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Abstract
Mediation is usually assessed by a regression-based or structural equation modeling (SEM)
approach that we will refer to as the classical approach. This approach relies on the assumption
that there are no confounders that influence both the mediator, M, and the outcome, Y. This
assumption holds if individuals are randomly assigned to levels of M but generally random
assignment is not possible. We propose the use of propensity scores to help remove the selection
bias that may result when individuals are not randomly assigned to levels of M. The propensity
score is the probability that an individual receives a particular level of M. Results from a
simulation study are presented to demonstrate this approach, referred to as Classical + Propensity
Model (C+PM), confirming that the population parameters are recovered and that selection bias is
successfully dealt with. Comparisons are made to the classical approach that does not include
propensity scores. Propensity scores were estimated by a logistic regression model. If all
confounders are included in the propensity model, then the C+PM is unbiased. If some, but not all,
of the confounders are included in the propensity model, then the C+PM estimates are biased
although not as severely as the classical approach (i.e. no propensity model is included).

Mediation occurs as part of a hypothesized causal chain of events: The independent variable
(e.g. a life skills training intervention) has an effect on the mediator (e.g. participation in
leisure activities), which then affects the outcome variable (e.g. substance use). Mediators
are measured after an intervention or treatment has occurred, but usually prior to the primary
outcome of interest. For example, knowledge of health consequences, attitudes, social
norms, availability, and refusal skills have been documented to mediate the effect of
prevention interventions on adolescent smoking (MacKinnon, Taborga, & Morgan-Lopez,
2002).

Classical Approach for Assessing Mediation
Mediation is often tested using a regression analysis procedure (Baron & Kenny, 1986;
MacKinnon, Fairchild, & Fritz, 2007). The first step is to determine whether there is a
relationship between the treatment or hypothesized cause, T, and the outcome variable, Y.
This relationship is often called the total effect (typically denoted by c). Many researchers
(e.g. Cole & Maxwell, 2003; Collins, Graham, & Flaherty, 1998; MacKinnon, Lockwood,
Hoffman, West, & Sheets, 2002; Shrout & Bolger, 2002) have argued that this step is
unnecessary and we do not consider it here. The second step is to determine whether there is
a relationship between T and the mediator, M (path a in Figure 1). The third step is to
regress Y on both T and M. Figure 1 is a path diagram that illustrates the second and third
steps. The effect of M on Y holding T constant is denoted b (see Figure 1). The estimated
mediating (or indirect) effect, ab, is the estimated regression coefficient for path a multiplied
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by the estimated regression coefficient for path b. The direct effect is the effect of T on Y
when controlling for M and the estimate is denoted by c′ to distinguish it from c, the effect
of T on Y when M is not in the model. According to this approach, the effects are additive
such that the direct effect plus the indirect effect equals the total effect. This additivity
assumption further implies that there are no interactions between T and M (this assumption
is sometimes referred to as the no interaction assumption). A single mediator model is
shown in Figure 1. The second and third steps are usually fit simultaneously using SEM
software rather than as two separate regressions. We will refer to this method as the
classical approach to assessing mediation. In summary, the classical approach estimates the
effect of the intervention on the mediator, of the mediator on the outcome, and of the
intervention on the outcome when controlling for the mediator.

Throughout this article, randomization to an intervention or treatment is assumed.
Randomized treatments allow for causal inference regarding the effect of the treatment on
the mediator because randomization ensures that there are no confounders of T and M.
However, as several authors (Robins & Greenland, 1992; Rosenbaum, 1984; Rubin, 2004)
have pointed out, the classical approach to mediation analysis relies on the assumption that
individuals are also randomly assigned to levels of the mediator if causal inferences are to be
made about the relationship between the mediator and the outcome. Randomization to levels
of the mediator guarantees that there are no confounders (i.e. third variables) that influence
both the mediator and the outcome. This assumption is also known as sequential
ignorability. If all confounders of M and Y are measured and adjusted for, then causal
inferences can be made about the M to Y relationship. One method of adjusting for
confounders is an analysis of covariance (ANCOVA) or regression adjustment approach in
which the confounders are included in the regression models for mediation. Another method
is to use propensity score models.

Propensity score methods have advantages over ANCOVA/ regression adjustment methods
that have been detailed elsewhere in the non-mediation context (see for example, Schafer &
Kang, 2008 and VanderWeele, 2006). Briefly, propensity score methods allow the inclusion
of a large number of potential confounders. Even when the number of confounders is not
large, propensity score methods have advantages over regression adjustment methods in that
regression adjustment methods extrapolate to regions of the covariate space in which there
may not be individuals in the sample to support causal inference. Propensity score methods
and the diagnostics that are used to assess balance and overlap bring these issues to the
attention of the researcher.

