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Abstract: We have previously shown the hepatic gene expression profiles of carcinogens in 28-day toxicity tests were clustered into three 
major groups (Group-1 to 3). Here, we developed a new prediction method for Group-1 carcinogens which consist mainly of genotoxic 
rat hepatocarcinogens. The prediction formula was generated by a support vector machine using 5 selected genes as the predictive genes 
and predictive score was introduced to judge carcinogenicity. It correctly predicted the carcinogenicity of all 17 Group-1 chemicals 
and 22 of 24 non-carcinogens regardless of genotoxicity. In the dose-response study, the prediction score was altered from negative to 
positive as the dose increased, indicating that the characteristic gene expression profile emerged over a range of carcinogen-specific 
doses. We conclude that the prediction formula can quantitatively predict the carcinogenicity of Group-1 carcinogens. The same method 
may be applied to other groups of carcinogens to build a total system for prediction of carcinogenicity.
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Introduction
Carcinogenicity is one of the most important 
endpoints of chemical safety evaluations, not only 
for pharmaceutical compounds but also for industrial 
chemicals. The two-year rodent carcinogenicity 
studies are generally used to judge the carcinogenicity 
of chemicals, but they are very expensive and need 
long test periods. Hence the carcinogenic potential of 
many chemicals remains unknown.

A number of alternative methods have been 
developed to screen carcinogens more easily. McCann 
et al reported in 1975 that carcinogenicity could be 
predicted from strength and a pattern of mutation 
of Salmonella.1 Then, Zeiger et  al identified rodent 
carcinogens and non-carcinogens by multiple genetic 
tests, including a mutagenicity test, and concluded that 
the Salmonella mutagenicity test is effective for the 
identification of mutagens and potential carcinogens, 
but not chemicals classed as non-mutagenic in the 
Salmonella mutagenicity test.2 Elcombe et al studied 
acute and subacute biochemical and tissue changes as 
biomarkers to predict non-genotoxic carcinogenicity 
in rodents.3 However, a further verification study 
was required because only nine chemicals were 
tested. Ito et al developed the 8 week medium-term 
liver bioassay system by quantifying glutathione 
S-transferase placental-form (GST-P) positive foci as 
markers in F344 rat livers, which was employed in the 
International Conference on Harmonization4; 59 out 
of 64 (92%) hepatocarcinogens gave positive results, 
irrespective of their mutagenicity.5 The cancerogenic 
peroxisomal proliferators that suppress GST-P 
expression showed false negative in this method.

Microarray technologies enable the comprehensive 
analysis of gene expression, and their development has 
led to the emergence of the promising new scientific 
field of toxicogenomics. Toxicogenomics has been 
applied to the elucidation of toxicity mechanisms, 
exploration of biomarkers, and prediction of toxicity.6,7 
Mathijs et  al reported discrimination of genotoxic 
carcinogens from non-genotoxic carcinogens by 
using GeneChip array data derived from primary 
mouse hepatocytes; the two classes of carcinogens 
were separated from each other by hierarchical 
clustering, and the genes responsive to genotoxic 
carcinogens were extracted.8 However, the prediction 
of carcinogenicity using the “characteristic” genes was 
not reported. Ziegelbauer et al classified 29 chemicals 

into genotoxic carcinogens, non-genotoxic carcinogens 
and non-hepatocarcinogens by using GeneChip data 
obtained from short-term animal experiments, and 
they tried to build a formula to predict the type of 
carcinogen by support vector machine method, result-
ing in a concordance of 88% for the validation data.9

In a previous study,10 we performed a hierarchical 
cluster analysis of the gene expression data obtained 
from rat liver in a 28-day repeated-dose toxicity 
study of 73 chemicals, comprising 47 carcinogens 
and 26 non-carcinogens, which were selected on the 
basis of their chemical and toxicological diversity. 
These carcinogens were separated into three major 
groups without relying on the selected gene and the 
administration period in the cluster analysis. We 
identified three “characteristic” gene sets, each of 
which showed gene expression changes specific for 
one of the three groups of carcinogens, suggesting 
that prediction formulae should be built by using 
“characteristic” gene sets from each group.

Here, as the first step towards development of 
a prediction method for carcinogenicity, a small 
“characteristic” gene set for Group-1 carcinogens was 
selected, and a prediction formula was built by using 
the support vector machine method. The performance 
of the prediction formula was examined by using 
validation chemicals in addition to the carcinogens 
in the other two groups demonstrated in the previ-
ous study. The effective dose range of the prediction 
formula was identified by a dose-response study.

