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SUMMARY
At the dawn of the era of personalized, systems-driven medicine, computational or in silico
modeling and the simulation of disease processes is becoming increasingly important for
hypothesis generation and data integration in both experiment and clinics alike. Arguably, this is
nowhere more visible than in oncology. To illustrate the field’s vast potential as well as its current
limitations we briefly review selected works on modeling malignant brain tumors. Implications for
clinical practice, including trial design and outcome prediction are also discussed.
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INTRODUCTION
Biological sciences rely on modeling systems that help conceptualize, understand, test and
predict the physiological and pathophysiological phenomena being studied. These modeling
strategies are rich and diverse, and they include not only in vitro and in vivo but also
theoretical or in silico approaches. Mathematical and computational cancer modeling have
recently gained momentum. This is because of a combination of related factors, which
include the advent of systems biology-driven concepts in biomedicine that draw from an
ever increasing volume of molecular data,1–5 novel and cancer-focused interdisciplinary
funding programs at the National Institutes of Health, such as the Integrative Cancer
Biology Program or ICBP [http://icbp.nci.nih.gov/] and the availability of comparably
inexpensive computational power necessary to run larger and clinically relevant simulations.
In silico works such as the one by Anderson et al.,6 which presented a mathematical,
continuum-discrete hybrid model on studying the microscopic interaction of a virtual tumor
with its microenvironment, showcase this type of interdisciplinary approach to the broader
biomedical community. Other prominent theory-inspired works on tumorigenesis include
the application of game theory 7–9, scaling laws 10, 11, fractals 12–14 and graph theory 15, to
name only a few. Using these and other methods and techniques, cancer-related topics of
interest for applied mathematicians and biophysicists now go beyond the classic domains of
studying volumetric tumor growth dynamics16, 17 and vascularization patterns.18–21 These
techniques now extend to investigating, for instance, genetic instability22 and mutagenesis,23

as well as the complexity of tumor-immune system interaction.24, 25 A description of the
entire field of in silico cancer research is beyond the scope of this review. We therefore have
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chosen to exemplify the development of modeling in clinical-cancer medicine by reviewing
selected works on modeling progression and therapy of highly malignant brain tumors. We
briefly discuss the current limitations as well as the potential of in silico cancer modeling for
the near future.

IN SILICO MODELING OF BRAIN TUMORS
DEVELOPMENT OF INTEGRATED IN SILICO MODELS

Over the past decade, modeling of malignant brain tumors has become popular in the in
silico research field. One reason is that despite all efforts, the outcome of patients suffering
from high-grade astrocytomas or gliomas (most notably glioblastoma (multiforme; GBM)
remains grim and, therefore, innovative approaches are desperately needed. Secondly, brain
tumors grow within a biologically contained environment; that is, they tend not to
metastasize outside the central nervous system, and thus seem to pose a more circumscribed
and, from a mechanistic modeling perspective, bio-mechanically approachable problem.
Thirdly, while countless experimental and clinical studies have undoubtedly advanced our
understanding of the molecular and microscopic basis of this type of neoplasm, we are often
left with too few clues as to how to connect the many data ‘dots’ across the scales of
interest. Powerful integrative platforms are therefore required to capture the complex
dynamics at all levels of organization (i.e. molecular, cellular, and organism)26. As such, the
pathogenesis and pathophysiology of brain tumors provide an ideal target for applying
computational and mathematical methods and techniques.

