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Abstract
Lack of stable three-dimensional structure, or intrinsic disorder, is a common phenomenon in
proteins. Naturally unstructured regions are proven to be essential for carrying function by many
proteins and therefore identification of such regions is an important issue. CASP has been
assessing the state of the art in predicting disorder regions from amino acid sequence since 2002.
Here we present the results of the evaluation of the disorder predictions submitted to CASP9. The
assessment is based on the evaluation measures and procedures used in previous CASPs. The
balanced accuracy and the Matthews correlation coefficient were chosen as basic measures for
evaluating the correctness of binary classifications. The area under the receiving operating
characteristic curve was the measure of choice for evaluating probability-based predictions of
disorder. The CASP9 methods are shown to perform slightly better than the CASP7 methods but
not better than the methods in CASP8. It was also shown that capability of most CASP9 methods
to predict disorder decreases with increasing minimum disorder segment length.
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INTRODUCTION
It has been widely accepted that that the ability of proteins to perform specific cellular
functions is directly associated with their unique spatial structure1. Numerous experiments
have shown that proteins lose their activity upon loss of ordered structure due to exposure to
non-physiological environments such as high temperature, urea or acid. It was also shown
that a denatured protein can regain practically all of its original activity by recovering its
structure upon restoration of physiological conditions2. Based on these observations, the
concept that proteins achieve their biological function upon folding into unique structural
conformations became widely accepted. In the latest two decades ample information has
been collected in evidence of proteins that do not follow this general rule3–6. These so-called
naturally unstructured or intrinsically disordered proteins (IDPs) lack stable structures under
physiological conditions but are nevertheless biologically active. Many other proteins
contain structured regions alongside extended intrinsically disordered regions (IDRs) that
often play an important functional role (e.g., BRCA1, a breast cancer susceptibility protein
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contains approximately 1,500 unstructured non-termini residues participating in repairing
damaged DNA7). The IDPs and proteins including IDRs are highly abundant in both
eukaryotes and prokaryotes8–10 and tend to be enriched for regulatory functions related to
molecular recognition and signal transduction11–14. The number of experimentally verified
IDPs and IDRs is rapidly rising15: the DisProt database16 currently contains annotations for
more than 640 proteins with disordered regions, and recent reviews on this topic6,11,12 cite
hundreds of papers. The association of several IDPs with human disease, such as cancer,
cardiovascular disease, amyloidoses, diabetes, neurodegenerative diseases, and others, has
triggered additional research on the subject17–19.

With the high level of interest in disordered proteins, a substantial effort was placed to
develop experimental and computational methods to study this phenomenon12,20.
Computational methods have quickly become a particularly valuable tool, in part because of
their ability to keep pace with the large-scale genome sequencing projects. These techniques
are based on the premise that the amino acid sequence encodes protein non-folding similarly
to protein folding. Indeed, comparison of composition and complexity of protein sequences
in ordered and disordered regions shows that they are statistically different12,21. Based on
this observation, many methods were built to predict the IDRs through recognition of amino
acid motifs characteristic of disorder.

The first formal method for computational protein disorder prediction was published in
199722, and, since then, more than fifty methods to identify disorder have been
developed23–25. In a recent review, He et al24 provide a historical perspective of progress in
this field, pointing out also the important role that the CASP experiments have played in
these advancements since 200226.

The present paper analyzes the results obtained by the thirty-two disorder prediction groups
participating in CASP9. While the initial round of disorder prediction (2002) was assessed
by the organizers, the following three rounds were evaluated by independent assessors
(2004, 2006, 2008). Since the methods to evaluate disorder prediction in CASP have
developed to the point where assessments are relatively straightforward and can be made
fully automatically, in CASP9 the evaluations were again performed by the organizers.

MATERIALS AND METHODS
Targets and definition of disorder

One hundred and twenty nine targets were released for modeling in CASP9 and all of them
were made available for disorder prediction. The structures of twelve targets were not solved
in time for prediction assessment and thus were canceled27, leaving 117 targets (98 X-ray
and 19 NMR structures) for assessment*. Structure data for five of these targets (T0533,
T0536, T0600, T0612, T0637) were compromised in the period between the corresponding
server and human prediction deadlines27 and therefore only the server predictions were
evaluated on these targets.