Materials and Methods
Test chemicals
Eighty-six chemicals with known carcinogenicity 
were selected on the basis of their chemical and toxi-
cological diversity from the US National Toxicol-
ogy Program (NTP) database (http://ntp.mehs.nih.
gov/) and the Chemical Carcinogenesis Research 
Information System (CCRIS) database (http://
toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS). 
They include 17 Group-1 carcinogens (Table  3a), 
23 Group-2 carcinogens (Table 3b), and 6 Group-3 
carcinogens (Table  3c), as well as 24 non-carcino-
gens and 16 validation chemicals consisting of 11 
carcinogens and 5 non-carcinogens, and these were 
based on our previous study.10 The Group-1 carcino-
gens consisted of hepatocarcinogens mainly, espe-
cially mutagenic hepatocarcinogens. The Group-2 
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carcinogens consisted of mutagenic carcinogens 
and non-mutagenic carcinogens. Furthermore, car-
cinogens with estrogenic activity were included 
in Group-3  mainly. Two non-carcinogens, 
4′-(chloroacetyl)acetanilide and 3-chloro-p-toluidine, 
were used in the grouping of carcinogens included 
in the validation data, because they showed gene 
expression patterns very similar to those of Group-1 
carcinogens in the previous study.10

A summary of toxicity test conditions, carcino-
genic properties, and carcinogen group number, 
as determined in the previous study of the test 
chemicals,10 is presented in Table 1. In this study, 17 
Group-1 carcinogens and 24 non-carcinogens were 
used as training chemicals for prediction formula 
building; 23 Group-2 and 6 Group-3 carcinogens, 
and 16 validation chemicals, were used to validate the 
prediction formula (Table 2).

Animals and treatment
The 28-day repeat-dose toxicity study was performed 
as previously described.10 Fischer 344 (F344) rats 
were randomly assigned to two groups (treatment 
and control) consisting of 4 rats per group, and 
each rat was given a test chemical dissolved in a 
suitable vehicle (gum Arabic, corn oil, distilled 
water, carboxymethylcellulose or methylcellulose) or 
vehicle alone, by oral gavage once a day for 28 days. 
The dosage of each chemical was set at approximately 
its minimum carcinogenic doses (for carcinogens) or 
its maximum tolerated doses (for non-carcinogens) 
on the basis of the information in NTP (http://ntp.
niehs.nih.gov/), CCRIS (http://toxnet.nlm.nih.gov/
cgi-bin/sis/htmlgen?CCRIS) database, and published 
literature.

Four carcinogens (diethylnitrosoamine [T01], 
N-nitrosomorpholine [T03], 1,4-dioxane [T14], and 
thioacetamide [T16]) and 2 non-carcinogens (litho-
cholic acid [N15] and alpha-tocopherol [N19]) were 
selected at random from 17 Group-1 carcinogens 
and 24 non-carcinogens for dose-response studies. 
Dose-response studies with four dosages were then 
conducted to examine the dose dependency of the 
expression of the genes selected as the predictive 
genes, and the dose dependency of the power of 
the prediction method. The maximum dose was set as 
the maximum tolerated dose, and the remaining three 
doses were set up with a common ratio of 5.

In this study, we obtained ethics approval for the 
use of animals in all our animal testing.

Microarray experiments
Gene expression in the liver was measured by using 
a custom microarray, NEDO-ToxArrayIII (NGK 
Insulators, Ltd. Nagoya, Japan), consisting of 6709 
unique genes, and data processing was performed 
as described previously.10 The raw data are avail-
able for download from the Gene Expression Omni-
bus repository (http://www.ncbi.nlm.nih.gov/geo/) 
at the National Center for Biotechnology Informa-
tion (Accession ID, GSE16394). In a previous paper, 
1359  genes were selected based on cut-off criteria, 
and it was used to build a prediction formula for 
carcinogenicity.10

Selection of predictive genes
The Group-1 “characteristic” genes were defined as 
genes induced or repressed specifically by adminis-
tration of Group-1 carcinogens (ie, not by adminis-
tration of non-carcinogens). They were selected by 
two criteria, as follows: 1) an absolute t-value .5 
obtained from the Welch’s t-test comparing log2ratio 
values between the training sets of Group-1 carcino-
gens and non-carcinogens, where the log2ratio is the 
logarithm to the base 2 of the mean signal intensity 
ratio between the treated sample and the correspond-
ing vehicle control; and 2) an absolute value of the 
log2ratio .0.8 in more than 70% of the test Group-1 
carcinogens and less than 30% of the test non-car-
cinogens. Five genes were selected by applying these 
criteria to the training data of 17 Group-1 carcinogens 
and 24 non-carcinogens (Table 2).