The purpose of the present manuscript is to call researchers’ attention to the problem of
confounding of the M and Y relationship and to propose that researchers use propensity
score methods to adjust for this confounding. The paper is organized as follows. First, the
potential outcomes framework for causal inference (Holland, 1986; Rubin, 1974), on which
propensity score methods are based, is introduced. Second, we introduce propensity scores.
Third, we present a simulation study and results from that simulation study to show that
inclusion of propensity scores in a mediation context provide unbiased estimates of
mediated effects and that not adjusting for confounders of the M to Y relationship results in
biased estimates of the mediated effect. Finally, we discuss limitations, future directions,
and suggestions for applied researchers.

The Potential Outcomes Framework
Non-Mediation Context—Here we introduce the potential outcomes framework for the
simplest case, that is for estimating the causal effect of T on Y. In the next section, we
introduce a mediating variable. In the potential outcomes framework, each individual has a
potential outcome for each possible treatment condition. When there is a treatment group
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and a control group, there are two potential outcomes for each participant: the outcome that
would be obtained under the treatment condition and the outcome that would be obtained
under the control condition. Let Ti denote the treatment received by participant i, i = 1, . . . ,
N. Those with Ti = 1 are said to be treated, and those with Ti = 0 are said to be untreated. Let
Yi(0) be the outcome if Ti = 0, and Yi(1) be the outcome if Ti = 1. The individual causal
effect is the difference between these two potential outcomes for participant i, Yi(1) – Yi(0).
Because each participant can be observed in only one of these conditions, in every case one
of the potential outcomes is missing and therefore, the individual causal effect can not be
computed directly. However, various strategies have been proposed to estimate the average
causal effect (ACE) defined as E(Yi(1) – Yi(0)), the causal effect averaged over participants
in the study.

A graphical depiction of a data set for a sample of N individuals is shown in Figure 2. For
those individuals who do not receive the treatment (Ti = 0) the potential outcomes under the
treatment (Yi(1)) are missing as denoted by shading. Likewise, for those individuals who
receive the treatment (Ti = 1), the potential outcomes, Yi(0), are missing as denoted by the
shading. Finally, let Zi denote a vector of additional pre-treatment confounders which may
influence the probabilities of Ti = 1 and Ti = 0 in any setting other than a completely
randomized experiment. These confounders are variables that take on their values before the
intervention and, thus, cannot be affected by it.

Mediation Context—When a mediator is involved, the situation becomes more
complicated because there are now potential outcomes for both the mediator and the
outcome. Figure 3 shows that for individuals who do not receive the treatment, the potential
outcomes for the mediator, Mi(1), and the outcome, Yi(1), under treatment are missing as
indicated by the shading. Likewise, for individuals who receive the treatment, the potential
outcomes for the mediator, Mi(0), and the outcome, Yi(0), are missing as indicated by the
shading. Hence, there are many missing values because the mediator is re-expressed as a set
of potential outcomes Mi(1), Mi(0) corresponding to the possible values of Ti = 1, Ti = 0.
The outcome then becomes a function of both the treatment received and the mediator.
Although much has been written about the potential outcomes framework in general (Little
& Rubin, 2000; Rubin, 2005; Winship & Morgan, 1999) and in the context of mediation
specifically (Gallop et al., 2009; Jo, 2008; Lynch, Kerry, Gallop, & Ten Have, 2008; Sobel,
2008; Ten Have et al., 2007), to our knowledge the use of propensity score methods for
adjustment of confounders of the M to Y relationship has not yet been proposed.

Propensity Scores
We introduce propensity scores for estimating the causal effect of a non-randomized T on Y,
which is the simplest case. We will then introduce propensity scores in the context of
mediation. Rosenbaum and Rubin (1983b) defined the propensity score as the probability
that an individual receives the treatment, πi = Pr(Ti = 1 | Zi) given measured confounders, Zi.
Propensity scores balance covariates in the following sense: In a subset of the population
with equal πi’s, treated and untreated participants have identical distributions for Zi. The
balancing property of the propensity score has led to many propensity-based techniques for
estimating ACE’s, including matching (Rosenbaum & Rubin, 1985), subclassification
(Rosenbaum & Rubin, 1984) and inverse-propensity weighting (Robins, Rotnitzky, & Zhao,
1995). The πi’s are commonly obtained by logistic regression of Ti on Zi, but more flexible
alternatives, including generalized boosted regression (McCaffrey, Ridgeway, & Morral,
2004), classification trees (Luellen, Shadish, & Clark, 2005) and robit regression (Liu, 2004;
Kang & Schafer, 2007) have also been applied.
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An advantage of propensity scores is that they reduce the large number of potential
confounders into a single numerical summary. More importantly, a comparison of
individuals in the control group with individuals in the intervention group who have the
same (or nearly the same) propensity score is the same as a comparison of intervention
conditions which were randomly assigned (Rosenbaum, 2002; Rosenbaum & Rubin, 1983b).
In other words, they create a random assignment environment even in non-randomized
experiments (assuming that the propensity model includes all confounders).

