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Basis set superposition error (BSSE) is a significant contributor to errors in quantum-based energy
functions, especially for large chemical systems with many molecular contacts such as folded pro-
teins and protein-ligand complexes. While the counterpoise method has become a standard pro-
cedure for correcting intermolecular BSSE, most current approaches to correcting intramolecular
BSSE are simply fragment-based analogues of the counterpoise method which require many (two
times the number of fragments) additional quantum calculations in their application. We propose
that magnitudes of both forms of BSSE can be quickly estimated by dividing a system into inter-
acting fragments, estimating each fragment’s contribution to the overall BSSE with a simple statis-
tical model, and then propagating these errors throughout the entire system. Such a method requires
no additional quantum calculations, but rather only an analysis of the system’s interacting fragments.
The method is described herein and is applied to a protein-ligand system, a small helical protein, and a
set of native and decoy protein folds. © 2011 American Institute of Physics. [doi:10.1063/1.3641894]

INTRODUCTION

The application of quantum chemistry to large molecu-
lar systems is a challenging endeavor that is complicated by
several factors. First, the high number of degrees of free-
dom makes orbital and conformational optimization very
computationally demanding, which has led to novel linear
scaling algorithms such as FMO,1 MFCC,2 and divide and
conquer schemes.3–5 In addition, large molecular systems
contain many different types of chemical interactions, all of
which need to be accurately modeled by the energy func-
tion in order to reliably estimate the energy of the compos-
ite system.6, 7 Efforts have been made to estimate and cor-
rect for these fragment-based interaction energy errors as
well.8, 9

Compact molecular systems with many inter- and in-
tramolecular contacts introduce yet another source of error
in quantum chemical calculations on large systems: basis set
superposition error (BSSE). BSSE is a consequence of us-
ing incomplete basis sets, and stems from the fact that frag-
ment A of a system can use basis functions from a proxi-
mal nonbonded fragment B to variationally (and artificially)
lower A’s contribution to the electronic energy and, in the end,
overestimate the strength of the nonbonded molecular interac-
tion between fragments A and B. The counterpoise procedure
has commonly been utilized to correct for BSSE in the inter-
molecular case.10 In the procedure, the energies of systems
A and B are evaluated both with and without the basis func-
tions of the partner system. The sum of energy differences be-
tween the calculations with (E′

A and E′
B) and without (EA and

EB) the additional basis functions is the magnitude of artificial
stabilization due to BSSE (�EBSSE). �EBSSE from Eq. (1) is
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always negative and should be subtracted from the calculated
interaction energy between A and B:

�EBSSE = E′
A − EA + E′

B − EB. (1)

Intramolecular BSSE (IBSSE) has been observed in
molecules as small as benzene, for which a nonplanar opti-
mum geometry is observed when using small Pople-style ba-
sis sets with MP2.11, 12 A main concern about IBSSE is that it
affects the ability to compare different conformations of the
overall system. Balabin’s estimation of IBSSE in small pep-
tides suggests that IBSSE can often be equal to or even greater
in magnitude than the relative energies between small peptide
conformations,13 which might prohibit quantum-based energy
functions containing IBSSE from producing reliable results
in any computational study requiring accurate potential en-
ergy surfaces such as free energy calculations, molecular dy-
namics simulations, or even simple geometry optimization.
Most current methods of estimating IBSSE are intramolecu-
lar analogues of the counterpoise method for intermolecular
systems. The overall system is broken down into molecular
fragments (or in some cases individual atoms14) which are
then analyzed with and without neighboring basis functions
to estimate the energy differences due to IBSSE. These meth-
ods (with the exception of the atom-based method) require
input from the user about how to fragment the overall system,
which is non-unique. Furthermore, these methods require ad-
ditional quantum calculations for each fragment, leading to a
total of 2N + 1 calculations where N is the number of frag-
ments (unless the isolated fragment or atomic energies are
stored in a database, in which case there would be N + 1
calculations). The generated fragments may be left as radi-
cals or saturated with hydrogen link atoms, either of which
may alter the electronic environment of the fragment and yield
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FIG. 1. Distributions of BSSE magnitudes (at MP2/6-31G*) of interactions in our protein fragment database. (a) Distribution of all types of interactions (N
= 997). (b) Distribution of polar interactions including backbone-backbone hydrogen bonds and charged interactions (N = 643). (c) Distribution of nonpolar
interactions (N = 354).

uncertainties in the estimation of the fragment’s contribution
to IBSSE.