Prediction formula building
The prediction formula for carcinogenicity of Group-1 
carcinogens was built from the gene expression data 
of the 5 predictive genes (Table 4) with 17 Group-1 
carcinogens and 24 non-carcinogens (Table  1) as 
training chemicals. Support Vector Machine (SVM), 
which is widely employed in toxicogenomics for 
prognostic prediction and marker searches,11,12 was 
used for the prediction formula building.

Because the formula is best suited to the training 
data, a number of validation datasets are required 
to assess its general applicability. To overcome this 
problem, we built the prediction formula as follows 
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(Fig.  1); non-redundant random sampling was used 
to select 11 carcinogens and 11 non-carcinogens from 
the training dataset (17 training Group-1 carcinogens 
and 24 training non-carcinogens), and a working 
linear formula was built by using the classification 
mode of SVMlight (http://svmlight.joachims.org/). 
SVMlight generated the distance of each test sam-
ple data from the hyperplane in 5 dimensional space 
as a linear function of the gene expression changes 
(log2ratio values) of the 5 predictive genes. The lin-
ear function was used as the working formula, where 
the distance from hyperplane was defined as the pre-
diction score, with positive values for carcinogens 

and negative values for non-carcinogens. The random 
sampling and calculations were performed 3000 times 
to generate 3000 working linear formulas. The medi-
ans of the coefficients for each gene and the median 
intercept value were then calculated and used as the 
coefficients in the final prediction formula.

Validation of the performance  
of the prediction formula
To validate the prediction performance, the formula 
was applied to the data from the Group-1 training 
chemicals, the Group-2 and Group-3 carcinogens in 
the previous study,10 and the validation chemicals. 
Also, the prediction formula was applied to dose-
response data to elucidate the dose response of the 
prediction performance.

Results
Toxicity studies
For 28 days, male F344 rats were treated daily with 
either minimum carcinogenic doses of carcinogens 
or maximum tolerated doses of non-carcinogens, 

Table 2. Number of chemicals in each subgroup.

Subgroup name # of chemicals
Group-1 carcinogen 17
Group-2 carcinogen 23
Group-3 carcinogen 6
Non-carcinogen 24
Validation 16
Total 86

Table 3. Chemicals of each carcinogen group.

Test no.a Name Test no.a Name Test no.a Name
(a) Group-1
T01 
T02 
T03 
T04 
T05 
T06

Diethylnitrosoamine 
N-Nitrosodimethylamine 
N-Nitrosomorpholine 
N-Nitrosopiperidine 
2-Nitropropane 
3′-Methyl-4-dimethylamino-
azobenzene

T07 
T08 
T09 
T10 
T11 
T12 
T13

2-Acetylaminofluorene 
MeIQx 
Furan 
Quinoline 
2,4-Diaminotoluene 
Methapyrilene HCl 
Acetamide

T14 
T15 
T16 
T17

1,4-Dioxane 
Methyl carbamate 
Thioacetamide 
Urethane

(b) Group-2
C01 
C02 
C03 
C04 
 
C05 
C06 
C07

N-Ethyl-N-nitrosourea 
4-Nitroquinoline-1-oxide 
4-Dimethylaminoazobenzene 
2-Amino-1-methyl-6-phenyl- 
imidazo[4,5-b]pyridine(PhIP) 
Safrole 
Benzo[a]pyrene 
7,12-Dimethylbenz[a]-
anthracene

C08 
C09 
C10 
C11 
C12 
C13 
C14 
C15 
C16

3-Methylcholanthrene 
Clofibrate 
Di(2-ethylhexyl)adipate 
Di(2-ethylhexyl)phthalate 
Phenytoin 
Butylated hydroxyanisole 
d-Limonene 
Aldrin 
Chlorendic acid

C17 
C18 
C19 
 
C20 
C21 
C22 
C23

1,4-Dichlorobenzene 
Hexachlorobenzene 
Alpha-Hexachloro-
cyclohexane 
Trichloroethylene 
Tetrachloroethylene 
Trichloroacetic acid 
DL-Ethionine

