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Abstract

Background: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle,
histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-
cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal
translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin
immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far.

Methodology/Principal Findings: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to
7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous
findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone
acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes.
Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences
of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed
by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in
response to MYC silencing.

Conclusion/Significance: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge
regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially
our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-
regulation of B-cell genes highlight an interesting aspect of BL biology.
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Introduction

MYC is a transcription factor encoded by the c-MYC gene

(thereafter termed MYC) which regulates an estimated 15% of

genes in the human genome [1]. MYC is a helix-loop-helix leucine

zipper transcription factor which dimerizes with MYC-associated

factor X (MAX) to bind to the DNA consensus motive

(CACGTG), known as Enhancer Box (E-box) [1]. Together,

MYC and MAX coordinately regulate the transcription of distinct

genes involved in cell cycle progression, differentiation, apoptosis,

transformation and genomic instability [2,3]. Elevated MYC

expression can be found in up to 70% of human tumors, and

suppression of MYC is thought to lead to tumor regression [4].

One of the mechanisms of MYC-driven gene activation is the

increase of the local histone acetylation at promoter sites. Once

bound to its target promoter, MYC can interact with histone

modifiers, such as histone acetylases (HATs), GCN5/PCAF,

P300/CBP, TIP60 or HAT-associated proteins (e.g. TRRAP),

resulting in local hyper-acetylation of histones [5,6,7]. Further-

more, MYC can promote transcription by stimulating the RNA

polymerase II [8,9].

MYC can also inhibit transcription of genes (e.g. P15, P21, P27)

by blocking the respective activation factors such as SMAD, YY-1,

SP1, MIZ-1, TFII-I and NF-Y [10]. Furthermore, MYC may also

repress transcription by recruitment of the DNA methyltransferase

co-repressor DMNT3A [11]. DNA methylation is an important

epigenetic modification and associated with transcriptional

silencing. MYC itself is also part of a complex regulatory network,

were MAD family members MAD1, MAD3, MAD4, MXI1,

MNT and MGA function in part as MYC antagonists [12].
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Within this network, MYC has the ability to activate and repress

gene transcription [13,14]. The control of micro RNAs (miRNAs)

by MYC, which can influence the cell cycle, apoptosis, metabolism

and tumor metastasis, was described only recently [15].

MYC was first discovered in Burkitt lymphoma (BL), which

harbors a chromosomal translocation of MYC. This translocation

leads to a fusion of MYC to one of the three immunoglobulin (Ig)

loci [16,17]. According to the new WHO classification, three

variants of BL are recognized, namely endemic BL (eBL), sporadic

BL (sBL) and immunodeficiency-associated BL (iBL), which are

related very closely to each other according to our recent findings

[18,19]. Most likely, BL cells are derived from germinal center

experienced B-cells. The expression of germinal center markers

(e.g. BCL6, CD10) and the finding of somatic hypermutations in

their Ig genes serve as evidence [18,20,21,22].

MYC-binding sites were previously analyzed by ChIP-on-chip

(Chromatin immunoprecipitation in combination with promoter

tiling arrays) and by ChIP-PET (Paired end sequencing of the

precipitated DNA fragments) analysis, in a single BL cell line and

one MYC-inducible lymphoblastoid cell line (P493-6), respectively,

latter serving as BL model [23,24]. Through recent advances of high

throughput sequencing, ChIP combined with massively parallel

DNA sequencing (ChIP-Seq) became a new option to identify

genome-wide binding sites of DNA-associated proteins [25].

The primary goal of the present study thus was the generation of

a genome-wide map of MYC-binding sites in BL genomes. To this

end, we carried out ChIP in 5 human BL cell lines, employing a

MYC-specific antibody followed by next generation sequencing of

the precipitated DNA fragments. We identified 7,054 MYC-

binding sites and used the associated genes to detect functionally

relevant gene sets. In addition we performed MYC knock-down

experiments in BL cell lines followed by gene expression profiling.

Similar functional groups of genes were found by ChIP-Seq and by

MYC silencing. Of special interest was, however, our finding that –

in addition to already established MYC target genes – genes

important for the function and immunogenicity of B-cells are

targeted by MYC binding and are up-regulated by MYC inhibition.

Methods

Cell culture
Five human Burkitt lymphoma (BL) cell lines (Raji, CA46, Blue1,

BL41, Ramos) were purchased from the German Collection of

Microorganisms and Cell Cultures (DSMZ, Braunschweig, Ger-

many) and cultured with 5% CO2 in RPMI 1640 (PAA, Pasching,

Austria) supplemented with 10% Sera Plus (PAN Biotech,

Aidenbach, Germany) at 37uC.

ChIP experiments
A polyclonal MYC antibody (N-262: LOT E2308) Santa Cruz,

CA, USA) was employed for ChIP. The specificity and suitability

of this antibody for ChIP has already been shown by previously

published work [24]. The ChIP experiments were carried out

according to the protocol developed by the group of R.A. Young

with minor modifications and with input DNA as control [26].

