promoting effect
of Cdh1 knockdown, there is still a decrease in neurite growth, suggesting that SnoN is
downstream of Cdh1 in regulating neurite growth. SnoN is expressed in granule neurons in
the developing cerebellum, and its knockdown in the cerebellum in vivo impairs
development of granule neuron parallel fibers, suggesting an important role for SnoN on
axonal elongation and patterning in cerebellar granule neurons. SnoN is also expressed in
cultured hippocampal and cortical neurons, and its knockdown results in decreased axon
growth, suggesting that SnoN may function in multiple cell types to control axon growth
ability (Stegmuller et al., 2006). In vivo, SnoN expression decreases in the adult brain,
correlating with the loss of regenerative ability in adult CNS neurons (Stegmuller et al.,
2008).

In a parallel pathway, TGFβ receptor type I recruits Smads -2 and -3, activating them by
phosphorylation, at which time they complex with a regulatory Smad and enter the nucleus
(ten Dijke and Hill, 2004). SnoN can be recruited by TGFβ signaling through Smad2/3
(reviewed in (Pot and Bonni, 2008), and Smad2 can directly interact with SnoN (Stegmuller
et al., 2008). TGFβ signaling can activate Smad 2/3 to recruit SnoN to the Cdh1/APC
complex, leading to its subsequent ubiquitination and degradation (Stegmuller et al., 2008).

Mechanisms of Transcriptional Control - SnoN
What are SnoN's gene targets? SnoN has primarily been shown to be a repressor, however,
gene profiling revealed that SnoN knockdown results in many downregulated genes,
suggesting a role for SnoN as an activator of transcription in neurons (Ikeuchi et al., 2009).
The transcriptional co-activator p300 binds SnoN and its knockdown decreases neurite
growth, similar to SnoN knockdown. Consistent with the TGFβ signaling pathway outlined
above, many known TGFβ signaling target genes are regulated by SnoN. An actin-binding
protein, ccd1, is transcribed in response to SnoN in cerebellar granule neurons (Ikeuchi et
al., 2009), activates JNK signaling in neurons (Ikeuchi et al., 2009), and is required for axon
growth, suggesting that SnoN is functioning through ccd1 to enhance neurite growth. In vivo
knockdown of ccd1 in cerebellar granule neurons resulted in decreased numbers of parallel
fiber axons, a phenotype similar to that SnoN knockdown, further supporting a role for ccd1
as a target whose regulation is required for SnoN-mediated increases in axon growth ability
(Ikeuchi et al., 2009). Thus a pathway from Cdh1/APC through SnoN modified by TGFβ
signaling and dependent on downstream ccd1 expression regulates axon growth in cerebellar
granule neurons.

Another target of Cdh1/APC is the inhibitor of DNA binding 2 (Id2), which can inhibit the
activity of basic-helix-loop-helix (bHLH) transcription factors. The E2A gene encodes two
bHLH transcription factors, E12 and E47, which can homo- or heterodimerize with other
tissue-specific bHLH regulators, who through their cooperation or inhibition determine
positive or negative regulation of gene expression. Their levels can be regulated by Id
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proteins, the ubiquitin-proteasomal pathway, and phosphorylation (Slattery et al., 2008).
Cdh1/APC targets Id2 for degradation which leads to an increase in the bHLH transcription
factor, E47. Expression of a degradation-resistant Id2 leads to increased axon growth. If
Cdh1 is knocked down concurrent with E47 overexpression, there is still a decrease in axon
growth. This suggests that Cdh1/APC can also modulate transcriptional changes through
degradation of Id2 and an upregulation in bHLH proteins. Interestingly, E47 can increase
expression of multiple proteins that are inhibitory to axonal growth, such as NogoR, Notch1,
Unc5A, Jagged2, and Sema3F (Lasorella et al., 2006). Together, these studies have been
well characterized in cerebellar granule neurons, and it will be interesting to study the
functions of these transcription factors after CNS or PNS injury in vivo.

KLFs
The Krüppel-like factor (KLF) family of 17 transcription factors all contains 3 highly
homologous Cys2/His2-type zinc fingers on their C termini with highly conserved regions
between them. They bind DNA at CACCC/GC/GT boxes, which are highly represented
throughout regulatory regions in the genome. They are often grouped with the Sp
(specificity protein) family, though the KLF family is distinguished by the absence of the Sp
family's Buttonhead (BTD) box 5’ to the zinc fingers (Suske et al., 2005). Many KLFs have
been thoroughly studied in cancer, and can play roles in cell cycle, proliferation, and cell
death (Black et al., 2001). Little is known, however, about the expression or function of the
17 KLFs in the mammalian nervous system.