(c) Group-3
C24 
C25 
C26 
C27 
C28 
C29

Benz[a]anthracene 
Phenobarbital 
Diethylstilbestrol 
Ethinylestradiol 
Chloroform 
Pentachloroethane

Notes: aT, Group-1 carcinogen used for training set; C, other group carcinogen.
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and then subjected to histopathological examination. 
For 15 of the 23  hepatocarcinogens, histological 
abnormalities such as modest hypertrophy of 
hepatocytes and enlargement of hepatocyte nuclei 
were observed 28  days post-treatment. Generally, 
the histological abnormalities observed were those 
expected after treatment with genotoxic carcinogens 
(Table 1). These findings support the assumption that 
the animals would have developed hepatic tumours if 
administration of carcinogens had continued.10

Predictive gene selection
Ideally, a single marker gene that undergoes expression 
change after administration of each carcinogen, but not 
any of the non-carcinogens, would be identified and 
used to predict the carcinogenicity of the chemicals. 
We considered it unlikely that such a gene would be 
found in this study, because factors other than carcino-
genesis might affect the expression of the gene, and 
multiple carcinogenic mechanisms might be promoted 
by the various Group-1 carcinogens. Therefore in this 

Table 4. Gene symbol, Gene name, Refseq ID and expression direction of the predictive genes.

# Gene symbol Gene name Refseq ID Expression*
1 Ccng1 Cyclin G1 NM_012923 Up
2 Abcb1b ATP-binding cassette, sub-family B (MDR/TAP),  

member 1B
NM_012623 Up

3 Mgmt O-6-methylguanine-DNA methyltransferase NM_012861 Up
4 Pbsn Probasin NM_019125 Up
5 Inmt Indolethylamine N-methyltransferase NM_001109022 Down
Note: *Up, Log2ratio of the gene was positive (ie, expression up-regulated by administration of Group 1 carcinogens); Down, log2ratio of the gene was 
negative (ie, expression down-regulated by administration of Group 1 carcinogens).

Training data of
17 carcinogens

Training data of
24 non-carcinogens

Non-redundant random sampling
(3000 times).

3000 working training data set

Support Vector Machine
(SVM)

Generation of 3000 linear prediction formulas.

Calculation of the median of coefficient A and B.

Y1 = ∑ A1X1+B1

:
Y3000 = Σ A3000X3000+B3000

Y = Σ AmedianX+Bmedian

where Y (prediction score) is the distance of test data from the hyperplane,
X is the gene expression change, A is the coefficient and B is the intercept

Figure 1. Flow diagram showing the generation of the prediction formula. From 17 carcinogens and 24 non-carcinogens, 3000 non-redundant sets of 
11 carcinogens and non-carcinogens each were randomly selected, and the gene expression data of the predictive genes for those chemical was used 
as the training data sets to generate 3000 linear prediction formulas by SVM. The median value of the coefficients of 3000 linear formulae was set as the 
coefficient of the final prediction formula.
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study, we used multiple genes as predictive genes in 
building the prediction formula for carcinogenicity.

The difference of carcinogen group and the non-
carcinogen group which may have an unequal change 
is assessed in Welch’s t-value that is the statistics of the 
Welch’s t-test. We employed the t-value obtained as the 
first criterion to identify “characteristic” Group-1 car-
cinogen-responsive genes. However, if the variances of 
the gene expression changes were very small for both 
administration of carcinogen and administration of non-
carcinogen, a gene could meet the first criterion without 
the expression change being of sufficient magnitude 
to be biologically significant. Consequently a second 
criterion was introduced, whereby a substantial gene 
expression change was observed after administration of 
more than a certain proportion of the carcinogens and 
less than a certain proportion of the non-carcinogens.

