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Abstract
Researchers often include patient-reported outcomes (PROs) in Phase III clinical trials to
demonstrate the value of treatment from the patient’s perspective. These data are collected as
longitudinal repeated measures and are often censored by occurrence of a clinical event that
defines a survival time. Hierarchical Bayesian models having latent individual-level trajectories
provide a flexible approach to modeling such multiple outcome types simultaneously. We consider
the case of many zeros in the longitudinal data motivating a mixture model, and demonstrate
several approaches to modeling multiple longitudinal PROs with survival in a cancer clinical trial.
These joint models may enhance Phase III analyses and better inform health care decision makers.
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1 Introduction
Researchers design phase III oncology clinical trials to include serial assessment of
treatment efficacy, including disease progression. Although overall survival is regarded as
the primary treatment goal for most oncology trials, progression-free survival (PFS) is also
used as a clinical trial endpoint. Corroborative support, often in the form of supporting
patient-reported outcomes (PROs), may be required to demonstrate the benefit of an
extended disease-free interval (Joly et al., 2007; Markman, 2009). Joint models of
longitudinal PROs and PFS can be used to investigate the association between these two
endpoints and to account for informative censoring of longitudinal outcomes upon disease
progression (Ibrahim et al., 2010). Such censoring results in discontinuation of the treatment
regimen and the regularly-scheduled PRO assessment that correspond with treatment visits.

Development of joint longitudinal-survival models in the literature has been prolific during
the last 10–15 years (see Tsiatis and Davidian (2004) for a review). The most common
approach is to suppose that a set of latent variables underlie both longitudinal and survival
outcomes, inducing correlation between them (Henderson et al., 2000). That is, a joint
model for longitudinal observation Y and survival observation T supposes that a latent u
underlies both, [Y, T] = ∫ [Y, T|u]du, where it is often assumed that the u completely mediate
the dependence so that [Y, T|u] = [Y |u][T|u]. Within this general mixed modeling
framework, countless variations have been studied, drawing upon innovations developed in
the longitudinal and survival modeling literatures. Work has expanded longitudinal
submodels to accommodate multivariate continuous (Chi and Ibrahim, 2007; Lin et al.,
2002), count (Dunson and Herring, 2005), and zero-inflated (Rizopoulos et al., 2008)
outcomes. Notable extensions to the survival submodels may include incorporation of
competing events (Elashoff et al., 2008), cure fractions (Yu et al., 2004; Chi and Ibrahim,
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2006), or go beyond proportional hazards models (Tseng et al., 2005; Chen et al., 2004).
Other authors have considered relaxing parametric assumptions by allowing flexible
longitudinal trends (Brown et al., 2005) and nonparametric random effect distributions
(Brown and Ibrahim, 2003; Wang and Taylor, 2001).

Several conceptual approaches to joint modeling may be distinguished. First, one may be
interested primarily in the survival time and wish to use the longitudinal data only as time-
varying covariate information. The justification for joint modeling is then as an errors-in-
covariates problem, which was the motivation for early two-stage models (Tsiatis et al.,
1995). Second, if primary interest is in the longitudinal data, then survival data are included
to address informative censoring (Hu and Sale, 2003). The absence of longitudinal
observations beyond the event time is a form of non-ignorable missingness, so that one must
specify a joint distribution for the longitudinal and missingness (survival) processes.
Longitudinal measures may also be considered as potential surrogate endpoints (Xu and
Zeger, 2001a,b). Supposing treatment affects survival through the latent variables, we wish
to learn about them by considering longitudinal data. Finally, we may be interested in the
distinct effects of the treatment on each of the two outcome types. It is for this setting that
we propose a fully Bayesian approach to multivariate joint models for multiple longitudinal
measurements and survival outcomes.

At least one paper (Hanson et al., 2010) has thoroughly investigated whether there is any
measurable advantage to joint modeling versus utilizing the observed longitudinal data
directly as a time-varying covariate. These authors’ primary interest was in the survival
outcome, and the time-varying covariate was measured essentially without error; the study
concluded that using raw longitudinal data was superior. Notwithstanding this outcome,
many other authors have shown efficiency and bias advantages to joint modeling (Faucett
and Thomas, 1996; Faucett et al., 1998; Wulfsohn and Tsiatis, 1997).

Although the FDA has stated that demonstration of a clinically meaningful difference in PFS
renders it an appropriate endpoint for oncology registration trials, the use of PFS as an
acceptable endpoint remains highly contested (Tuma, 2009). In this context, patient-reported
symptom assessments constitute an available and useful endpoint to demonstrate the patient
benefit associated with an incremental PFS improvement (Markman, 2009). Unfortunately
the inclusion of PRO assessments is seldom done with the rigor used to specify and analyze
traditional endpoints of survival and tumor response (Joly et al., 2007). It is possible that this
lack of robust PRO information in submission data packages has resulted in few examples
where PRO assessment has influenced clinical decision making. We therefore present
several approaches for the joint analysis of PRO and PFS data to demonstrate the value of
new oncology therapies.