Disorder regions for each target were defined based on the best structure determination
available at the time of the assessment and using the sequence released for prediction (which
sometimes was slightly different than the sequence later deposited in the PDB). In cases
where both the NMR and X-ray structures were available (T0551), the X-ray structure was
used.

*Target T0549, which was excluded from the tertiary structure assessment as lacking big parts of structure, was retained for the
disorder assessment.
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Disorder in CASP9 was defined similarly to the previous CASPs28–31. A residue was
considered to be in a disordered state if it appeared in the protein’s amino acid sequence but
either (1) lacked the spatial coordinates or (2) showed a high conformational variability
across different X-ray chains or NMR models. We have defined “high variability” as cases
where distances between positions of the same residue in any pair of models in the NMR
ensemble or in any pair of X-ray chains in the asymmetric unit exceeded 3.5Å in the optimal
LGA32 superposition†. In all other cases, the residue was assumed to be ordered. This is an
oversimplification as residues may be disordered under physiological conditions but forced
into the “ordered” state by crystallization. Also, long disordered regions often contain “dual
personality” fragments33 that become structured when binding to a partner. These segments
are often predicted to be ordered even though they are disordered in the absence of their
partner34. However, such transitions are impossible to detect given only the crystal structure
of the isolated protein.

Overall, 2,677 residues (or 10.2% of residues in all CASP9 targets) were classified as
disordered, including 403 residues in NMR structures (or 19.9% of all residues in NMR
targets) and 2,274 residues (9.4%) in X-ray targets. Thus, percent-wise, CASP9 NMR
structures contain approximately twice as many disordered residues as X-ray structures. At
the target level, the fraction of disordered residues is approximately the same for both types
of targets, varying from 0 to 55% in X-ray structures and from 2 to 53% in NMR structures.
Two targets at the high end of this range were T0603 (X-ray, 305 residues) containing 6
separate unstructured regions summing up to 55% of its length, and T0590 (NMR, 137
residues) containing two long disordered segments covering 54% of its sequence. The
statistics on the number and length of the IDRs in the CASP9 targets are shown in Figure 1.
Short disordered regions are much more common than the long ones. To reduce noise due to
experimental uncertainty, segments consisting of less than four consecutive residues of the
same order/disorder type were not considered in the assessment. After eliminating short
segments, the assessment was performed on a set of 26,075 residues, including 2,417
classified as disordered. We also assessed the ability of methods to identify longer
disordered regions by setting the minimum length of a disordered region to 20, 30 and 40
residues.

Participating groups and prediction format
Thirty two groups participated in prediction of disordered regions in CASP9, including 22
servers and 10 human-expert groups. These groups could submit up to five DR predictions
(here called models) per target, but only models identified by the predictors as number “1”
were evaluated. The overwhelming majority of groups submitted predictions on all or almost
all of the targets (see Table I). The two exceptions were human-expert groups G147 and
G462, which submitted predictions on 53 and 57 out of the 112 targets, respectively. We
assessed the performance of these two groups but did not include them in the final rankings.

The format of the predictions in the DR category has not changed since CASP5. The
predictors were asked to identify the IDRs by assigning to each residue a binary classifier of
order or disorder (“O” for the ordered state and “D” for the disordered), and a probability of
belonging to a disordered region (a real number in the [0;1] range). The detailed description
of the DR format can be found at the Prediction Center website
http://predictioncenter.org/casp9/index.cgi?page=format#DR. Learning from the lessons of
CASP8, in CASP9 we required that all the residues that were assigned a binary disordered/

†This definition slightly differs from the previous CASP definitions, in part due to the 3.5Å deviation criterion for X-ray structures,
which classifies additional 246 residues (or 1.0% of all residues in CASP9 X-ray structures) as disordered.
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ordered tag were also assigned probability values above/below 0.5, respectively. The value
of 0.5 was reserved for residues where predictors were undecided.