To determine the appropriate threshold values 
for the two criteria above, prediction formulae were 
built by using various “characteristic” gene sets 
obtained by varying the absolute value of the t-value 
threshold from 2 to 5 (criterion 1) and varying the 
proportions of carcinogens (.50% to .80%) and 
non-carcinogens (,30%) inducing substantial gene 
expression changes (criterion 2), where a substantial 
gene expression change was defined as an absolute 
log2ratio .0.8. Using absolute t-values of .2, .3, 
.4 and .5 for the first criterion, 608, 250, 69, and 
14  genes, respectively, were selected. These were 
reduced to 17, 14, 10 and 5  genes, respectively, 
when a second criterion of substantial gene expres-
sion change in .50% carcinogens and ,30% non-
carcinogens was added. These results indicate that 
the majority of the genes that showed substantial 
expression-change differences between the train-
ing carcinogens and non-carcinogens did not show 
substantial gene expression changes in response to 
a large proportion of the carcinogens, suggesting 
that both criteria are needed to select an efficient 
gene set for building the prediction formula for 
carcinogenicity. When the absolute t-value was set 
at .2 and the proportion of carcinogens was var-
ied from .50% to .80%, the number of selected 
genes was from 17 to 2, and the performance of the 
prediction formula reached a maximum at .70% of 
the proportion. Similar results were obtained with 
other absolute t-values, although the predictive 
score increased slightly with increasing absolute 

t-value. To maximize the prediction performance, 
we selected 5 Group-1 “characteristic” genes with 
absolute t-value .5, and substantially altered 
expression in response to .70% carcinogens as the 
final predictive genes (Table  4). Of these 5  genes, 
4 were up-regulated and 1 was down-regulated by 
exposure to Group-1 carcinogens.

Development and validation  
of the prediction formula
Three thousand working linear prediction formulae 
were built by using the 5 predictive genes selected 
above and 3000 working training data sets of 11 
carcinogens and 11 non-carcinogens, extracted at 
random from the total training data (17 carcinogens 
and 24 non-carcinogens). Within the working for-
mulae, the coefficients for each gene, the intercept 
values and the concordance rates of 3000 training 
data sets tended towards a normal distribution as 
the number of formulae increased. In 3000 pre-
diction formulae, the variance of the gene coef-
ficients ranged from 8.3  ×  10−4 to 4.2  ×  10−2, the 
variance of the intercept values was 5.6 × 10−3, and 
the average concordance rate was 98.8% (standard 
deviation = ± 2.0%).

The final prediction formula was built by using the 
medians of the gene coefficients and intercept val-
ues of the 3000 working linear prediction formulae; 
the formula was then applied separately to the train-
ing and the validation data to assess its prediction 
performance (Fig.  2). The prediction scores of the 
17 Group-1 carcinogens and 24 non-carcinogens used 
as training data were positive and negative, respec-
tively; although in the case of two training carcino-
gens, quinoline (T10) and urethane (T17), the error 
bar (Standard deviation) extended to negative values. 
Thus, the concordance of the prediction outcome of 
the training data was 100%.

All Group-2 carcinogens were predicted as nega-
tive carcinogenicity, with the exception of safrole 
(C05), which had a positive score. All Group-3 carcin-
ogens were predicted as negative carcinogenicity.

Three out of 5 non-carcinogens in validation 
chemicals were correctly predicted as negative 
carcinogenicity, but remaining two were judged as 
positive carcinogenicity, those being 4′-(chloroacetyl)
acetanilide (V15), and 3-chloro-p-toluidine (V16). 
Three (carbon tetrachloride [V02], methyleugenol 
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[V09] and o-nitrotoluene [V10]) of the 11 car-
cinogens in carcinogens had positive scores, indi-
cating that these chemicals are possible Group-1 
carcinogens.

Dose response of the prediction score
Dose-response studies were conducted with four 
Group-1 carcinogens (diethylnitrosoamine [T01], 
N-nitrosomorpholine [T03], 1,4-dioxane [T14], 

and thioacetamide [T16]) and two non-carcinogens 
(lithocholic acid [N15] and alpha-tocopherol [N19]) 
selected from the Group-1 carcinogens and non-
carcinogens at random. The prediction formula was 
applied to the resultant data, and prediction scores 
were estimated (Fig. 3). The prediction score for the 
highest dose of diethylnitrosoamine (T01; 20 mg/kg/
day) and N-nitrosomorpholine (T03; 10 mg/kg/day) 
could not be estimated because the animals died 
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earlier. For all compounds tested, the prediction score 
was nearly coincident with the score obtained from 
the training data at the same dose, supporting the high 
reproducibility of the prediction scores. In the predic-
tive gene set, the change in gene expression (log2 ratio) 
increased for the 4 up-regulated genes and decreased 
for the 1 down-regulated genes with increasing doses 
of carcinogens, with the exception of Pbsn at the 
highest dose of thioacetamide. Consequently, the 
prediction score was negative at the lowest dose and 
increased to a positive value with increasing doses in 
the case of all four carcinogens. In contrast, no gene 
expression change depending on the administration 
was observed, and the prediction score remained a 
relatively constant negative value with increasing 
doses in the case of the two non-carcinogens. The 
intersection doses (DS0; doses at which the predictive 
score curves crossed score = 0), were 0.44, 1.38, 192, 
and 1.28  mg/kg/day for diethylnitrosamine (T01), 
N-nitrosomorpholine (T03), 1,4-dioxane (T14), and 
thioacetamide (T16), respectively. We compared the 
DS0 values with the tumorigenic doses (TD50) values 
reported for the same chemicals (ie, 0.0265, 0.109, 
267, and 11.5 mg/kg/day respectively) in the Carci-
nogenic Potency Database of Berkeley University 
(CPDB; http://potency.berkeley.edu/). The double 
logarithmic plot of TD50 vs. DS0 was approximated 
by the linear equation TD50 = 1.3285 × DS0 - 0.485 
(r = 0.85).