Starting in vitro—A significant body of in silico work has focused on developing a better
understanding of glioma growth through the use of mathematical models that focus on data
derived from in vitro growth studies. Some three decades ago, Greenspan27, 28 put forward
two important, yet generic and rather simplified assumptions, that a micro-tumor’s geometry
remains spherical at all time, and that the internal core of the tumor turns necrotic. Follow-
up work by Chaplain and Sleeman29 introduced biomechanics, including elasticity, to
describe the mechanical interactions between tissue and the expanding microscopic tumor.
The authors modeled the material composition of a solid tumor using a strain energy
function, attempting to deduce a basic mathematical description of the processes involved in
cancer grading and staging from the in silico results of simulating solid tumor growth in
conjunction with aspects of surface morphogenesis. Greenspan’s seminal work also
provided the basis for a brain tumor model developed by Zheng et al.30 which presented a
multi-scale hybrid (see Box 1) computer simulator to investigate the mechanisms of cancer
infiltration based on in vitro data. More recently, Khain and Sander31 presented an invasive
glioma model that used two coupled reaction-diffusion equations to study growth
instabilities and the patterns emerging in vitro. Furthermore, Frieboes et al.32 studied the
growth and shape of human gliomas in vitro and in silico as a function of oxygen, nutrient
and growth factor concentrations and of cell adhesion forces. The authors built up a two-
dimensional spatial tumor mass model that described growth dynamics and the change of
morphology, using a finite element method to solve a set of nonlinear differential equations.
Based on the results, the authors proposed that the instability of tumor morphologies, which
lead to tumor invasion, is quantitatively related to spatial variations of molecular level
diffusions. Since brain tissue can be described as a nonlinear viscoelastic solid 33, assuming
displacement and strain to be small often turn out to be rather insufficient approximations of
the actual tissue response, and so a finite element analysis is commonly employed to reduce
the complicated mechanical problem to a more simplified matrix equation.34–36 Although
these cancer models retain some level of validity for tumors cultured in vitro, in reality,
tumors tend not to grow strictly spherical and the internal core of the tumor is not
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homogenously necrotic, rendering the initially stated assumptions somewhat unrealistic for
describing the in vivo situation.

BOX 1

Terms and definitions used in in silico modeling

• Continuum models describe terms like the change in tumor cell density,
chemoattractant diffusion and even kinetic molecular pathway networks with a
set of differential equations.

• A discrete model is commonly represented by a cellular automaton or CA. CA
describes a spatial matrix in which the dynamics are defined by a set of local
interaction rules among neighboring ‘nodes’ that can also decide the transition
and communication among the grid points.

• Hybrid approaches combine both continuum and discrete techniques in one form
or another

• ABM is a specialized CA technique that represents a complex system, regardless
of its nature, as a collection of autonomous, decision-making entities called
‘agents’. Following a set of predetermined rules, each agent can individually
execute a series of operations and make decisions. Note that such an agent can
represent e.g. a cluster of cells, a single cell, protein(s), or gene(s) as an entity.

Adding the in vivo perspective—On the in vivo modeling side, Wasserman and
Acharya 33 presented an integrated, universal framework to predict the direction and extent
of spread of a primary brain tumor with respect to time. This tumor growth model is
implemented using a nonlinear finite element method with several clinical applications in
mind that ranged from prediction and tumor boundary delineation, to research on growth
pattern, diagnostic decision support and radiotherapy planning. With these goals in mind, a
number of mathematical continuum (Box 1) model have been developed,37–40 based largely
on clinical imaging data such as serial CT scans, or more recently on nuclear magnetic
resonance (NMR) images. These studies utilize, in one form or another, reaction-diffusion
equations of the type detailed in Box 2. The results of these models support the notion put
forward by Woodward et al.40 Firstly, that gliomas infiltrate so diffusely that they cannot be
cured by surgery alone; secondly, that the more extensive the resection, the greater the life
expectancy; and, thirdly, that measurements of the two rates, growth and diffusion, may be
able to predict survival rates better than the current histology-based grading of gliomas.41–43