Evaluation criteria
Disorder predictions in CASP9 were evaluated with the MCC, Acc, and AUC measures also
used in previous CASPs29–31. The Sw measure was dropped from the assessment as it was
shown35 to be equivalent to the Acc, when calculated with the weights used in CASPs6–8.
The statistical significance of the differences in group performance was assessed using
procedures adopted in CASP730, i.e. the bootstrap confidence interval method36,37 and the
DeLong tests38.

Measures for evaluating binary order/disorder predictions—In CASP, the ability
to correctly assign the order/disorder tags to residues in a target has been evaluated with
several measures28–31: sensitivity and specificity (used in CASP5–8), statistical accuracy Q2
(CASP6), Matthews correlation coefficient MCC (CASP6), the weighted score Sw (CASP6–
8), and the balanced accuracy Acc (CASP7–8).

The disorder prediction data are characterized by a large class imbalance: in the latest five
CASPs ordered residues outnumbered disordered ones 9 to 1 or higher. As disordered
residues are relatively rare and therefore harder to predict, their correct prediction should be
rewarded more generously than the prediction of ordered residues, and vice versa – the
incorrect prediction of disordered regions should be penalized less severely than the
incorrect prediction of ordered residues. Not all measures are equally effective in handling
these tasks. Below, we briefly discuss the relative strengths and weaknesses of the
aforementioned evaluation measures for the disorder assessment.

Sensitivity and specificity

are the two statistical measures routinely used for evaluating the accuracy of a two-class
binary predictor. In prediction of disorder, TP (true positives) and TN (true negatives) are
the numbers of correctly predicted disordered and ordered residues, respectively; FP (false
positives) and FN (false negatives) are the numbers of misclassified ordered and disordered
residues, and Nd and No are the total numbers of disordered and ordered residues in all
targets predicted by a particular group. Specificity determines the fraction of negative
examples (ordered residues) correctly identified in a prediction. For datasets dominated by
negative examples, specificity is high for practically all predictors and therefore is not a
discriminative measure of prediction quality. Sensitivity represents the fraction of positive
examples (disordered residues) correctly identified in a prediction and has a better
discriminative power but at the same time is completely insensitive to negative examples
(see the corresponding formula). Predictors can increase the sensitivity or specificity of their
classifiers by deliberately predicting more residues as disordered or ordered, respectively.
There is a tradeoff between these two measures and increasing one of them usually leads to
decreasing the other. A prediction method can be considered to perform well only if it scores
high in both sensitivity and specificity; neither of these two measures is a good estimator of
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methods’ strength when used alone. The one-sided nature of sensitivity and specificity can
be overcome by employing measures that use all four parameters of prediction quality (TP,
FP, TN and FN).

The statistical accuracy (used under the name of Q2 in previous CASP disorder prediction
assessments) is calculated according to

(1)

and accounts for all four components of prediction quality. Nevertheless, it strongly favors
conservative classifications (i.e. predicting more residues as ordered)29,30 and therefore is
not well suited for disorder assessment.

The balanced accuracy Acc

(2)

is a much better measure as it does not reward over-prediction of the ordered state. On
contrary, it has a desired feature of rewarding prediction of disordered state more generously
than the prediction of the ordered, but it is also known to strongly favor greedy
classifications (i.e. predicting more residues as disordered)29.

The Matthews correlation coefficient (MCC)

(3)

does not favor over-prediction of any of the prediction classes and had been recommended
for handling cases with skewed class frequencies39,40. MCC varies between −1 and 1 with a
random prediction scoring zero. It was noticed, though, that MCC can yield unreasonably
high scores in cases where prediction algorithms assign very few or no false positives and at
the same time very few true positives41. As this situation can happen in DR prediction (over-
prediction of ordered residues), we have conducted a numerical experiment to estimate the
scale of possible discrepancies. We have run these calculations on artificial datasets with the
TP, TN, FP and FN values varying in the ranges typical of the CASP9 data. The MCC
appeared to yield reasonable and consistent scores for all combinations of prediction
characteristics, leading to a conclusion that in general it does not overinflate scores for over-
prediction of ordered residues in our data.