Discussion
Prediction formula performance
Usually, a prediction formula is built by maximizing 
the prediction performance of a training data set, 
and therefore the prediction performance is strongly 
dependent on the training data set. If atypical data 
are mixed in the training data, this can lower the 
prediction performance of the resultant formula 
when it is applied to more typical data. Therefore, 
to minimize the influence of atypical data in the 
training data set, and to build a prediction formula 
that is widely applicable, we built 3000 prediction 
formulas from 3000 working training data sets 
extracted from the training data set at random. The 
medians of the coefficients and intercept values of 
the 3000 working linear prediction formulas were 
used to the final formula. This final formula is not 
over-fitting to the training data set. Rather, it was the 

most frequently emerging formula in the training set 
and was therefore expected to give the most plausible 
prediction result.

The final prediction formula was able to correctly 
predict the carcinogenicity of all training carcinogens 
and non-carcinogens, though the predictive scores of 
two carcinogens, quinoline (T10) and urethane (T17), 
were smaller than the standard deviation. The dosage 
of quinoline used here (25 mg/kg/day) was similar to 
the dosage (22.3 mg/kg/day) that promoted tumors in 
rats in a previous study,13 and it is possible to take into 
account dose-response of the predictive score that the 
gene expression change specific to Group-1 carcino-
gen become faint. In contrast, the dosage of urethane 
used here (80 mg/kg/day), was much higher than the 
lowest dosage (1.1 mg/kg/day) that promoted tumors 
in a previous study,14 so the small predictive score 
cannot be explained by the dosage amount.

Importantly, six non-mutagenic carcinogens (meth-
apyrilene HCl [T12], acetamide [T13], 1,4-dioxane 
[T14], methyl carbamate [T15], thioacetamide [T16] 
and urethane [T17]) were correctly predicted by the 
prediction formula, indicating that this method has 
advantages over other assessment such as Ames test 
in the prediction of carcinogenicity.

The prediction scores of Group-2 and Group-3 
carcinogens had negative values, with the exception 
of safrole (C05) from Group-2. These results indi-
cate that the prediction formula is specific to Group-1 
carcinogens. The safrole predicted as Group-1 carcin-
ogens were in the same cluster as Group-1 carcinogens 
under some conditions in hierarchical clustering 
analysis (data not shown), suggesting that these car-
cinogens share features of the gene expression pro-
file of both groups and that multiple processes occur 
concurrently in carcinogenesis.

In the 11 validation carcinogens, the three non-
mutagenic carcinogens carbon tetrachloride (V02), 
methyleugenol (V09) and o-nitrotoluene (V10) were 
predicted as Group-1 carcinogens. This result was 
confirmed by hierarchical cluster analysis, in which 
these chemicals resided in the Group-1 cluster.

The two non-carcinogens 3-chloro-p-toluidine 
(V16) and 4′-(chloroacetyl)acetanilide (V15) which 
were not included in the training data because they 
previously showed gene expression changes simi-
lar to Group-1 carcinogens,10 were predicted as 
carcinogens. The dosages of 3-chloro-p-toluidine  
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and 4′-(chloroacetyl)acetanilide used here 
(300 and 250  mg/kg/day, respectively), were at 
least 3  times the maximum dosages (100 and 
67.6  mg/kg/day, respectively) used in previous  
carcinogenicity tests.15,16

Dose-response relationship  
of the prediction score
For all Group-1 carcinogens examined, the prediction 
score decreased from positive to negative values with 
decreasing doses, and the DS0 values were highly 
correlated with TD50 values previously published 
(CPDB; http://potency.berkeley.edu/line). These 
results indicate that the gene expression changes spe-
cific to Group-1 carcinogens emerge above the spe-
cific dosage amount dependent on carcinogens and 
the specific dosage can be used as indicator of TD50 
value of the test carcinogen.