A considerable shortcoming of all these models is that, while they can grossly estimate the
boundaries of the cortical and ventricular surfaces of the brain, they cannot account for the
spatial heterogeneity of brain tissue with respect to grey and white matter. In an attempt to
overcome this limitation, Swanson et al.44 presented a mathematical model of gliomas based
on proliferation and diffusion rates that incorporated the effects of augmented cell motility
on white matter compared with grey matter, which in turn allowed for asymmetric non-
spherical tumour geometries to develop. The authors subsequently revised their model45 to
quantify spatio-temporal growth and invasion of gliomas in three dimensions (3D)
throughout a virtual human brain, in an effort to predict sites of potential tumor recurrence.
The simulation results showed good agreement with clinically observed glioma progression
patterns using CT scanning. Clatz et al.34 and follow-up work by this group35 also
developed a set of 3D in vivo models based on clinical NMR images. Their models
employed a finite element method to simulate the invasion of a GBM into the brain
parenchyma and to simulate its mechanical interaction with the invaded structure. Clatz’s
algorithm34 relies on diffusion tensor NMR imaging to account for anisotropic cell diffusion
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along white matter tracts; the algorithm couples the reaction-diffusion equation used to
model tumor growth with the mechanical constitutive equation used to simulate its
concomitant mass effect, i.e. the parenchyma’s mechanical reaction to the tumor’s
expansion. The authors then compared their simulation results with glioma growth observed
on two consecutive NMR imaging data sets from a patient with a brain tumor, and noted a
good correlation between modeling results and imaging data.

BOX 2

Here, c represents cell density, D· ∇2c stands for the diffusion of cells, r · c is growth, and
m · c and K (t) · c describe cell loss due to mutation and treatment, respectively.40

Agent-based modeling, a hybrid approach—Despite their unquestionable merits, the
above reviewed models describe glioma growth only as evolution of the local tumor cell
density at a comparably macroscopic scale. Moreover, these models rely on reaction
diffusion equations to account for tumor propagation and such a continuum approach
inevitably fails to capture the discrete nature of an individual cell’s activity let alone a single
sub-cellular protein. More generally, for the case of tumor angiogenesis, Orme and
Chaplain46 already highlighted the shortcomings of employing a continuum framework. To
address these limitations, Kansal et al.47, 48 introduced a discrete (Box 1) cellular automaton
(CA)49 in an attempt to model Gompertzian GBM growth over nearly three orders of
magnitude in tumor radius with only four microscopic parameters: the cell-doubling time,
the nutritional needs of growth-arrested cells, the nutritional needs of proliferating cells, and
the effects of mechanical confinement. Nonetheless, these CA models fell short of
investigating relevant fluid physical aspects. Since neither a true continuum nor a discrete
model can fully describe the cancer system under investigation, hybrid (Box 1) approaches
including the so-called agent based modeling (ABM) technique, which encompasses both
continuum and discrete modules, have gained popularity. In particular, the ability of the
ABM technique to simulate tumor properties across multiple scales in space and time lends
itself for studying highly malignant brain tumors.50 Mansury et al.51, 52 developed a set of
two-dimensional brain cancer models, which simulated on the microscopic scale glioma cell
proliferation, migration, quiescence and apoptosis using the aforementioned discrete module
whereas the distribution and diffusion of chemo-attractants on the multicellular scale was
modeled with a continuum module. Furthermore, Mansury and Deisboeck51 introduced a
chemotactic ‘search precision’ (Box 3) to represent the impact of cell signal processing
accuracy on the motility of glioma cells along the microenvironmental path of “least
resistance, most permission and highest attraction”.50

BOX 3

Here, Tj denotes the attractiveness of location j, Lj is the error-free evaluation of location
j, and εj ~ N(μ, σ2) is an error term that is normally distributed with mean μ and variance
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σ. The parameter ψ takes on a positive value between zero and one and represents the
extent of search precision.

Incorporating the molecular dimension—Athale et al.53, 54 expanded this
‘microscopic-macroscopic’ work by adding the all important molecular scale in form of a
simplified representation of the EGFR pathway, which is crucially involved in glioma
progression55 and could be of significance for therapeutic outcome.56 In this approach each
EGFR pathway comprising molecule is represented by an equation of the kind described in
Box 4. In this model, the EGFR-downstream protein phospholipase C-gamma (PLCγ) is
employed to ‘decide’ the cell’s phenotype, in contrast to previous works that utilized a
probability module to determine a cell’s phenotype. Using this novel design Athale et al. 53