Our approaches were motivated by data from a phase III clinical trial of second-line therapy
for malignant pleural mesothelioma (MPM), a rare and rapidly fatal form of lung cancer
associated with asbestos exposure (Jassem et al., 2008). The study featured a repeatedly
observed multi-item symptom-based PRO questionnaire. Models that simultaneously
incorporate these multiple PRO items potentially increase efficiency by utilizing all
available information and its correlation structure. The PROs were measured using a finite
visual analogue scale that ranges from 0 (the absence of the measured construct) through
100 (the greatest possible severity).

We designed our joint modeling applications to address the bounded support of the
measurement scale and the large number of zero longitudinal observations. The hierarchical
parametric approach we advocate affords significant flexibility in the way correlation across
time and PROs is captured through person-specific random effects. Accordingly, we are able
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to estimate the associations among PROs and between PROs and survival, the separate
treatment effects on each questionnaire symptom, and the individual-level variation in latent
disease process.

The remainder of this paper evolves as follows. Our oncology data set is introduced in
Section 2. In Section 3 we develop our multivariate and univariate models in generality,
emphasizing the breadth of our model class, and specify the “base” joint model that we fit to
these data. Section 4 gives details of the model comparison metrics and computational
methods employed to fit the models. Section 5 then presents model comparison summaries
and detailed results for a few chosen models, along with graphical displays to help interpret
the random effects. Finally, Section 6 concludes with a discussion of our findings, a
description of the approach limitations, and a listing of future potential research avenues.

2 Motivating Mesothelioma Clinical Trial Data
To motivate the development of our models, we consider data from a clinical trial that
enrolled 243 patients with locally advanced or metastatic MPM (Jassem et al., 2008). The
primary goal was to compare pemetrexed plus best supportive care (Pem+BSC) to BSC
alone. These patients had received only one prior chemotherapy regimen for advanced or
metastatic disease, but prior treatment with pemetrexed was an exclusion criterion.
Procedures included a baseline visit and every-21-day PRO assessments during the
therapeutic phase, then follow-up until death or censoring. Each patient contributed between
1 and 14 (median 3) PRO observations and censoring was rare (7 %). Let us next consider
the longitudinal and survival measures in more detail.

2.1 Longitudinal Measures
The PROs were measured using the well-established and validated Lung Cancer Symptom
Scale (LCSS) (Hollen et al., 1995). This questionnaire assesses the impact of treatment on
six lung-cancer-related symptoms (anorexia, fatigue, cough, dyspnea, pain, and hemoptysis)
and three global measures (symptom distress caused by lung illness, interference with
carrying out normal activities, and quality of life). Study participants rated their symptom
experience for the 24 hours prior to data collection by placing a mark on a 100 mm visual
analogue scale, with 0 indicating no symptoms and 100 indicating the worst possible
symptoms. Baseline LCSS scores showed large numbers of zeros (for all items except
Quality of Life), with proportions ranging from 5% (interference) to 21% (cough). For
purposes of this paper, we have simplified our analyses by considering only symptoms
directly attributed to pathology of the primary organ (the lung) but have excluded
hemoptysis, which occurs only rarely in these patients (Hollen et al., 2006). Hence, we
demonstrate our approaches by modeling only longitudinal LCSS cough and dyspnea
(shortness of breath).

2.2 Survival Outcomes
In the original analysis of these data (Jassem et al., 2008), treatment was found to have a
significant effect on PFS but not overall survival (OS). As stated in that study report, the OS
treatment group comparison was confounded by the patients in BSC group switching to the
active treatment arm regimen (BSC and pemetrexed) upon disease progression. According
to the objectives of this research outlined in the introduction, we limited our analyses of
time-to-event data to the PFS endpoint. Progression of disease was defined on the basis of
the size of the primary tumor; the PFS variable is the time in months from randomization to
progression or death from any cause. We established by visual inspection of the Kaplan-
Meier curves and likelihood-based comparison of various parametric survival models that
the Weibull distribution is reasonable for the PFS outcome. The only other covariate we
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considered, in addition to treatment group, was a binary indicator of previous response to the
chemotherapy (responder vs. non-responder) that patients received prior to entering this
second-line study.

3 Multivariate Joint Longitudinal-Survival Models
In the following section, we introduce a general latent variables framework for joint
modeling, tailor this to PRO data by adding a longitudinal mixture model, and give details of
several models fit to our mesothelioma clinical trial data.

3.1 General Approach
We begin with some notation. Let Yi(s) = (Yi1(s), …, YiK(s))T be a vector of K distinct PROs
for the ith person at time s. Then let Ti be the event or censoring time for the ith person, with
δi an indicator of censoring (= 1 if progression or death was observed). We assume that a set
of underlying latent trajectories Ui(s) = (Ui1(s), …, UiK(s))T influences both the longitudinal
PRO and survival outcomes.