Function of the predictive genes
For the predictive genes, we selected 5  genes with 
expression changes specific to Group-1 carcinogens.

Abcb1b. The gene encoding Abcb1b (ATP-binding 
cassette, sub-family B (MDRTAP), member 1) showed 
the largest t-value in the Group-1 carcinogen vs. non-
carcinogen comparison, and it showed substantially 
altered expression following administration of each of 
the Group-1 carcinogens; hence, it contributed the most 
to the prediction score. The Abcb1b gene and its prod-
uct, P-glycoprotein, which functions as a drug efflux 
transporter, show increased expression in rat liver after 
administration of carcinogens such as 2-acetylamin-
ofluorene (T07; a Group-1 carcinogen), its metabo-
lite N-hydroxy-acetylaminofluorene, and aflatoxine 
B117 and it is also demonstrated that P-glycoprotein 
was associated with a more progressed phenotype 
of the liver malignancy.18 Although Abcb1b mRNA 
and P-glycoprotein are up-regulated by N-hydroxy-
acetylaminofluorene and aflatoxine B1, they do not 
confer resistance to these chemicals in NIH 3T3-mdr1b 
cells, this is unlike the resistance to many cytotoxic 
drugs that is conferred by their transport by P-glyco-
protein, and induction of the Abcb1b gene may result 
from an increase in transcription factors responsive to 
DNA damage induced by these carcinogens.19

Mgmt. The Mgmt gene encodes an enzyme involved 
in the DNA repair of O(6)-alkylguanine, which is the 

major mutagenic and carcinogenic lesion in DNA. 
The Mgmt gene was substantially up-regulated by 
administration of most Group-1 carcinogens, including 
two non-mutagenic carcinogens, 1,4-dioxane and 
thioacetamide, both of which increased the expression 
of the Mgmt gene by 290%. The carcinogen 1,4-dioxane 
has been found to be non-mutagenic in 5 in vitro assays, 
including a Salmonella assay.20 DNA damage has been 
observed in rat liver after a single oral administration 
of 1,4-dioxane (2550 mg/kg)21; however, neither DNA 
damage nor DNA repair was observed in the livers 
of F344 rats after a single oral administration of 1,4-
dioxane (1000  mg/kg).22 Here, repeated doses test 
were performed over 28 days. No substantial change 
in Mgmt gene expression was observed for all non-
carcinogens, nine of which were mutagenic. For 
example, two structural isomers (2,4-diaminotoluene 
[T11] and 2,6-diaminotoluene [N03]) were equally 
mutagenic in a Salmonella assay but differed in terms 
of carcinogenicity, and altered Mgmt gene expression 
was observed only after exposure to the carcinogenic 
isomer, 2,4-diaminotoluene. The difference in the 
Mgmt gene response to these structural isomers might 
be explained if only 2,4-diaminotoluene (T11) were 
mutagenic in the livers of rats, owing to differences in 
the metabolic pathways of 2,6-diaminotoluene (N03) 
being present in vivo compared with in vitro.23

Ccng1. Ccng1 (cyclin G1) is one of the target 
genes of the transcription factor p53 and is induced 
in a p53-dependent manner in response to DNA dam-
age. It plays roles in G2/M arrest, damage recovery, 
and growth promotion after cellular stress.24

In summary, we developed a new gene-expression-
based prediction method for carcinogenicity of 
Group-1 carcinogens, as a model case. Our final 
prediction formula used the data from 5 Group-1 
carcinogen-responsive genes to correctly predict 
the carcinogenicity of Group-1 carcinogens regard-
less of mutagenicity. Advantages of this method are 
that the reliability of the prediction can be quantita-
tively evaluated by the prediction score value, and the 
TD50 value of chemicals might be estimated by the 
response of the prediction score. The prediction for-
mula built here can be applied only to Group-1 carcin-
ogens, which constitute only 37% of the carcinogens 
tested in our previous study,10 but the same method 
can be applied to other groups of carcinogens. There-
fore, we are currently developing similar prediction 
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formulae for Group-2 and Group-3 carcinogens, so as 
to be able to predict all types of carcinogens.
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