described how the molecular profile of each individual glioma cell impacts the cell’s
phenotypic switch, and how such single-cell decisions can potentially affect the dynamics of
the entire tumor system. In a follow-up study,54 the authors then demonstrated that
increasing the EGFR density per cell results in an acceleration of the entire tumor system’s
spatiotemporal expansion dynamics. Zhang et al.57 extended this work by presenting a 3D
multi-scale agent-based brain tumor model (Figure 1), which integrated an implicit mitogen-
activated protein kinase (MAPK) module58 as well as a cell-cycle description, at the sub-
cellular scale, which was modified from Alacon et al.59 This study also included a more
complicated extracellular matrix representation at the microscopic scale and investigated
how molecular perturbations percolate across scales in space and time. Together, this work
has triggered specific experimental research at collaborating sites that may lead to the
discovery of interesting therapeutic targets. This outcome illustrates how modeling can serve
as a hypothesis-generating tool that can be explored in an experimental laboratory and
eventually in clinics.

BOX 4

Here, Xi is the mass of ith (i =1–14) molecules of the implemented EGFR signaling
network and αi, βi (i =1–14) are the rate of synthesis and degradation rate of a given
pathway molecule.

Conversely, models can confirm and expand clinical observations. For example, Frieboes et
al.60 recently presented a novel predictive 3D algorithm, based on first-principle reaction
diffusion equations. The model contains a variety of diffusive substrates and processes set
within the context of micro-macro functional relationships. The work of these authors has
allowed brain tumor morphology to be correlated to growth by quantifying the
interdependence of tumor mass on both the microenvironment (including angiogenesis) and
cell phenotypes.

PRACTICAL APPLICATIONS OF IN SILICO MODELING
Chemotherapy—From a clinical perspective, theoretical modeling has already found
application particularly in simulating the impact of radiotherapy and chemotherapy on tumor
growth. This is most relevant as both modalities are standard components of conventional,
adjuvant treatment protocols following surgical resection of high-grade gliomas. Other than
Woodward et al.40 who simulated brain tumor growth and infiltration following various
extents of surgical resection, Tracqui et al.39 developed a basic mathematical algorithm that
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modeled the changes of glioma density, c(x,t), at location x and time t, to describe the
tumor’s sensitivity to various chemotherapy regimens. As input data, the authors used eight
serial CT scans from a patient with anaplastic astrocytoma, at the time of recurrence (i.e. 3
years after diagnosis and initial radiotherapy), taken over the course of 12 months. The
patient’s treatment consisted of five cycles of six drugs (6-thioguanine, procarbazine,
dibromodulcitol, CCNN, 5-fluorouracil, and hydroxyurea; given over 15 days, repeated
every 6–8 weeks), and two cycles of cisplatin and neutron beam irradiation. An optimization
algorithm that minimizes the error between simulated tumor area and glioma area on CT
determined the best fit of the model’s six unknown parameters, which included proliferation
rate and cell-diffusion coefficients. Overall, there was good agreement with the clinical data
and the authors also showed that at a later stage during chemotherapy, the emergence of a
chemo-resistant tumor sub-population was capable of causing treatment failure.39 Building
on this work, Swanson et al.61 developed a similar continuum model but considered the
impact that the brain’s known vascular heterogeneity may have on delivery and thus efficacy
of chemotherapy. Considering that grey matter is more vascularized than white matter, and
incorporating the notion that glioma cell motility is higher in white matter, cancer cells
would spend more time in grey matter regions and thus be longer exposed to higher levels of
chemotherapy. The authors implemented such underlying tissue heterogeneity in setting up a
periodic region distribution and then simulated expansion, chemotherapy and recurrence of a
high-grade glioma in the fronto-parietal region of the brain. Comparison with real NMR
imaging patterns of a glioma patient treated with the receptor tyrosine kinase inhibitor
imatinib mesylate suggested that indeed, the grey matter portion of the tumor may be more
accessible to chemotherapy while tumor progression likely continues in the already
infiltrated, adjacent white matter areas. Another mathematical approach has recently been
reviewed by Sanga et al. 62, as an extension of the model presented by Frieboes et al.32 The
authors applied the earlier concept using multicompartment pharmacokinetics modeling to
examine the impact of chemotherapy (e.g., cisplatin and doxorubicin) on tumor response.
Their simulation results confirmed that the overall growth of the tumor mass depends
significantly on the diffusive distribution of nutrients, tissue pressure, and chemotherapeutic
drugs.