Recall that the primary criticism of the commonly applied classical approach for assessing
mediation is that individuals are not randomly assigned to levels of the mediator and
therefore, we cannot assume that there are no confounders which influence both the
mediator and the outcome. We propose an approach, which we will refer to as Classical
+Propensity Model (C+PM) in which the mediator is treated as any other non-randomly
assigned treatment variable and propensity scores are used to help remove the selection bias
that may result when individuals are not randomly assigned to levels of the mediator. The
use of propensity scores assumes that all confounders are measured and included in the
propensity model for predicting selection into the levels of the mediator. This assumption is
untestable; however, sensitivity analysis (Rosenbaum & Rubin, 1983a) may be done to
determine the degree to which results may be biased. The C+PM approach estimates the
same effects (i.e. a, b, and c′) as the classical approach but adjusts for confounding by using
propensity score methods. The rationale underlying the C+PM approach is that if we could
incorporate a model for selection on the mediator, then we could obtain an unbiased estimate
of the effect of M on Y (i.e. path b), which we could then multiply by the estimate from a
regression of M on T (i.e. path a; recall T is randomized and so path a may be given a causal
interpretation).

The fundamental problem in assessing mediation using the classical approach is that
individuals are not randomly assigned to levels of the mediator and, therefore, the effect of
the mediator on the outcome will be biased unless this selection is taken into account. The
research questions we wish to address are 1) whether incorporating the propensities in the
classical mediation model (i.e. C+PM) recovers unbiased estimates of the effect of the
mediator on the outcome and therefore, unbiased estimates of the indirect effect of the
treatment on the outcome, 2) whether 95% confidence intervals (CI) for the indirect effect
perform well, and 3) whether including a subset of the confounders in the propensity model
reduces bias and improves CI coverage compared to not including a propensity model (i.e.
the classical approach). Next, we present a Monte Carlo simulation study to address these
questions.

Method
The population model for the simulation study was one in which values of the treatment
indicator, T, were generated from a random binomial distribution with p = .5. The mediator
also had only two levels (M = 1, M = 0). The outcome was continuous. Receiving the
treatment increased the odds of M = 1 by 2.72 (i.e. the logistic regression coefficient was
equal to 1.0). The standardized regression coefficient of the effect of the mediator on the
outcome (i.e. path b) was .7, .5, or .3. Therefore, the indirect effect was ab = .7, .5 or .3. The
standardized regression coefficient for the direct effect (i.e. path c′) was .2. Four
confounders, z1, z2, z3, and z4 were specified to have increased the odds of M = 1 by 1.35,
1.65, 2.01, and 2.46 (i.e. logistic regression coefficients of .3, .5, .7, and .9), respectively.
These four confounders had regression coefficients for the effect on the outcome all equal
to .4. The confounders were randomly generated from a multivariate normal distribution and
were allowed to covary, as it is likely that in practice confounders are correlated. The
correlations among all confounders were all equal to .3. The four confounders had varying
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influences on the mediator. For example, z1 has much less influence on M than z4, which
has a larger influence that may occur if z4 was a measure of M at a previous time point.
Values for M were generated from a random binomial distribution with p = 1/[1 +
exp−(T +.3z1+.5z2+.7z3+.9z4)]. The outcome variable was generated with an error term
randomly drawn from a normal distribution. Three outcome variables were generated
corresponding to the three different values of path b as described above.