STATISTICAL MODEL OF FRAGMENT-BASED
CONTRIBUTIONS TO BSSE

Recently we have introduced a method of estimat-
ing errors in energy functions for large molecules by esti-
mating fragment-based errors and propagating these errors
over the interacting fragments of the entire system.8, 9 The
fragment-based error estimates are derived from a database
of common interacting fragments found in proteins and
protein-ligand complexes and the resulting error probability
density functions constructed by comparing their calculated
energies from a given method with accurate reference ener-
gies (e.g., CCSD(T)/CBS). By assuming that the fragment-
based interactions contain errors that are independent from
one another (this seems to be an acceptable assumption for
largely electron-localized systems such as proteins),15 each
fragment’s contribution to the overall error can be estimated
with the appropriate probability density function and then be
propagated throughout the overall system to yield an overall
estimate of both systematic and random error.

In order to apply these methods to the problem of BSSE,
we have generated thousands of interacting molecular frag-
ments from high resolution (<2.0 Å) crystal structures from
the Protein Data Bank (PDB) with an in-house fragmenta-
tion program. Each PDB structure was first saturated with hy-
drogen atoms with the program REDUCE (Ref. 16) followed
by an optimization of the hydrogen positions with ff99sb
(Ref. 17) in AMBER (Ref. 18) before fragmentation. A
description of the fragmentation algorithm is given in the sup-
plementary material.21 A random sample of nearly 1000 in-
teracting fragments was selected and categorized by the in-
teraction types of backbone-backbone hydrogen bonds (312),
charged (107), polar (224), and nonpolar (354) interactions.
The interacting fragments were analyzed for gas-phase elec-
tronic interaction energy with MP2/6-31G* (an arbitrary ex-
ample energy model sure to yield significant BSSE) with and
without the counterpoise correction in order to determine the
BSSE magnitudes. The calculations were performed using the
GAUSSIAN 09 program.19 The distributions of BSSE magni-
tudes (kcal/mol) are plotted in Figure 1, which shows a clear
distinction between the van der Waals/nonpolar and hydrogen
bonded/polar fragment pairs.

In our first attempt to estimate BSSE for large systems,
we proposed to use the same strategy as described previously
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FIG. 2. Using Gaussian probability density functions to describe and predict BSSE in backbone-backbone hydrogen bonds in proteins.

involving the construction of Gaussian probability density
functions (pdf’s) describing the likely magnitudes of BSSE
between database fragments. An example pdf is given in
Figure 2 for backbone-backbone hydrogen bonds. Simply us-
ing the mean and standard deviation of these functions to pre-
dict BSSE between fragment interactions may be a very fast
method but it has some disadvantages. First, BSSE always in-
creases the stability of dimers and thus will only lie on one

size of zero on the real number line. Therefore, the BSSE
values cannot be truly normally distributed. Second, for each
interaction type, the approximate normal distributions are
all very wide, which would yield imprecise BSSE estimates
and large propagated random error bars. Finally, in each of
the interaction type distributions, there were several outliers
with extremely high values of BSSE which likely have arisen
from poorly refined contacts (steric clashes) in the crystal

FIG. 3. Distance dependence of calculated and predicted basis set superposition error (at MP2/6-31G*) in a pair of hydrogen-bonded backbone peptide
fragments (red) and a nonpolar complex (blue) taken from our protein fragment database. The measured BSSE values are plotted as circles along lines, and
the present model’s predictions (Eq. (2)) are shown as squares with their respective error bars. Asterisks mark the intermolecular distances found in the PDB
structures. Since the model was parameterized with PDB geometries (i.e., near equilibrium), the BSSE model has more success with interactions at near-
equilibrium distances than at very close intermolecular distances.
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FIG. 4. (a) Model for predicting basis set superposition error trained with 312 protein backbone-backbone hydrogen bonding fragment interactions. The data
were fit with a linear regression model using a bimolecular proximity descriptor as an independent variable and had an R2 of 0.89. (b) The model for BSSE
trained with 354 nonpolar complexes from the protein fragment database yielded an R2 of 0.85.

structures. Either further optimization of the protein structures
or some sort of database filtering criteria would be required to
address this problem.