To construct parametric linear models for each outcome, let μ be the mean of the
longitudinal distribution, where we assume all the longitudinal outcomes come from the
same distributional family. Then let λ be some feature of the survival distribution (say, the
hazard or odds) and let g1 and g2 be appropriate link functions so that we can build linear
models for these two types of parameters. Each longitudinal PRO submodel depends on a
p1k-vector of parameters β1k with corresponding vectors of covariates X1ik(s). The survival
submodel depends on a p2-vector of parameters β2 with covariate vector X2i(s). Finally, let A
be a function of the trajectories Ui(s) and a parameter vector α2 (we reserve α0 and α1 for
future use). Assembling these into a general joint mean response model,

(1)

where k = 1, …, K indexes the PROs. We assume that all the outcomes are conditionally
independent given the person-specific trajectories, Ui(s). That is, the underlying disease
trajectory induces all the interdependence among PROs, across times, and between PROs
and survival. The connection between PROs and survival is clear from this expression, by
virtue of Ui(s) appearing in both submodels. However, we must be a bit more explicit to
clarify how we incorporate correlation across time (i.e., between Yi(s) and Yi(s′)) and
among longitudinal measures (i.e., between Yik(s) and Yik′(s)).

To this end, we first simplify the model by supposing that a single underlying trajectory,
Ui(s), influences all the outcomes. Then we let the trajectory depend on a small, finite set of
person-specific random variables, ui. In order to learn about the latent trajectory, we assume
that it appears in each longitudinal submodel, scaled by a factor α1k, so that Uik(s) =
α1kUi(s). For identifiability, we choose a single PRO to determine the scale of the trajectory,
say k = 1 so that α11 = 1 is fixed. Then we may link the K longitudinal submodels and the
single survival submodel either via the value of the random trajectory Ui(s) or the vector of
random variables ui. The first case yields g2(λi(s)) = X2i(s)β2 + α2Ui(s), while the second
case yields g2(λi(s)) = X2i(s)β2 + α2ui. Note that the second is computationally simpler
because it does not lead to time-varying covariates in the survival submodel.

We make a further distinction between these “shared effect” models, in which common
parameters across submodels induces a limited form of association, and “correlated effect”
models, in which separate parameters in each submodel come from a common distribution,
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inducing a more flexible form of association (Fitzmaurice et al., 2009). As an example of the
latter, suppose that different trajectories underlie the evolving disease, Uik(s) for k = 1, …, K
PROs. Then let each of these be governed by a set of person-specific random variables uik,

so . Correlation among longitudinal outcomes may be induced by

supposing that these come from some joint distribution,  where Σu
parameterizes Cov(uik, uik′). Of course, one can also specify hybrid approaches using some
combination of these two methods, linking via the value of the trajectories or the random
variables, and using shared or correlated random effects.

3.2 Two-Part Longitudinal Model
An additional modeling complication is motivated by the data in Section 2, namely, a large
number of observed zeros in the longitudinal data. A common approach to modeling
“excessive” zeros is to mix a point mass at zero with a parametric distribution. In the case of
count data, such two-part models combine a point mass at zero with a discrete distribution
that may also generate zero values, yielding, for example, zero-inflated binomial (Branscum
et al., 2004) or zero-inflated Poisson (Lachenbruch, 2002). In the case of continuous data, a
“spike and slab” mixture combines a point mass at zero with a continuous distribution, for
example a normal (Ghosh and Albert, 2009), lognormal (Zhang et al., 2006), or gamma
(Yau et al., 2002).

We extend our Section 3.1 joint modeling framework to include two submodels for each
longitudinal outcome, one for each mixture component. The point mass at zero is governed
by mixing parameter (1 − ω), while the other mixture distribution is assumed to depend on
μ, a mean parameter. Extending the notation of (1), we add a p0k-vector of coefficients β0k
with corresponding design vector X0ik(s) for ωik(s), using link g0.

The next question is whether the two longitudinal submodels will be connected by shared or
correlated random effects. For now, we assume the latter, so that there are two underlying
trajectories per person per PRO, namely U0i(s) = (U0i1(s), …, U0iK)T and U1i(s) = (U1i1(s),
…, U1iK(s))T. Then (1) is extended to

(2)

Notice that we build the model for ω, which is the probability of not being in the point mass
at zero, so that the effects on ω, μ, and λ will have the same clinical sign, i.e., larger is
detrimental.

3.3 Model Implementation for Meso Data
In order to implement joint longitudinal-survival models for the mesothelioma data
described in Section 2, we must specify distributional assumptions and link functions for the
joint model (2). In the longitudinal submodels, we must address the bounded support of the
PRO scores ∈ [0, 100]; a beta distribution values is a natural choice. In contrast to the cases
in Section 3.2, zero is not in the support of the continuous distribution, so following the
suggestion of a referee, we use the term “zero-augmented” to describe our two-part
approach.