The simulation study included four sample size conditions (N = 100, 250, 500, and 1000)
and three conditions for inclusion of confounders in the propensity model (no confounders,
two confounders (z3 and z4), all four confounders). The model with only two confounders
included the two with the largest influences on M. We used these two because we are
assuming that an investigator would most certainly be aware of confounders in their
substantive area that have influences as strong as these. For example, most investigators
would include a measure of M from a previous time point as a confounder. For each
condition, 1000 replications were obtained and the bias, relative bias, and MSE were
computed. The Sobel standard errors (Sobel, 1982) for the indirect effect were computed.
The propensity score model was estimated using logistic regression and the logit propensity
score was then included as a covariate in the mediation analysis. There are numerous
methods for incorporating the propensity scores in the mediation model (e.g. matching;
Rosenbaum & Rubin, 1985) but this simulation study will focus on incorporating the logit
propensity score as a covariate. Comprehensive simulation studies comparing different
methods of estimating propensity scores have been presented elsewhere (Lee, Lessler, &
Stuart, 2010). This is not the goal of this study. Instead, the goal is to demonstrate that
propensity score methods can be used to adjust for confounding in the mediation context. In
the simulation study, M is binary but it is not necessary that M be binary. Propensity score
methods for continuous treatments have been developed (Hirano & Imbens, 2004; Imai &
van Dyk, 2004) and would apply to a continuous M as well. Whether M is binary or
continuous will not change the conclusions of the simulation study.

Results
Results are presented in Table 1 for path a, Table 2 for path b, Table 3 for path c, and Table
4 for the indirect effect, ab. Confidence interval coverage proportions for the indirect effect,
ab, are presented in Table 5. As may be expected, variability of the estimates and mean
squared error decreases as sample size increases. Thus, conclusions summarized below
apply to all sample size conditions and sample size will not be discussed further.

We are primarily interested in the estimates for path b and for the indirect effect, ab. Tables
2 and 4 show that when all confounders are included in the propensity model, unbiased
estimates are obtained for both b and ab, regardless of the size of b. When no confounders
are included (i.e. the classical approach), the estimates are biased. When some but not all of
the confounders are included in the propensity model, then the estimates are biased although
not as severely as when the propensity model is not included. It is also important to note that
not including the propensity model resulted in substantial underestimation of path a (see
Table 1) and path c′ (see Table 3). In fact, c′ was estimated to be 0 using the classical
approach with no adjustment for confounding; therefore, a researcher would conclude that
the effect of the treatment on the outcome is fully mediated by M. On the other hand,
inclusion of some but not all of the confounders in the propensity model did not result in
substantial bias for the estimates of a and c′.

Confidence interval coverage for ab was excellent (range of .92 to .95) when all
confounders were included in the propensity model (see Table 5) regardless of sample size
or the size of the population effect of b. However, when half of the confounders were
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included in the propensity model, confidence interval coverage was acceptable for smaller
sample sizes and larger values of the population effect of b but coverage was unacceptable
and deteriorated as sample size increased and the size of the population effect of b
decreased. The acceptable coverage with smaller sample sizes was likely due to the
confidence intervals becoming too wide to be useful. When a propensity model was not
included at all, coverage was unacceptably high for all sample size conditions and sizes of
the population effect of b.

To summarize, the results showed that if all confounders are included in the propensity
model, then an unbiased estimate of the effect of the mediator on the outcome is obtained. If
the propensity score model is not used (i.e. the classical approach) then the estimates of the
effect of the mediator on the outcome is severely biased. If some, but not all, of the
confounders are included in the propensity model, then the estimates are biased although not
as severely as when the propensity model is not included. In some cases (e.g. path b), the
effect is overestimated and in other cases (e.g. path a), the effect is underestimated when the
confounders are not included. The size of the effect of path b does not seem to influence the
results.

Discussion
If all the confounders are included in the propensity model, then all estimates in the
mediation model studied here are unbiased. If some confounders are omitted from the
propensity model, then the estimates for path b and ab were biased although not as severely
as the classical approach. If applied researchers included a propensity model for M and
incorporated the resulting estimated propensity scores into the classical approach (i.e. the C
+PM approach), it would be an improvement over the current classical approach. Another
option is to include the confounders in the classical approach directly, for example via a
regression model, although it is often the case that there are many potential confounders and
they are not particularly of substantive interest. Propensity scores are a means of
summarizing a large number of confounders. It should be noted that just like the classical
approach or using the classical approach with a regression adjustment for confounders, the
use of propensity scores assumes that there are no unmeasured confounders, since only
measured confounders may be included in the propensity model. Nevertheless, incorporating
propensity scores represents a substantial improvement over methods such as the classical
approach which generally include very few, if any, potential confounders. Note that the
primary assumption in C+PM is that there are no unmeasured confounders of the mediator
and outcome. Thus, if the researcher had measured all possible confounders in the study and
included them in the analysis, this assumption would be met. Of course, practically, this
would be nearly impossible to implement because the researcher is most likely not aware of
all the confounders and therefore has not measured them. In addition, it is impossible to
know whether one has included all possible confounders, so it is impossible to know
whether the assumption has been met. However, as more confounders are included, the
assumption becomes more plausible and estimates are less biased. The general
recommendation is to include all variables that are thought to be confounders of the
relationship between M and Y. The few variables, such as gender or race, typically included
in studies using the classical approach probably do not include all the confounders that result
in the selection bias present in M. Therefore, it is advisable to include as many potential
confounders as is practically possible.