Since BSSE has a strong dependence on the geometric
orientation of two interacting fragments, we introduce a sim-
ple geometry-dependent model to estimate fragment contri-
butions to BSSE rather than a Gaussian pdf. In order to build
our model, we introduce a bimolecular proximity descriptor
to quickly and roughly measure the proximity P of two frag-
ments A and B:

PAB = a + b
NA∑

i

NB∑
j

e−cr2
ij , (2)

where NA and NB are the numbers of heavy (non-hydrogen)
atoms in fragments A and B, a, b, and c are (positive and real)
optimizable parameters, and rij is the distance between heavy
atoms i and j. Thus, only the proximal non-hydrogen atoms on
two different fragments significantly contribute to the overall
proximity score. The score has a few desirable properties: it
takes on only positive values, is small for non-interacting frag-
ments, and it qualitatively models the exponential-like decay
in actual distance dependence curves (see Figure 3). In ad-
dition, the BSSE estimator in Eq. (2) should be less sensi-
tive to the molecular partitioning scheme than a counterpoise-
based method for IBSSE, since the atomic contributions
to BSSE fall off quickly with distance. In other words,



144110-5 Model of basis set superposition error J. Chem. Phys. 135, 144110 (2011)

FIG. 5. Distribution of errors in BSSE predictions for the fragments making up the HIV-2 protease/indinavir complex. Although two of the individual errors
were quite large, we observed favorable cancellation of these errors toward zero, which allowed for our close estimate of overall BSSE for the complex.

including additional distant atoms in a fragment interaction
will have little effect on the sum in Eq. (2). The parameters a,
b, and c could be made to depend on the atoms i and j con-
sidered, since different fragment contributions to BSSE may
have different distance dependencies (e.g., aliphatic vs. aro-
matic or ionic fragments), but in our initial investigations we
used one parameter set for each type of interaction.

We trained Eq. (2) to fit the computed BSSE (at MP2/6-
31G*) of the 312 hydrogen-bonded backbone-backbone sys-
tems at their PDB geometries and found the best agreement
with the calculated values when a = 0.254, b = 3.88, and
c = 0.191. We investigated varying the power of rij in
Eq. (2) and found no significant improvements from using
rij rather than r2

ij in the backbone-backbone hydrogen bond
complexes. Our best model had a coefficient of determination
of R2 = 0.89 (Figure 4(a)). The same function parameterized
for the nonpolar (van der Waals) complexes yielded the opti-
mal parameters a = 0.522, b = 9.11, and c = 0.285, and an
R2 of 0.85 (Figure 4(b)). The nonpolar complexes provided
more of a challenge to fit than the backbone-backbone hydro-
gen bonds due to their higher chemical diversity. The charged
systems were divided into positive and negatively charged in-
teractions. The final parameter sets are shown in Table I.

By using the fragment BSSE data as a reference set, we
can now predict systematic and random errors due to BSSE

TABLE I. Parameterization of Eq. (2) for four different interaction types.