First, we transform the support to [0, 1) by dividing all the scores by 100 and subtracting a
small amount from the few values equal to the upper bound. Next, we consider a
reparameterization of the usual Beta(a, b) distribution using the mean μ and a dispersion
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parameter φ, via a = μφ and b = (1 − μ)φ. Thus we obtain a zero-augmented beta (ZAB)
distribution for a random variable Y ∈ {0} ∪ (0, 1) having three parameters: ω for the
probability of Y ∈ (0, 1), μ for the mean of Y ∈ (0, 1), and φ for the dispersion of Y ∈ (0, 1).
We then build a logistic model for ω (presence of the PRO) and a beta regression model for
μ (severity of the non-zero PRO). Both of these parameters are ∈ [0, 1], so we use logit link
functions for both g0 and g1.

Turning to the survival submodel, we suppose that a parametric Weibull distribution
describes the errors and build a proportional hazards model. The hazard for the ith person at
time s, hi(s), is a product of baseline hazard function h0(s) = γsγ−1 and the parameter λi(s) >
0. Thus we use a log link function for g2, and the usual method of taking the survival
function at the censoring time as the likelihood contribution for censored observations.

Assembling all of these components, we obtain the following manifestation of (2):

(3)

In the implementation of these models below, we assume the U0i(s) and U1i(s) depend on r-
dimensional person-specific parameter vectors ui and possibly parameter vectors α0 and α1,
as described in Section 3.4 below. Then we assume a zero-centered multivariate normal
distribution governs these, with r × r covariance matrix Σu.

We specify independent normal prior distributions centered at 0 with variance 100 for the

main regression effects,  β2, and .
Using the conjugate inverse Wishart prior on Σu, we center it at Ir. Letting the degrees of
freedom equal r ensures this prior is as vague as possible while still proper. The Weibull
shape parameter is bounded, γ > 0, so we choose a gamma prior with mean 1 and variance
10. The beta precision parameters are similarly bounded, φk > 0, so we specify a gamma
prior for each. These have mean φ ̂k and variance φ ̂k2, where φ ̂k is an empirical estimate
based on preliminary analysis. These priors represent a balance between minimal
informativeness and the need to constrain the parameters to a reasonable range to achieve
acceptable MCMC convergence.

In the application to our mesothelioma clinical trial data, let the fixed effect design matrices
X0i(s) = X1i(s) = Xi(s) consist of four entries: an intercept, a linear time effect (day,
standardized by its mean, 75, and standard deviation, 69), a binary indicator of response to
prior treatment (rsp= 1 if responder, = 0 if non-responder), and an interaction term for
treatment (trt= 1 if Pem+BSC, = 0 if BSC alone) with time. No treatment intercept is
included because patients were randomized to treatment, and the treatment groups do not
differ at baseline. The three entries we use in X2i(s) = X2i are simply an intercept, responder
status indicator, and treatment group indicator.

3.4 Latent Trajectories and Hierarchical Structure
The remainder of this subsection specifies several reasonable forms for the latent
components of these models, choosing between shared and correlated random effects, and
choosing whether to link via the values of the random trajectories or the random variables.
The clinical trial data we consider in Section 2 have few observations per person (median:
3), restricting us to fairly simple forms for the person-specific trajectories in these two
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longitudinal submodels. In particular, we take the very simple case of random intercepts in
each model, so that U0ik(s) = u0ik and U1ik(s) = u1ik. This removes the time dependence of
the random trajectories, so that linking via the value of the random trajectory and linking via
the random variables is the same. It remains to specify the underlying structure of these
latent variables.

Single Shared Intercept Model (MV1I)—An extremely simple case of a shared effects
model contains a single random intercept, ui, underlying all K PROs and the survival
outcome. This intercept must be scaled appropriately for each submodel. We use
coefficients α0k and α1k for each longitudinal presence and severity submodel, respectively,
so that u0ik = α0kui and u1ik = α1kui. Then we fix α01 = α11 = 1 for identifiability, and in the
survival submodel, let A(α2, ui) = α2ui. This model represents the simplest possible shared
effects model, but may miss important variations within individuals across PROs.

Two Shared Intercepts Model (MV2I)—A slightly more flexible version of a shared
effects model assumes that two random intercepts, ui = (u0i, u1i)T, underlie all K PROs. One
influences the presence of all the PROs, and the other influences their severity. Again, these
random intercepts must be scaled appropriately for the longitudinal submodels, so we use
coefficients α0k and α1k for the presence and severity, respectively, so that u0ik = α0ku0i and
u1ik = α1ku1i. Then fix α01 = α11 = 1 for identifiability and use A(α2, u0i, u1i) = α2(u0i +u1i)
in the survival submodel. We observed that separate multipliers for the two intercepts
substantially impaired model convergence. Summing is sensible because we expect and in
fact, observe, that the two intercepts are positively correlated, that is, individual-level
probability and severity of symptoms are related. This model allows the presence and
severity of PROs to have different individual-level adjustments, but limits the structure of
these adjustments across PROs.