Even if the researcher had measured all possible confounders and could include them in the
analysis, there are several disadvantages to doing this. First, there is a practical limit on the
number of confounders that may be included depending on the sample size. Second,
inclusion of the confounders in, for example, an SEM assumes that the confounders are
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linearly related to the intervention, mediator, and outcome. The researcher can partly get
around this assumption by including all possible interactions among the confounders and/or
including quadratic terms, but then there will be even more variables to include in the
analysis. Thus, it is usually impractical to include enough potential confounders to come
close to meeting this assumption.

Every method makes assumptions, some of which are not testable, and researchers should
make clear the assumptions made. The classical approach used to test mediation usually
does not include confounders, which is essentially the equivalent of using a t-test to test non-
randomized treatment effects in the non-mediation context. No researcher would do this;
rather they would include confounders as in an ANCOVA. A better approach, for the
reasons give above, is to use propensity score methods to adjust for confounding. The main
point of this article is to convince researchers to adjust for confounders when assessing
mediation, specifically by using propensity models.

Limitations and Future Directions
In the simulation study, we added the logit propensity as a covariate in the models. As
mentioned previously, there are other methods for incorporating the propensity scores such
as matching, weighting, or subclassification. In addition, there are methods other than
logistic regression for estimating the propensities. We plan to investigate these other
methods in the mediation context in future simulation studies. The simulation presented here
is small; we plan to include many more confounders and non-linear relationships between
the confounders and M and Y in future studies. The present simulations also did not address
whether the C+PM method proposed here outperforms the more complicated methods, such
as principal stratification (Frangakis & Rubin, 2002), that have been proposed for mediation
(Jo, 2008). However, we are currently addressing this issue. Nevertheless, this simulation
shows that as long as all confounders are measured and included in the model and the
additivity assumption holds (i.e. no interaction between T and M), then unbiased estimates
can be obtained by simply including a propensity model for M to model the selection bias
and proceeding as usual. It is important to note that any confounders included in the
propensity model should measured prior to T and M and therefore cannot be affected by T or
M. In other words, as with propensity score methods in the non-mediation context,
propensity score models should not include post-treatment or time-varying confounders.
Finally, we used the Sobel standard errors for the indirect effect because they are less
computationally intensive than bootstrap standard errors but bootstrap standard errors may
be more accurate than the Sobel standard errors (e.g. Shrout & Bolger, 2002).

In conclusion, we recommend including confounders of the mediator to outcome pathway
when assessing mediation. One easy way to do this is to use a propensity model for selection
into levels of the mediator as proposed above.
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Figure 1.
Single mediator model.
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Figure 2.
Hypothetical data set with potential outcomes. Shading indicates missing data. Y(0)
represents the value of the outcome under the control condition and Y(1) represents the
value of the outcome under the treatment condition. Z represents pre-treatment confounders.
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Figure 3.
Hypothetical data set with potential outcomes for both the mediator and outcome. Shading
indicates missing data. M(0) represents the value of the mediator under the control condition
and M(1) represents the value of the mediator under the treatment condition.
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Table 1

Simulation results for path a, the effect of treatment on the mediator (population value = 1.0).

All confounders Half of confounders No confounders

N = 100

Mean 1.068 0.997 0.709

Bias 0.068 −0.003 −0.291

Rel. Bias 0.068 −0.003 −0.291

SD 0.560 0.537 0.423

MSE 0.318 0.289 0.264

N = 250

Mean 1.035 0.976 0.689

Bias 0.035 −0.024 −0.311

Rel. Bias 0.035 −0.024 −0.311

SD 0.329 0.321 0.255

MSE 0.110 0.104 0.162

N = 500

Mean 0.998 0.939 0.664

Bias −0.002 −0.061 −0.336

Rel. Bias −0.002 −0.061 −0.336

SD 0.228 0.217 0.178

MSE 0.052 0.051 0.144

N = 1000

Mean 1.002 0.942 0.666

Bias 0.002 −0.058 −0.334

Rel. Bias 0.002 −0.058 −0.334

SD 0.172 0.166 0.137

MSE 0.029 0.031 0.130
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