The general conclusions on the effectiveness of measures (1)–(3) hold true for the CASP9
data. First, the tendency of Q2 to unreasonably favor conservative predictions can be
illustrated by an example of two CASP9 groups: G291 and G067. Group G291 is ranked
high according to all three measures used in our evaluation (Table I), while group G067 is at
the very bottom of the table. Surprisingly, G067 outscores G291 0.91 to 0.87 according to
Q2 (data not shown). This result can be directly attributed to more conservative predictions
submitted by G067 (only 391 residues predicted as disordered; the remaining 98.5% of
residues predicted as ordered, the highest figure in CASP9). Second, both Acc and MCC,
reproduce the overall trends in prediction quality fairly well but emphasize numerical
contributions from TP, TN, FP and FN differently (on CASP data, the Spearman ranked
correlation coefficient between these two measures is only ρ=0.56). The balanced accuracy
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(Acc) generously rewards correct prediction of disordered regions and mildly penalizes their
incorrect prediction, encouraging development of riskier methods tuned to identify large
numbers of disordered residues. The MCC is more balanced, it does not reward “greedy”
predictions as strongly as the Acc does, but instead rewards classifiers with higher predictive
precision

(4)

The difference between the Acc and MCC can be illustrated by the example of groups G119
and G015 (Table I). Group G119 is one of the most “greedy” CASP9 classifiers. It has
predicted 5115 residues as disordered, but only 1570 of these classifications had been
correct (31%). Group G015 predicted only 1019 residues as disordered, of which 839 were
correct (82%). The Acc score favors G119 as able to identify almost twice as many
disordered residues as G015. At the same time the MCC favors G015 for obtaining a much
higher level of precision, while still predicting a relatively high number of disordered
residues. The decision of which of these two measures should be used in assessments is to
some degree subjective and therefore we present the results of both, noting the better
balance of the MCC.

In previous three CASPs, also the Sw score was extensively used in assessments

This measure was specifically designed29 to address the imbalance in the ratio of ordered
and disordered residues through adjustable weights wo and wd. It was recently shown35 that
for the weights used in CASP6–8

this score is equivalent to the Acc as there is a linear relationship between the two:

Therefore we kept only one of these measures (Acc) in our analysis.

In addition to the scores used in previous CASPs we have tested other evaluation measures.
One such measure is the F-score, which, similarly to the MCC, had been recommended to
handle skewed data42,43. Our calculations on CASP data have shown a high correlation of
this measure with the MCC (Spearman’s ρ=0.9) and therefore these results are not shown.

Measures for evaluating probability-based predictions of disorder—The ability
to identify the IDRs through assigning per residue disorder confidence scores [0;1] was
assessed with the receiver operating characteristic (ROC) analysis. This method is frequently
used to assess the accuracy of a classifier, and has been previously used in the assessment of
protein disorder predictions (both in CASP and elsewhere)29–31,44.

In essence, a ROC curve illustrates the correspondence between the true positive rate of a
predictor (Sensitivity) and its false positive rate (FPR = FP/(TN + FP) 1 − Specificity) for a
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set of probability thresholds (from 0 to 1 in our case). For each threshold, a residue is
considered as a positive example (disordered) if its predicted probability is equal to or
greater than the threshold value. The area under a ROC curve (AUC) is indicative of the
classifier accuracy. An AUC of 1 identifies a perfect predictor, while an AUC of 0.5
corresponds to a random classifier. We have computed the AUC scores using the trapezoid
integration rule with a threshold increment of 0.01.

Statistical significance of differences in group performance—Performance of
groups as binary order/disorder classifiers was statistically compared using the re-sampling
procedure. For each group, 80% of targets were randomly drawn from the list of targets
predicted by that group and the evaluation scores were re-calculated on that subset. The
procedure was repeated 1000 times, and a discrete distribution of the two-class
classifications was learned for every group. Based on these distributions, we have calculated
the 95% confidence intervals for each assessment measure using the two-tailed bootstrap
percentile method36,37. Statistical significance of the differences in group performance was
inferred based on the comparison of the confidence intervals obtained for each group45.

Performance of groups as predictors of the per-residue disorder probabilities was compared
using the DeLong non-parametric tests38, designed to assess the statistical significance of
the differences between the AUC scores in the ROC analysis. The evaluation was performed
using the statistical package R46 and the pROC library47.