KLF domains important in DNA binding and co-factor recruitment are critical to their
function. For example, KLF9 can activate or repress transcription through recruitment of the
co-repressor Sin3A (Imataka et al., 1992; Zhang et al., 2001), and KLF4 has both activator
and repressor capabilities, depending on interactions with the transcriptional co-repressors
such as CtBP1 (Liu et al., 2009). KLF15 can repress the rhodopsin promoter, however,
deletion of its N terminus results in a switch to a transcriptional activator (Otteson et al.,
2004).

KLFs or KLF activity may be regulated by a variety of signaling pathways. For example,
KLF9's expression is positively regulated by binding of T3 receptor-retinoid X receptor
heterodimers to the T3 response element (T3RE) in the 5’ flanking region of the KLF9 gene
(Denver and Williamson, 2009), by corticosterone (Bonett et al., 2009), and by activity (Lin
et al., 2008; Scobie et al., 2009). KLF4 is upregulated by NMDA or AMPA treatment in
cortical neuron cultures.

KLFs Expression in the Nervous System
KLFs are expressed ubiquitously throughout other body tissues, and it is typical for single
cells to express multiple KLFs. There are few systematic examinations of KLF expression in
the nervous system, but a number of KLFs are expressed. For example, RGCs express 15 of
17 KLFs, and the expression of many of these factors was developmentally regulated, and
could be correlated with their effect on neurite growth after overexpression (see below)
(Moore et al., 2009). KLF9 is a thyroid hormone (T3)-regulated transcription factor whose
expression in the brain begins postnatally (Denver et al., 1999; Martel et al., 2002; Morita et
al., 2003), and is developmentally regulated, increasing after birth and maintaining higher
expression into adulthood (Denver et al., 1999), similar to the pattern of developmental
regulation seen in RGCs (Moore et al., 2009). KLF16 is expressed in brain in embryos and
adult animals (Hwang et al., 2001; D'Souza et al., 2002). KLF15 is expressed in various
parts of the brain, and in the retina in the inner nuclear layer and ganglion cell layer (Otteson
et al., 2004). In purified RGCs of the ganglion cell layer, its expression is upregulated during
development (Moore et al., 2009). KLF12 is expressed in the brain in a complex pattern,
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with the highest levels shortly after birth (Imhof et al., 1999). KLF5 is expressed in the
human prefrontal cortex, and in the granular and pyramidal cells of the hippocampus. KLF5
is downregulated in the prefrontal cortex in schizophrenia patients, and a polymorphism of
KLF5 is associated with schizophrenia (Yanagi et al., 2008). Thus a number of KLFs are
expressed throughout the nervous system, although more comprehensive studies are
certainly warranted.

Role of KLFs in in Neurite Growth and Regeneration
Recently, our lab has demonstrated a role for KLFs in axon regeneration both in vitro and in
vivo. CNS neurons such as RGCs lose their intrinsic axon growth ability as they age
(Goldberg et al., 2002). To identify genes that could be involved in this loss, we performed a
screen of candidate genes whose expression was developmentally regulated in RGCs, and
identified KLFs as potent regulators of neurite growth in RGCs, hippocampal, and cortical
neurons (Moore et al., 2009; Blackmore et al., 2010). KLF4 knockout in RGCs leads to
increased neurite growth in vitro, and increased regeneration in vivo. Additionally, multiple
developmentally regulated KLF family members can differentially regulate growth in both
cortical neurons and RGCs, further suggesting a transcriptional network that controls axon
growth and regeneration (Moore et al., 2009). A number of KLFs which decreased
developmentally (e.g. KLF6, KLF7), when overexpressed increased neurite growth, whereas
some KLFs which increased postnatally (e.g. KLF4, KLF9), when overexpressed decreased
neurite growth. In addition, their ability to affect neurite growth (positively, negatively, or
neutrally) could be correlated with their structural subgroups within the KLF family.

Others have also documented the ability of KLFs to regulate neurite growth. For example,
KLF6 and -7 have been identified as growth enhancers in other studies. KLF7 is highly
expressed in both the PNS and CNS throughout development (Laub et al., 2001; Lei et al.,
2001), and KLF6 has also been shown to be expressed in the developing nervous system
(Laub et al., 2001), and in the adult, is present in neurons, endothelial cells and neuronal
progenitors in the forebrain (Jeong et al., 2009). KLF7 knockout results in deficits in axon
growth and pathfinding in the olfactory system, retina, and brain (Laub et al., 2005; Laub et
al., 2006). In retinal explants in zebrafish, KLF7 was found, together with KLF6, to be
necessary for axon growth (Veldman et al., 2007).

There is variability in the reported effects of KLF9 on neurite growth. In cell lines,
overexpression of KLF9 leads to an increase in the number of cells extending neurites as
well as increasing the number and length of the neurites (Denver et al., 1999). In embryonic
cortical neurons and small acetylcholinesterase (AChE) expressing cells, knockdown of
KLF9 decreases neurite branching without affecting elongation(Cayrou et al., 2002). In
contrast, in embryonic and postnatal RGCs, and young postnatal cortical neurons
supplemented with T3, KLF9 overexpression decreases neurite growth, suggesting possible
differences for this factor in different cell and neuronal types (Moore et al., 2009). Similarly,
KLF9 knockout mice do not demonstrate defects in axon targeting and dendrite length in the
hippocampus (Scobie et al., 2009), although there may be a slight deficit in Purkinje cell
dendrites (Morita et al., 2003).