K Intercepts Hybrid Model (MVKI)—Moving to a hybrid correlated/shared effects
model, let each PRO have a different random intercept ui = (ui1, …, uiK)T, but suppose that
this drives both the presence and severity longitudinal submodels. Assuming the intercept is
on the scale of the severity submodel, we need a scaling parameter α0k for its contribution to
the presence submodel, so that u0ik = α0kuik and u1ik = uik. Then in the survival submodel,

we use . Similar to model UV2I above, summing is sensible because
we observe that the intercepts across PRO items are positively correlated. This model allows
individuals to have different underlying intercepts for each PRO, but requires that the
individual PRO presence and severity effects be proportional to one another, according to
α0k.

2K Intercepts Hybrid Model (MV2KI)—Further expanding the flexibility, we might
assume two random intercepts for each PRO, uik = (u0ik, u1ik)T, then there is no need for
scaling factors in the longitudinal submodels. In the survival submodel, we use

, though this may not be sensible in all settings, e.g., if the
individual-level parameters for the two longitudinal submodels were negatively correlated,
the meaning of α2k would be obscure. This specification, which we term MV2KI, is the most
flexible, allowing an individual’s latent level to vary across all PROs and between the
presence and severity.

Random Effect Distribution—There are several ways of structuring the distribution of

the random effects. For simplicity, we assume , where the r × r covariance
matrix Σu parameterizes covariance between the presence and severity longitudinal
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components. When r is small, a single multivariate normal distribution on the r-vector ui is
tractable. This is the approach we take in the mesothelioma example below, where r is never
larger than 2K = 4. We fit an unstructured Σu matrix, and discuss alternative approaches for
larger r, including means of structuring Σu, in Section 6.2 below.

Univariate Models—We are also interested in fitting a single PRO at a time, jointly with
survival. This leads to interesting special cases of our models above, where we suppress the
k notation for simplicity.

First consider a simplification having only a single random effect, ui, on the scale of the
severity submodel. We use multiplier α0 and for the contribution to the probability
submodel, so that u0i = α0ui and u1i = ui. Then letting A(α2, ui) = α2ui in the survival
submodel leads to a special case of MV1I, which we call UV1I (for univariate 1 intercept).

Next, let ui = (u0i, u1i)T be a 2-vector of random intercepts and suppose that these influence
the presence and severity PROs separately. This leads to a special case of MV2I, which we
call UV2I, where we choose a simple linear combination of the two intercepts in the survival
model, α2(u0i + u1i).

Table 1 present these multivariate and univariate joint models in simple notation that
emphasizes the differences in the contribution of the individual-specific disease process. In
Section 5, we fit these univariate models twice, with each of two PROs playing the role of
Yi(s) in turn. Then we compare the results to multivariate model fits that use the same two
PROs simultaneously with survival.

4 Technical Details
4.1 Likelihood Specification

Let the complete parameter vector for the fixed effects be Θ = (β0, β1, β2, α, γ, φ, Σu), where
φ = (φ1, …, φK)T. The latent trajectories U0i(s) and U1i(s) depend on individual-specific
parameter vectors ui, the elements of which may be PRO-specific random vectors, e.g., ui =
(ui1, …, uiK)T as in MVKI, or be common across PROs, e.g., ui = (u0i, u1i)T as in MV2I.
Collecting the ui for all subjects, we obtain the complete latent parameter vector

. Then the following expression is proportional to the full joint posterior
distribution,

(4)

where for the ith person, the jth observation of the kth PRO is yikj at time sikj, ti is the PFS/
censoring time, and δi is the censoring indicator. Then Y, T, and Δ are the complete vectors
of these observed quantities over all k = 1, …, K, i = 1, …, N, and j = 1, …, ni. The prior
π(Θ) is a product of the independent prior distributions on each element of Θ described in
Section 3.3 above. The ZAB likelihood contribution for each PRO observation, p(yikj|β0k,
β1k, α, ui, φk), is

(5)
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where the parameters are

where we recall that U0ik and U1ik depend on ui and perhaps also on α0 and α1, respectively.

The Weibull likelihood contribution for the ith person is

(6)

according to whether the terminal event was observed or censored, respectively. The
Weibull parameter is λi(β2, α2, ui) = exp (X2iβ2 + A(α2, ui)).

4.2 Model Comparison
To compare among models with different random effect structures and A functions, we
consider several measures of model fit and complexity. We compute both of these measures
separately for the longitudinal and survival submodels of each joint model considered.

The Deviance Information Criterion (DIC) is a measure based on the deviance, D = −2
log(p(y|θ)) (Spiegelhalter et al., 2002). Model adequacy is captured by the posterior mean of
the deviance, D ̄(θ), where smaller values indicate better fit. Effective model complexity is
captured by pD = D ̄(θ) − D(θ ̄), the difference between the posterior mean of deviance and
the deviance at the posterior means of the parameters. Then DIC = D ̄(θ) + pD penalizes
model adequacy by the effective model complexity. Partitioning these statistics into
longitudinal and survival components is straightforward via partitioning the likelihood;
indeed this functionality is programmed into the WinBUGS software. The deviance for the
longitudinal part is negative twice the log of (5), and for the survival part is negative twice
the log of (6).