RESULTS
Performance of disorder prediction methods

Numerical evaluations of DR predictions for all groups participating in CASP9 are
summarized in Table I and illustrated in Figure 2. Scores from the main three evaluation
measures used in our assessment (Acc, MCC and AUC) are provided together with the
ranges of the corresponding 95% confidence intervals and the group ranks. The ROC curves
based on the continuous-scale disorder predictions are plotted in Figure 3. Note that the
uneven distribution of the assigned probability scores can affect the smoothness of ROC
curves, which is imperative for an accurate calculation of the AUC scores. In CASP9, all
top-ranked groups have assigned sufficiently distinct probabilities to enable an accurate
calculation of the AUC scores. The only exception is group G193, which submitted
predictions yielding good scores according to the binary-classification measures Acc and
MCC but poor AUC scores in the probability-based analysis. This was due to uniformly
assigning a value of zero to all residues predicted as ordered.

Table I shows that prdos2 is the only group to rank among the top three prediction groups
according to all three evaluation measures. In addition to this group, there are three other
groups (Zhou-Spine-D, Multicom-refine and biomine_dr_pdb) to rank among the best 10
groups according to all three measures.

Figure 2 shows that there are several groups that perform equally well according to the Acc
measure (grey bars). However, as we have discussed in Materials and Methods, some high
Acc scores may be an artifact due to over-prediction of disordered residues. As the scores for
top groups are very close, the statistical significance of the differences between them could
not be established by the comparison of the confidence intervals.

Group DisoPred3C has obtained a relatively low Acc score but, at the same time, the best
and the second best MCC and AUC scores, respectively. The high MCC score can be
attributed to the high (highest in CASP9) precision (4) of classifications submitted by this
group. The low Acc score is most likely due to the relatively low levels of disorder
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prediction. Based on the comparison of confidence intervals for the MCC scores, results of
DisoPred3C are statistically better than those of all other groups, except for
biomine_dr_pdb_c, which is second best according to the MCC.

Groups prdos2, DisoPred3C and Multicom are the best performing groups according to the
probability-based assessment. These groups are statistically indistinguishable from each
other by the AUC score and better than all other groups according to the results of the
DeLong tests (see Table II). This conclusion is also confirmed by the comparison of the
AUC confidence intervals (Table I).

Evaluation of results for longer disorder regions
As noted earlier, short disordered regions prevail in the CASP data set (see Figure 1). While
such regions may sometimes consist of chain termini or short loops without any obvious
functional role, they are often of functional importance (for example, flaps over enzyme
active sites, pieces of chain that order into DNA grooves, or loops that become ordered in
protein-protein interfaces), so their inclusion in the methods testing is important. At the
same time, long disorder regions require separate attention as they are found in abundance in
the human disease-associated proteins48 and their properties and functional roles are likely
different from those of short disorder regions (for example, ordering of complete domains
upon complex formation). The issue of the different length of disordered regions has been
taken into consideration in several disorder predictions methods49–53. To address this issue
in the assessment, we additionally evaluated the predictions taking into account only
segments longer than a specified length cutoff.

Figure 4 compares results of CASP9 methods for four minimum length thresholds: 4, 20, 30
and 40 residues. The “average group” splines (‘AVG’, thicker line) in all three panels of the
graph show that the discriminatory power of the methods tends to decrease with the increase
of the minimum disorder segment length. The average drop in performance is moderate
according to the Acc and AUC scores and more pronounced according to the MCC score.
The MCC panel suggests that an average CASP9 method can identify 40+ residue long
disorder segments just slightly better than a random predictor (MCC=0). It should be
mentioned, though, that the results for disorder regions spanning 40 residues or more should
be interpreted with caution as there were only four qualified segments constituting to only
0.8% of all residues in CASP9 targets.