Type N a b c R2

Nonpolar 354 0.254 3.883 0.1907 0.85
Hydrogen bond 312 0.522 9.105 0.2847 0.89
Positively charged 44 0.983 29.35 0.4226 0.68
Negatively charged 63 1.57 29.28 0.3456 0.77

in large biomolecular systems. After calculating a total energy
for a system, it is fragmented according to the same rules used
in designing the reference database. Each resulting fragment
is then labeled according to interaction type. In the case of
any fragment with multiple interaction types, a hierarchy was
used which was determined by the relative contributions to
BSSE from the four different interaction classes. Negatively
charged moieties take the highest precedence due to being the
highest BSSE-contributing interaction class. In the absence of
negative charges, positive charges are sought, followed by hy-
drogen bonds. In the absence of all these features the interac-
tion is considered nonpolar. The predicted “systematic error”
(BSSE) then comes directly from evaluation of Eq. (2) (using
the appropriate parameter set from Table I) and the random
error comes from the linear regression model as evaluated by
Eq. (3) below, where t is the Student’s t-value which depends
on the population size N and the desired confidence limit, x̂
is the newly estimated BSSE value, xi and yi are the database
predicted and measured BSSE values, and x̄ is the mean pre-
dicted BSSE value in the reference set.

ErrorRandom = tS1/2

√
1 + 1

N
+ (x̂ − x̄)2∑N

i (xi − x̄)2
, (3)

where

S =
∑N

i [yi − (bxi + a)]2

N − 2
. (4)

By assuming additivity of fragment contributions, the overall
systematic error (total BSSE estimate) is then the arithmetic
sum of the predicted fragment BSSE contributions and the
overall random error (total error bar) is the Pythagorean sum
of the random error estimates.
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Applications

To demonstrate the use of these models, we first ex-
amined intermolecular BSSE in the case of protein-ligand
binding by studying the HIV-2 protease/indinavir complex
(PDBID: 1HSG). The fragments studied were the same that
were used in a previous study.8 The 21 fragments were evalu-
ated for BSSE at MP2/6-31G* and were classified according
to interaction type. We predicted the fragment contributions
to BSSE with Eq. (2) and Table I and compared our predic-
tions with the measured BSSE values. The results are listed in
Table II. Over all 21 fragment interactions, we predicted the
total BSSE to within an error of 1.02 kcal/mol, which lay
within our estimated error bar of 2.26 kcal/mol (68% con-
fidence). We observed that some of the individual fragment
BSSE predictions were off by a significant amount (our model
predicted fragment 4 to be 2.14 kcal/mol too high in BSSE),
but overall the population of individual errors seemed to can-
cel favorably toward zero (Figure 5).

We then examined intramolecular BSSE in the case of a
small, synthetic, helical protein with a known crystal struc-
ture (Figure 6, PDBID: 1AL1). The structure was saturated
with hydrogen atoms, followed by an optimization of their
positions with the ff99sb force field. The structure was then
partitioned with our in-house fragmentation program into
10 backbone-backbone hydrogen bonded complexes and 3
nonpolar complexes from sidechain-sidechain interactions.

TABLE II. Results from predicting the BSSE of 21 independent chemical
fragments involved in the binding of indinavir to HIV-2 protease. The frag-
ments are identified by system number and are labeled by interaction types:
np: nonpolar, p: polar, pc: positively charged, and nc: negatively charged. The
last two rows contain arithmetic and Pythagorean sums for the propagated
systematic and random errors. Units are kcal/mol.

Predicted Measured Predicted Measured
Number Type BSSE BSSE error error

1 np 1.49 2.05 0.30 − 0.56
2 np 0.83 0.90 0.30 − 0.07
3 pc 1.66 1.45 0.38 0.21
4 nc 10.40 8.27 1.01 2.14
5 nc 6.97 6.90 0.93 0.07
6 nc 2.10 3.47 0.93 − 1.37
7 p 2.62 3.07 0.17 − 0.44
8 np 1.45 2.13 0.30 − 0.68
9 np 1.41 1.98 0.30 − 0.56
10 np 2.08 1.90 0.30 0.19
11 np 1.26 1.33 0.30 − 0.06
12 np 1.26 1.66 0.30 − 0.40
13 np 1.43 1.72 0.30 − 0.30
14 np 0.91 0.70 0.30 0.21
15 np 0.84 1.10 0.30 − 0.26
16 np 0.73 0.63 0.30 0.11
17 np 1.51 1.15 0.30 0.36
18 np 1.33 1.28 0.30 0.05
19 np 0.88 1.05 0.30 − 0.18
20 np 1.62 1.57 0.30 0.05
21 nc 3.26 2.77 0.92 0.49
Arithmetic sum 46.06 47.08 . . . − 1.02
Total error bar . . . . . . 2.26 . . .