As several difficulties with DIC have been noted (van der Linde, 2005; Celeux et al., 2006;
Gelman et al., 2004, Ch.4), we also consider predictive measures. Root mean squared
prediction error (RMSPE) measures the model’s ability to predict outcomes not used in
model fitting. We randomly select N(2) = 23 subjects (i.e., 10% of the sample) and extract
their longitudinal and survival outcomes to obtain a validation data set (y(2), t(2)). We do not
select from among those few subjects (7%) who had censored survival observations, since
computing the usual prediction error on censored values is not sensible; assuming censoring
occurs at random, this approach will not bias our results. We fit the model on the remaining
training data, (y(1), t(1)), and obtain posterior predictions for the held-out observations, (ŷ i,
t̂i), for each i ∈ (y(2), t(2)). Then we compute longitudinal root mean square prediction error

 for yi ∈ y(2), and similarly for the survival data
substituting ti for yi in this expression to obtain RMSPEsurv.

Finally, we consider the log pseudo marginal likelihood (LPML). For the same validation
data set, we compute the pseudo marginal likelihood of these predictions, where the
marginalization is accomplished by averaging Monte Carlo samples from the posterior of
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the parameters. That is, for the longitudinal data, we estimate the conditional predictive
ordinate (CPO) of each predicted observation by

 for yi ∈ y(2), where g indexes
MCMC draws from the posterior of the complete parameter vector Ω = (Θ, U), and f(yi|Ω) is
computed using (5). Then we sum over the validation set to obtain

, for which, being similar to a log likelihood, larger values
indicate better fit. We repeat this procedure for the survival data, substituting ti for yi in
these expressions and computing f (ti|Ω) using (6) to obtain components CPOsurv,i and
subsequently the sum LPMLsurv.

4.3 Computing
We used the WinBUGS 1.4software (Lunn et al., 2000), freely available at
www.mrc-bsu.cam.ac.uk/bugs, to fit these models. To implement our non-standard ZAB
submodel, we run WinBUGS from within the BlackBox Component Builder 1.5 (Oberon
Microsystems, Zurich) development environment using WinBUGS Development Interface
(WBDev; Lunn (2003)). This allows the MCMC algorithms to access a ZAB distribution
that we coded in component Pascal. For convenience and reproducibility, we do all of this
via the R2WinBUGS (Sturtz et al., 2005) package for R. Convergence was monitored via
the histories of each chain and their auto- and cross-correlations, density plots, and Brooks-
Gelman-Rubin statistics (Gelman and Rubin, 1992; Brooks and Gelman, 1998). The results
below reflect 2000 iterations of burn-in followed by 5000 production samples from each of
three parallel chains.

5 Results
5.1 Model Choice

Model fit statistics for models described in Section 3.4 are summarized in Table 2 and
Figure 1. The univariate models used one PRO (dyspnea or cough) with PFS, while the
multivariate models fit these same two PRO items simultaneously with PFS.

First, consider the differences between the univariate and multivariate approaches. DIC may
not be compared fairly (summing the DIC for the cough and dyspnea univariate models
would be “double counting” the contribution of survival data), but the prediction statistics
may. The longitudinal RMSPE statistics seem to indicate a small advantage to considering
the PROs separately. However, longitudinal LPML and both statistics in the survival
component are very similar across UV and MV models.

Considering the difference in structure within univariate models, DIC favored the model
with separate intercepts for presence and severity (UV2I). RMSPE values for UV1I and
UV2I were essentially identical for both symptoms in the longitudinal and survival
submodels, as was survival submodel LPML. Longitudinal submodel LPML showed a
benefit to UV2I over UV1I for cough, but was tied for dyspnea.

Turning to the multivariate models, DIC and longitudinal LPML for cough strongly prefer
MV2KI, while the rest of the predictive fit statistics fail to clearly distinguish a “winner.”
Given these results, we advocate UV2I and MV2KI for these particular data.

5.2 Interpretation of Parameters
The β0 parameters, shown in the top row of Figure 2, capture the effects of the covariates on
the logit probability of a non-zero PRO score, with negative parameters representing
improvement of PROs. In most models, these effects are not significantly different from
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zero, though the treatment effects trend toward negative values (i.e., improved symptoms) in
all models, and reach significance for the effect of treatment by day on cough in the MV2KI
model, and both PROs in the MV2I model.

The β1 parameters, shown in the bottom row of Figure 2, represent the effects of the
covariates on the mean of the non-zero PRO scores. Thus, negative parameters represent
improvement in non-zero PRO scores. Again, very few of the scores reach significance,
though responders tend to have lower severity of cough in all of the multivariate models.

The β2 parameters, plotted in Figure 3, represent the effects of the covariates on the log
hazard of progression or death, so negative parameters represent decreased hazard, i.e.,
improved progression-free survival time. Only the univariate models showed trends for
treatment benefits on survival, though the credible intervals narrowly include the null value
of 0.