Radiotherapy—In silico modeling has had an even longer standing track record in the area
of radiotherapy. Kirby et al.63, 64 recently formulated a brain tumor growth model for
predicting survival in a population of patients who underwent radiotherapy. More
specifically, a stochastic modeling approach based on a Monte Carlo simulation was used to
simulate a virtual population of 2,000 patients. These simulation data were then compared
with clinical data (from 154 adult GBM patients who received 60 Gy radiotherapy without
adjuvant chemotherapy), i.e. fitted to clinical survival data by minimizing the weighted sum
of squares of errors between the simulated and real Kaplan-Meier survival curves. The
results showed a close fit not only at early but also at later times when they were able to
reproduce the rather dismal outcome with few long-term survivors. The authors go on to
suggest that an escalation of the radiotherapy dose to 74 Gy would increase overall survival
time as well as the portion of long-term survivors. This treatment ‘recommendation’ is in
accordance with the one by Dionysiou et al.65 who presented a 3D spatio-temporal model to
simulate tumor cell repopulation, expansion and shrinkage. Their work focused also on the
cancer cell cycle in the presence of radiotherapy and a linear quadratic model described the
number of cells killed. The results indicate that with regards to GBM control, a
hyperfractionation scheme that delivers a total radiotherapy dose of 72 Gy in 6 weeks is
superior compared with standard fractionation that delivers only 60 Gy over the same
duration. This finding was supported by the clinical studies cited by the authors.66 Recently,
the same group improved their model by incorporating tumor vasculature and oxygen supply
based on imaging data.67 Comparing glioma eradication using hyperfractionation and
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accelerated hyperfractionation radiotherapy regimen, the model’s predictions, including
improved tumor control through hyperfractionation irradiation, are semi-quantitatively in
agreement with the clinical findings reported by the Radiation Therapy Oncology Group
Study 83-02.

Future work on modeling treatment aspects will include adding an explicit molecular scale
(incl. relevant cell signaling pathways), simulating therapeutic impact on the surrounding
normal tissue, improvement of parameter values using patient-specific data, and systematic
comparison of the modeling predictions with clinical data before, during, and after
multimodality treatment.

FUTURE PERSPECTIVES
A review of selected neuro-oncology studies demonstrates that the field of in silico tumor
modeling has indeed come a long way over the past decade. Is in silico tumor modeling
ready for primetime? The answer to this question depends largely on the deliverables. While
there certainly is much reason for optimism, realistically detailed and sufficiently accurate
predictions that can reliably guide a patient’s treatment may still be years away. The in silico
generation of experimentally testable hypotheses, however, is now a widely pursued
interdisciplinary strategy in academic and in industrial labs around the globe, where
computational modeling has also become an integral part of the elaborate drug discovery
process.62, 68 Moreover, few would argue that the integration of ever increasing yet
disparate data can be achieved with anything but cutting edge computational modeling. As
such, in silico modeling already is a key force in cancer research, and it is likely to find
applications in the clinic in the near future.

Multi-scale in silico modeling can yield valuable insights into the complex interactions of
sub-cellular signaling networks and how molecular perturbations percolate throughout and
across scales. The first and most critical step, however, is to decide on the scope of a model;
this is an evolving target and always a compromise between model simplicity and thus
tractability, and its accuracy or biological relevance. Ultimately, this decision will depend on
the biomedical questions asked and hypothesis posed. The same considerations will
determine the choice of the modeling technique and the approach taken, i.e. ‘top-down’ or
‘bottom-up’. In contrast to most wet-lab studies, in silico experiments can be done in a fast
and relatively cost-efficient way because it is possible to vary multiple parameters
reproducibly over a wide range. In silico predictions can readily assist scientists in focusing
laboratory studies and eventually should aid clinicians in individualizing patient treatment
plans. The goal of any such patient-specific, ‘systems medicine’ is to maximize
effectiveness while minimizing negative side effects, with obvious benefits for the
individual patient as well as for the public health-care system at large.