FIG. 6. Helical protein fragment structure (PDBID: 1AL1) used in the
demonstration of the presented model for intramolecular basis set superpo-
sition error. The fragment-based model predicted 30.94 ± 0.74 kcal/mol of
overall IBSSE. The sum of calculated BSSE values for the interacting frag-
ments was 31.60 kcal/mol.

By analyzing the intramolecular interactions making up the
overall system and using the models built from Eq. (2) and
propagating error estimates, we estimated the overall IBSSE
at MP2/6-31G* to be 30.94 ± 0.74 kcal/mol (68% confi-
dence). For comparison, we also separated the individual
chemical fragments and measured the BSSE between them
with the traditional intermolecular counterpoise method. The
sum of fragment-based contributions was 31.60 kcal/mol,
which is close to the estimate from the statistical model and
lies within the estimated error bar.

The last test of our method involved the investigation of a
set of 9 native NMR and 33 decoy folds of the Pin1 WW do-
main (PDBID: 1I6C). A common way of testing score func-
tions and methods of protein folding prediction is to compare
native and decoy protein folds and attempt to energetically
separate them. The free energy differences between native
and non-native protein folds are typically on the order of 10–
20 kcal/mol, so accurate energy computation is very impor-
tant for successful discrimination between native and decoy
folds. FMO-MP2/6-31G* + PCM energies of this particular
set were evaluated previously20 but were unable to discrimi-
nate between native and decoy folds. To examine the effect of
IBSSE on this result, we estimated the magnitudes of IBSSE
in each fold according to the presently described method. As a
validation step, we computed the sum of measured fragment
BSSE values for one of the native NMR models which was
97.7 kcal/mol. Our estimated value using the statistical model
was 93.28 ± 3.85 (95% confidence). Over the whole set of
decoys, we observed that the native NMR models had tighter
intramolecular packing and therefore yielded generally higher
IBSSE estimates than the non-native folds. We also observed
that the spread in IBSSE estimates was around 70 kcal/mol,
which was unexpectedly large. BSSE is usually thought of
as a systematic error in that it always overestimates stability,
and these errors are hoped to largely cancel when compar-
ing different conformations of the same system. However, we
observe in this set a very wide distribution of IBSSE values
in the same protein system, implying that much of the error
would not cancel when comparing conformational energies.
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FIG. 7. (a) The estimated intramolecular basis set superposition errors of a set of native and decoy folds of a small protein fragment, the Pin1 WW domain
(PDBID 1I6C). The native NMR models are highlighted with asterisks. (b) The relative FMO-MP2/6-31G* + PCM energies plotted against all-atom root mean
square deviation from a reference NMR structure. Uncorrected energies are shown in black while BSSE-corrected energies are shown in red with their estimated
error bars. All folds contained a significant amount of BSSE, but the variance in the BSSE magnitudes lead to a different ordering of folds by energy after BSSE
corrections.

This leads to a different ranking of folds by energy before and
after IBSSE corrections (Figure 7).

CONCLUSIONS

We have presented a simple parameterized model us-
ing a novel bimolecular proximity descriptor to quickly esti-
mate the basis set superposition error of small molecular frag-
ments constituting large biomolecules. These fragment-based
BSSE estimations can be propagated over a large biomolecule
or complex to estimate inter- or intramolecular BSSE. The

method has the advantage of requiring no additional quantum
calculations, but rather it requires an analysis of the compris-
ing molecular interactions and relies on fitted statistical mod-
els that assume additivity of fragment contributions to overall
IBSSE. Along with an estimate for overall BSSE, the method
also can generate error bars, allowing the researcher to intro-
duce confidence limits in their results when attempting to dis-
tinguish between protein folds or ligand poses. The method
could easily be extended for use with other chemical systems,
quantum methods, or basis sets by replacing the training set
data.
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