The matrix Σu contains off-diagonal entries that parameterize the relationships among
person-specific parameters. For example, in the MV2KI model, the 4 × 4 Σu matrix governs
the relationship between presence and severity intercepts for a single PRO (i.e., Cov(u0ik,
u1ik)) and between intercepts for different PRO items (e.g., presence intercepts Cov(u0ik,
u0ik′)). Strong positive correlations were observed within PRO items between presence and
severity for an individual. The correlation coefficient was .61 (CI: .36 – .80) for the two
cough intercepts and .70 (CI: .51 – .83) for the dyspnea intercepts. Similarly strong positive
correlations were observed between PRO items, for example, the intercepts for presence of
cough and dyspnea had correlation .78 (CI: .62 – .88), while the intercepts for severity of
these two symptoms had correlation .62 (CI: .47 – .72). These relationships provide support
for the consideration of multiple PRO items at once, despite the lack of marked efficiency
gains in the main regression estimates (Figs. 2 and 3).

Recall that α2 parameterizes the association between individual-level intercepts for the
longitudinal outcomes and survival. The posterior credible intervals for these parameters
exclude 0 and are positive in all cases except α21 in MV2KI, where the interval did include
the null value. These indicate that individual-level deviations from the norm in PROs behave
consistently with the corresponding deviations in PFS, though perhaps not for cough.
Broadly, the significantly positive α2 parameters support the use of joint modeling of
longitudinal and survival by indicating a significant connection between the two outcome
types.

One interesting feature of our models (and one that is not available in standard models) is
the pattern of individual intercepts that were significantly different from 0. While
significantly non-zero u1i values were evenly split between positive and negative, the
significantly non-zero u0i values were almost entirely negative (not shown). Further, the
observed positive correlation was never reversed when u0i was significantly negative; these
individuals always had either non-significant or significantly negative u1i.

Examining the original data confirms that individuals with significantly negative u0i had
many observed zeros. Taking cough as a representative example, Figure 4 shows the
observed cough scores over time in groups chosen on the basis of their estimated random
effects. Zero values are plotted as stars and non-zeros as solid circles. Those with
significantly negative u0i estimates (top two panels) contain many zero values, while those
with non-significant u0i estimates (bottom two panels) contain no zero values. An absence of
zeros, even with accompanying large LCSS scores, does not lead to significantly positive
adjustments to the probability of non-zero scores (u0i). In contrast, both positive and
negative adjustments to the non-zero LCSS score means (u1i) reach significance.
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Further graphical investigation (not shown) suggests that in participants who never reported
zero on the LCSS scores (suggesting a large, positive u0i would be needed), missing data
and poor PFS outcomes prevent the random intercept from reaching significance. Despite
point estimates that are mostly positive, the credible intervals for u0i are simply too wide to
exclude zero. Further, poor progression-free survival is associated with the greatest
probability of having a non-zero LCSS score. This suggests a possible explanation: missing
data. Consider a participant with one of the largest u0i estimates, who had only two
observations for cough: values of 74 at day 5 and 93 at day 36. The participant then
progressed/died at day 45, and our model produced a significantly positive estimate for u1i
[mean: 2.0, 95% CI: (1.1, 3.0)] and just barely non-significant estimate for u0i [mean: 5.5,
95% CI: (−0.16, 11.9)]. Other patients with large u0i estimates showed similar patterns.

6 Discussion
MPM has a high symptom burden, and symptom relief remains the main goal of MPM
management (van Meerbeeck et al., 2010). Hence, clinical trials in MPM, and other
advanced or metastatic disease with high patient-reported symptom levels, should be
designed to include compelling and comprehensive assessment of patient well-being with
serial collection of sufficient symptom-based PRO data. Effective use of these data will,
however, require a broader standard of evidence than has been specified in the typical study
protocols (Moinpour et al., 2007; Fredheim et al., 2007). Conventional randomized
controlled trial analyses (e.g., the sample mean difference) fail to evaluate individual-level
treatment benefit and its association with the survival outcomes. Our joint models of
longitudinal repeated-measure PRO symptoms with PFS address this shortcoming.

Despite our use of rigorous joint modeling and inclusion of components to specifically
accommodate the longitudinal measurement features of a bounded scale and excess zero
floor effects, our data offered little support for our expectation that active treatment plus
BSC would reduce symptom burden and that this reduction would be associated with
increased PFS, compared with BSC alone. The lack of observed group treatment symptom
differences in this second-line MPM study may be due to its relatively small sample size.
The LCSS questionnaire is structured as a 24-hour recall instrument and the study
administration schedule was approximately every 21 days. Hence, there is a large temporal
gap between longitudinal measurements, and the single cycle assessments may not represent
the true patient symptom experience or the association of symptom burden with PFS. At a
minimum, consecutive daily assessments over a period of cycle days 1 through 7 would
provide more reliable data upon which better statistical modeling could be predicated. To
better evaluate the value of new oncology therapies, study protocols should be developed to
include this enhanced data collection, possibly through the use of electronically reported
PROs, along with analysis plans that include the joint modeling of longitudinal repeated-
measure patient-reported symptom and survival data.