Curves for the vast majority of participating groups follow the average trend to decrease,
resulting in high correlation (0.85 – 0.98) between the scores of the same evaluation
measure at neighboring length thresholds. The lowest (even though still high in absolute
value: 0.85) correlation between the 4+ and 20+ Acc score sets reflects the fact that this
score was the most prone to the shifting of ranks. While the majority of groups performed
worse in identifying 20+ residue long disorder segments (compared to 4+ segments), there
were five groups that performed somewhat better, with two of them - DisoPred3C (G015)
and GSMetaDisorder3D (G421) - improving their Acc scores significantly (by more than
6%) and consequently raising their ranks by 13 positions (to #8 and #7). DisoPred3C is the
only group that demonstrated an ability to better discriminate 20+ residue long disorder
regions according to all three evaluation scores, and is the best group in this length range
according to the MCC and AUC scores. This group also has quite high scores for the 30+
residue-long regions, comparable to those they obtained for the 4+ ones.
GSMetaDisorder3D also proved to be successful in identifying longer disorder segments,
consistently placing in the best three according to the MCC and AUC scores at all longer
disorder length levels.
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Comparison between recent CASPs
To compare the accuracy of disorder predictions across all CASPs, we have re-evaluated
predictions in previous CASPs using exactly the same disorder definitions and evaluation
measures as in CASP9. Even so, it is hard to ensure full objectivity of such a comparison as
the targets, methods and databases change in time.

Figure 5 shows the results of a comparison of the MCC scores for the twelve best
performing groups in the latest three CASPs. The CASP9 scores are higher than those in
CASP7 but lower than in CASP8. This tendency holds when these methods are compared
using other scores (see Figure S1 in Supplementary Material). As the majority of the top
performing CASP8 methods were among the best also in CASP9, the drop in performance is
most likely due to a greater difficulty of the CASP9 targets54.

CONCLUSIONS
The number of disorder prediction methods published in the literature is now well over
fifty24 and continues to grow as new methods continue to appear55–58. This growth
correlates well with the increase in the number of disorder prediction groups participating in
CASP experiments. However, the increased number of participating groups does not seem to
result in a better performance. Rather, our analysis show that the scores obtained in CASP9
have slightly decreased in comparison with those in CASP8 according to all three measures
used in the CASP9 evaluation. As we discussed in this paper, this might be related to a
higher difficulty of the CASP9 targets but perhaps also to the lack of conceptually new
methods. New meta-predictors or slight modifications of established methods were not
sufficient to achieve substantial progress in the field. By analyzing the submitted abstracts
we could identify only one group (Zhou-Spine-D), claiming development of a conceptually
new method based on neural networks. This method was assessed to be among top 10
according to all scores in CASP9, but did not outperform other already established CASP
performers. A brief description of the best performing automatic methods participated in
CASP9 is provided in Table III. It seems that performance of disorder prediction methods in
CASP has reached a plateau and new breakthroughs are needed.

Besides more effective disorder prediction methods, we also need better target sets in CASP,
since the vast majority of targets are solved by X-ray crystallography and therefore typically
contain only short disorder regions. This type of data likely does not fully represent the type
of disorder observed in functionally relevant long disordered segments. Thus, test sets
containing more targets with extended disordered regions are required for more
comprehensive testing of disorder prediction methods.

For the first time, we have analyzed differences in the capability of methods to recognize
disorder regions of different length. The surprising result is that, independent of the exact
evaluation metrics, there is a rather dramatic fall-off in performance with disorder length
increase. Perhaps this reflects a tendency for the methods used for CASP to be trained on the
short disorder segments typical of the targets. Nevertheless, it is a disturbing result.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

3D three-dimensional
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DR disordered residues

IDP (IDR) Intrinsically Disordered Protein (Region)

MCC the Matthews Correlation Coefficient

ROC the Receiver Operating Characteristic

AUC Area Under the ROC Curve
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Figure 1.
Length distribution of disordered regions in CASP9 target proteins.
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Figure 2.
Performance of DR groups according to three evaluation scores: AUC (black bars), Acc
(grey bars) and MCC (light grey bars). The groups are sorted according to decreasing AUC
score. The error bars on the plot indicate boundaries of the 95% confidence intervals for
each measure.