While potential applications for educational purposes in biomedical teaching and training
are abundant, the real test of in silico oncology (i.e. its quantitative application to and
reliability in the clinical setting69 ) is just at the beginning and several key obstacles will
need to be tackled first to move the field to the next level. Firstly, in order to reduce the
inaccuracy as a result of estimating yet unknown parameters, novel quantitative
experimental techniques such as (phospho-proteomics and) molecular imaging70 need to
make the transition into conventional clinics to allow for more-precise parameterization of
the algorithms on the microscopic-molecular interface. Hence, this will increase the models’
predictive power and thus validity. Secondly, on the computational side, a considerable
technical limitation is posed by the increasing size of the current algorithms. That is,
generally, the higher a model’s spatial and temporal resolution, the higher is its compute
power demand and thus the longer the run time of the code in a given information
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technology environment. For instance, while agent-based modeling has demonstrated
significant potential, its main drawback is the relatively intense compute power that is
currently required to describe a cancer system at the level of its many constituent units and
at a clinically relevant scale. Given the enormous amount of data already collected and that
we certainly will have to deal with in the near future, parallelization of the code for use in
high-performance compute environments is likely only a temporary relief, and multi-scale,
multi-resolution modeling seems a more promising route. Here, compute power would be
allocated to areas of the tumor model, and at times, that likely have a more substantial
impact on the predictive power, which will require a close evaluation with clinical data.
Thirdly, another important aspect relates to improving the communication and interaction
between in silico investigators and their experimental and clinical counterparts. In fact,
access to raw data and exchange of expertise has been widely recognized as a critical
obstacle that could hinder progress throughout the interdisciplinary Life Sciences field. It is
here where new efforts such as the Center for the Development of a Virtual Tumor (CViT;
https://www.cvit.org) will have a significant impact. Funded by the National Cancer
Institute and charged with developing an online cancer modeling community and the
innovative information technology infrastructure to support it, CViT is poised to develop a
semantic digital model repository that is geared towards facilitating retrieval, exchange and
usage of cancer modeling related tools and data.71

CONCLUSIONS
In summary, at the dawn of the era of cancer systems biology computational and
mathematical (i.e., in silico) modeling is and will continue to be an integral part of oncology
medicine. The in silico oncology field holds as much promise as it faces technical
challenges, which it must resolve to reach its true potential – that is, facilitating and
accelerating the paradigm-shifting transition from conventional population-based to patient-
specific cancer medicine.
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KEY POINTS

• In generating experimentally testable hypotheses and facilitating multi-modality
data integration, in silico modeling is a driving force behind cancer systems
biology.

• As exemplified by reviewing selected works on malignant brain tumors,
practical applications for computational and mathematical cancer modeling
reach from simulating aspects of tumor initiation and progression to treatment
impact modeling.

• Such in silico modeling is an additional tool geared to aiding experimental
researchers and physicians in investigating the ever increasing complexity of the
processes involved in tumorigenesis, thus supporting innovative discovery
research and accelerating the identification of promising targets.

• While there is no single simulator platform that fits all needs, discrete-
continuum (hybrid) modeling, and here especially agent-based approaches, are
particularly promising in integrating molecular, microscopic and macroscopic
oncology data and in analyzing processes across scales in space and time.
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Figure 1.
The left schematic displays the simplified EGFR gene-protein interaction network, within a
3 compartment sub-cellular environment, implemented in each cancer cell (modified from
Zhang et al.57). The simulation snapshot on the right depicts an advanced version of the
model that implements a tumor progression path. As a result, various more aggressive tumor
clones emerge that accelerate tumor expansion towards a chemotactic source (red circle, top
right) [for more details, see http://arxiv.org/abs/q-bio.TO/0612037].
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