6.1 Limitations of our Analysis
While we have outlined several attractive features of our multivariate joint model approach,
several criticisms of our analysis can be made. One is a possible violation of the
proportional hazards assumption in the Kaplan-Meier curves for the two treatment groups.
The left panel of Figure 5 shows the cumulative hazards and 95% confidence intervals for
each treatment group. While it is difficult visually to judge the proportionality in months 2
through 5, it is apparent that the curves converge at later times, when there are few events
and the confidence intervals overlap completely.

Naïve likelihood estimates of Cox regression parameters (i.e., log hazard ratio for treatment
versus control, unadjusted for responder status or any other variable) are shown in the right
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panel of Figure 5. Time intervals were formed on the basis of having 40 events. The plot
indicates that a piecewise exponential model for PFS (see e.g., Ibrahim et al. (2002,
Example 4.3)) may be more appropriate, since the treatment effect appears to be changing
over time. Such a model posits a baseline hazard λk within small intervals of time Ik = (sk,
sk+1]. Then the individual hazard is a product of this baseline, a covariate effect θik that
could incorporate a time-varying treatment effect, and a frailty term ui.

6.2 Future Work
Substantively, additional research should be conducted to confirm these findings through
use of data from a larger, similarly-designed MPM study. One such study was originally
reported by Vogelzang et al. (2003). These data come from a clinical trial of first-line
therapy for MPM, where LCSS and survival were measured similar to the present study.
With a larger patient population and more measurement times per individual, that study
affords an opportunity to confirm the usefulness of our methods. We may also wish to
consider a different cancer population with PROs measured by a different, yet valid and
reliable, questionnaire.

Further expansions of the multivariate models are of interest. For larger dimension of K, we

might simply consider , where uik are 2-vectors and Σuk parameterizes
correlation between the two longitudinal submodels for a single PRO. However, this does
not explicitly parameterize the relationship among PRO-specific latent effects. For further
simplicity, we could let Σuk = Σu, k = 1, …, K to make the relationship between the presence
and severity random effects the same across PROs.

Alternatively, we may think of adding additional levels to the model hierarchy to induce
correlation among the random intercepts. For example, we might write u0ik = v1k + v20 + ε0ik
and u1ik = v1k + v21 + ε1ik. This adds random effects v1k, k = 1, …, K, for the type of LCSS
score, and v2ℓ, ℓ = 0, 1, for the type of intercept (presence or severity). We would then
modify the design vectors X0i(s) and X1i(s) to remove the first (intercept) entries, in order to
hierarchically center the random effects around β0k1 and β1k1. Structure within the 2K ×2K
matrix Σ results from the correlation among random effects sharing index values of ℓ or k.

Specifically,  and , but Cov(Uℓik, Uℓ′ik′) = 0 so that
we model correlation for random intercepts of the same type (ℓ) or PRO (k), but not across
these categories.

The general model (3) allows us to capture further heterogeneity among subjects by
allowing individual- and PRO-specific random effects at each time point. Then we might
impose structure on these time-varying random effects, such as autocorrelation according to
U0ik(t) ~ N U0ik(t − 1), .

In addition, we may combine the two time-to-event variables (time-to-progression and time-
to-death) into a multivariate survival model joint with either multivariate or univariate
longitudinal outcomes. That is, we might expand (3) to include a multistate survival model
(Huzurbazar, 2005) having three states: baseline disease, progressed disease, and death. We
can build models for the effects of treatment and covariates on the allowed transitions
among these states, accounting for the ordering inherent in these, namely, progression may
occur before death, but not vice versa. We might also consider the use of a Cox proportional
hazards model, which does not impose parametric constraints on the form of the baseline
hazard function as in the Weibull. We hope to report on these and other development in a
future manuscript.
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Figure 1.
Predictive model comparison statistics for models fit to mesothelioma data. Means and 95%
posterior credible intervals are shown.
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Figure 2.
Posterior means and 95% equal-tail credible intervals for parameters governing probability
of non-zero PRO (β0, top row) and mean of non-zero PRO (β1, bottom row). Credible
intervals that exclude the null value of 0 are shaded darker. Circles represent effects on
cough, triangles for effects on dyspnea.
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Figure 3.
Posterior means and 95% equal-tail credible intervals for parameters governing hazard of
progression (β2). Credible intervals that exclude the null value of 0 are shaded darker.
Effects in models joint with cough are plotted as circles; models with dyspnea are triangles.
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Figure 4.
Observed outcomes (zeros plotted as stars) according to individual probability of non-zero
score (u0i) and non-zero score mean (u1i) in a model of cough and progression-free survival.
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Figure 5.
Estimated cumulative hazard functions and 95% confidence intervals for the treatment
group, pemetrexed plus best supportive care (BSC), and BSC alone group (left panel). The
right panel displays simple estimates (circles, plotted at time period midpoint) with 95%
confidence intervals (dashed lines) of treatment effect on progression-free survival (PFS).
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