Mechanisms of KLF Regulation
KLFs can cross-compensate for each other throughout the body, including in neurite growth
regulation. For example, KLF6 and KLF7 were able to compensate for each other in their
ability to affect axon growth (Veldman et al., 2007). In primary neurons in culture,
overexpression combinations of suppressors and enhancers led to the suppressors
dominating, and decreased neurite growth (Moore et al., 2009). This suggests that in the
adult nervous system, the presence of many growth-suppressive KLFs is dominant, and that
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the developmental map of KLF expression in CNS neurons may induce specific axon
growth phenotypes, though the specific network regulation between these factors is still
unclear.

A number of KLF gene targets have been identified, mainly in studies outside the nervous
system, but these may still be illuminating. Downstream gene targets of KLF7 in neurons
include cyclin D1, p21, p27, L1, GAP-43, and genes important for synaptogenesis and
cytoskeletal dynamics (Laub et al., 2001; Laub et al., 2005; Kajimura et al., 2007). KLF7
can also regulate the expression of TrkA, through binding to the TrkA enhancer together
with the transcription factor Brn3a (Lei et al., 2006). Downstream gene targets of KLF9
include sodium, calcium, and potassium channels, which, as activity enhances trophic
responsiveness and axon growth (Goldberg et al., 2002), could explain the decrease in
dendrite arborization in Purkinje cells (Morita et al., 2003; Scobie et al., 2009). Whereas
gene targets for KLF5 have not been described in the nervous system, in other systems,
KLF5 has been shown to activate transcription of integrin-linked kinase (ILK) , as well as its
targets Cdc42 and myosin light chain (Yang et al., 2008). A number of KLF4 targets
identified outside of the nervous system may be good candidates for mediating KLF4's
effect on axon growth, such as p21WAF1/Cip1 (p21), p53, urokinase plasminogen activator
receptor (u-PAR), ornithine decarboxylase (ODC), and three different laminin chains
(Rowland and Peeper, 2006). Removal of KLF4's DNA-binding domain eliminated its
ability to modulate neurite growth in vitro, suggesting a need for its transcriptional activity
for the phenotypic change in neurite growth (Moore et al., 2009). It is presently unknown
whether KLFs regulate the expression of these genes in neurons, or whether these or other
target genes mediate the effect of KLFs on CNS axon growth. Nevertheless, a variety of
gene targets of KLFs outside the nervous system may be excellent candidates to mediate
their effects on neurite growth within the nervous system.

CONCLUSIONS
Transcription Factor Cross-Regulation of Axon Growth

The transcription factors p53, c-Jun, ATF3, CREB, STAT3, NFATs, NFkB, Sox11, SnoN,
and the KLF family have been shown to affect neurite growth and axon regeneration. The
way they do so is varied, but there are patterns that are revealed when we look at the studies
as a whole. First, their developmental regulation is consistent with developmental axon
growth patterns—pro-axon growth transcription factors are often more highly expressed
early in development when axons are normally growing to their targets. Second, pro-axon
growth transcription factors are often upregulated in regenerating neurons but not in neurons
that fail to regenerate. Third, when both growth suppressive and growth enhancing
transcription factors are expressed, the growth suppressors may dominate (Moore et al.,
2009). Thus to optimally promote axon growth, it may be necessary to simultaneous turn off
some and turn on other transcription factors.

As discussed above, these families of transcription factors often interact in regulating axon
growth and regeneration. A significant component of this regulation is mediated through
additional layers of complexity that are only partially understood. Transcription factors can
function differently in different cell types due to the specific expression profile of co-factors
in a given cell. The pairings of homodimers or heterodimers within transcription factor
families or between superfamilies also increases this intricacy. They are able to compete for
binding sites, making the relative expression levels of the factors in a specific cell important
for their functional outcome, whether acting redundantly or in opposition. Finally, post-
translational modifications of the transcription factors themselves may greatly affect gene
regulatory outcomes. We have reviewed examples of these above, and for the KLFs in a
recent publication (Moore et al., 2011). Because of the specific gene targets, and the
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expression profile of different modulating factors or co-factors in different neurons, there is
an inherent need for research on transcriptional control of gene targets potentially relevant
for axon growth and regeneration to be performed in neurons, to better understand the
transcription factors’ cell-type specific role. This complexity, while seeming incredibly
daunting, also likely provides the specificity and fine tuning needed for these transcription
factors to regulate such intricate processes as regeneration, and a better understanding of
these regulatory networks may lead to new approaches to understanding neural development
and enhancing axon regeneration.
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