Monastyrskyy et al. Page 15

Proteins. Author manuscript; available in PMC 2012 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
ROC curves of disordered region predictions for all CASP9 groups. Legends are shown for
the best 12 groups according to the AUC. There are four non-regular ROCs corresponding to
poorly performing groups, two of which misinterpreted DR format (G193 used only a single
value for ordered residues and G114 did not use continuous scale but rather 5 different
numbers).
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Figure 4.
Comparison of prediction performance across four different minimum disorder segment
length thresholds. Different panels show scores for different evaluation measures (Acc, MCC
and AUC). Each group is marked with a different color; groups in the legend are sorted
according to the AUC score (across and then down); the artificial average group (‘AVG’,
black thicker line) is added to the graph as a point of reference.
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Figure 5.
Comparison of the performance of the best 12 groups in the latest 3 CASPs. Groups in each
CASP are sorted according to the MCC score. CASP8 results are evaluated for both the full
set of targets and the set without target T0500, a long, completely unfolded protein
considerably influencing the scores. The reduced target set is marked with an asterisk in the
legend. The scores in CASP9 are higher than in CASP7 but lower than in CASP8. The
CASP8–CASP9 drop in scores may be attributed to the greater difficulty of targets in
CASP9.
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Table III

Methods description for the best CASP9 DR servers

CASP9 group name and HTTP address Description

PrDOS259 http://prdos.hgc.jp/cgi-bin/top.cgi SVM algorithm based on sequence profiles combined
with a template-based predictor.

DisoPred3C44 http://bioinf.cs.ucl.ac.uk/disopred SVM trained on high-resolution X-ray structures. Uses
profiles from 15 positions around each residue as an input
vector.

MULTICOM-refine55 casp.rnet.missouri.edu/predisorder.html One-Dimensional Recursive Neural Network (1D-RNN).
Predicts the disorder probability of each residue along a
protein sequence taking as input the sequence profile,
predicted secondary structure, and solvent accessibility.

Zhou-Spine-D sparks.informatics.iupui.edu/SPINE-D Two-layered Neural Network followed by a filter. The
input features include residue-level and window-level
information calculated from amino acid sequence, seven
representative physical parameters60, PSI-BLAST profile,
predicted secondary structure61 and solvent accessibility
torsion-angle fluctuation62.

Zhou-Spine-DM sparks.informatics.iupui.edu/SPINE-DM Meta approach that employs a two-layer Neural Network
with a filter. Combines input from six disorder predictors:
VSL249, DISOPred244, DisPro1.063, IUPred64 and
SPINE-D (above).

CBRC_Poodle51 http://mbs.cbrc.jp/poodle/poodle-i.html SVM integrating three own SVM predictors: Poodle-S65

and Poodle-L66 specialized in short and long disorder
regions, respectively, and Poodle-W67 targeting unfolded
protein prediction.

biomine_dr_pdb, biomine_dr_pdb_c57 biomine-ws.ece.ualberta.ca/MFDp.html Two meta + SVM approaches. Combine predictions from
DISOPred244, DISOclust68 and IUPred64, and
additionally use predicted secondary structure, solvent
accessibility, B-factors and backbone dihedral torsion
angles in SVM learning.

GSmetaDisorderMD, GSmetaserver http://iimcb.genesilico.pl/metadisorder/ Two Genetic Algorithms combining predictions from
GSmetaDisorder (consensus of 13 DR servers) and
GSmetaDisorder3D (consensus of missing residues in
multiple sequence alignments produced by fold
recognition methods). The two methods use different
weight optimization scores.

OnD-CRF69 http://babel.ucmp.umu.se/ond-crf/ Machine learning technique based on Conditional
Random Fields. Uses only sequence and predicted
secondary structure as inputs.

Mason70 www.cs.gmu.edu/~mlbio/svmprat SVM method integrating flexible window-based profile
kernels and predicted secondary structure.

McGuffin (as DISOClust68 on all CASP9 3D server models)
www.reading.ac.uk/bioinf/DISOclust/

DISOClust server was tested in CASP9 as a server group
(IntFOLD-DR) and a human-expert group (McGuffin).
Both groups exploited the same approach based on
conservation of ordered residues within multiple
structures. The McGuffin group used consensus of all 3D
server models submitted to CASP, while IntFOLD-DR -
only of those available from the in-house nFOLD4
method.
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