ChIP was performed in 3 separate volumes of 1 ml with 10 mg

MYC antibody (100 ml beads) for each cell line.

Successful enrichment (threshold .20-fold) of MYC-bound

DNA fragments was determined by real-time DNA-PCR with

primers for NPM1, an already well defined MYC target gene [24].

Real-time DNA-PCR was performed with SYBR Green PCR-

Master Mix on a 7900HT Fast Real-Time PCR cycler (both

Applied Biosystems, Foster City, CA, USA) using the PCR

parameters recommended by the manufacturer.

Relative quantification of real-time DNA-PCR results was

calculated using the comparative DDCT method [27]. For

normalization of real-time DNA-PCR, primers annealing to the

39- end of the PRAME gene were employed, with the exception of

the Ramos cell line where the PRAME 39- end could not be

amplified, and therefore primers annealing to the ACTIN gene

were used for normalization. Furthermore, selected MYC-binding

sites discovered by the ChIP-Seq analysis described below were

validated by real-time DNA-PCR. All primers employed were

tested to display an efficiency of approximately 100% (+/210%).

Primer sequences are available from Table S1.

ChIP-Seq analysis
Approximately 200 ng of ChIP-DNA was used as template for

generating an Illumina sequence library (Illumina, San Diego, CA,

USA). The DNA was not further size fractionated and directly

taken for adaptor ligation, using a standard Illumina genomic

library preparation kit. Briefly, DNA was end-repaired using a mix

of T4 DNA polymerase, E. coli DNA Pol I large fragment

(Klenow polymerase) and T4 polynucleotide kinase. The blunt,

phosphorylated ends were treated with Klenow fragment and

dATP to yield a protruding 39-‘A’ base for ligation of Illumina

adapters which have a single ‘T’ base overhang at the 39- end.

After adapter ligation fragments of ,250–350 bp (insert plus

adaptor sequences) were isolated from an agarose gel and were

PCR amplified with Illumina primers for 15 cycles. The purified

DNA was captured on an Illumina flow cell for cluster generation.

These libraries were submitted to high-throughput sequencing on

the Illumina Genome Analyzer II (GAII).

The resulting sequence reads were mapped to the human

reference genome (hg19, GRCh37) using Bowtie [28]. Only reads

that mapped uniquely with the Bowtie default setting (http://

bowtie-bio.sourceforge.net/manual.shtml#the-n-alignment-

mode) for mismatches were considered for further analysis (Bowtie

option –m 1).

The detection of genomic regions enriched by ChIP versus

input control was conducted with HOMER (v2.6) for each

experiment individually [29]. Unique reads were directionally

extended in the 39-direction to a length of 300 base pairs.

HOMER fits a local Poisson distribution to the input tags and tests

the sequence depth corrected tag counts for being differentially

expressed. This effectively removes peaks with low tag counts for

which there is a chance that differential enrichment is found

simply due to sampling error. Only ChIP regions with a p-value of

less than 1e-6 under this local Poisson distribution were considered

as putative peaks.

All discovered putative peaks were merged into one list of

putative peak regions that were detected in at least one

experiment. A matrix containing the number of reads for every

experiment in each putative peak region was assembled. DESeq

(v1.4.0) was employed to test the number of reads for being

differential over all ChIP versus input samples [30]. The 5

different cell lines were considered as biological replicates in order

to find common transcription factor binding sites. A negative

binomial distribution was fitted to the inputs and tested for being

differential in ChIP samples for every peak. The normalization of

the number of reads, i.e. the estimation of the size factors for

DESeq, was carried out for input controls and ChIP samples

separately. Only peak regions with a FDR below 1e-4 were kept

for further analysis.

The remaining peaks were ranked by their FDR and annotated

with ChIPpeakAnno using Ensembl Biomart employing the Ensembl

Genes 59 database and the GCRh37 (hg19) dataset (http://aug2010.

archive.ensembl.org/index.html) [31]. The ChIP-Seq files of all

MYC ChIP-Seq Analysis in Burkitt Lymphoma
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experiments are available via the Gene Expression Omnibus (GEO)

of the National Center for Biotechnology Information (www.ncbi.

nlm.nih.gov/geo/) under the accession number GSE30726.

In order to compare our ChIP-Seq data to previously published

MYC-binding sites, we additionally analyzed the data provided by

Zeller et al. [24]. For this purpose we converted the genomic hg17

genome coordinates of the published data to hg19 using LiftOver

(http://genome.ucsc.edu/cgi-bin/hgLiftOver).

The overlap of genomic intervals determined by ChIP-Seq with

genomic features, such as transcriptional start sites or exons, was

calculated utilizing RegionMiner (Genomatix Software, Munich,

Germany, Version: ElDorado 02-2010, Matrix Library 8.2) [32].

Furthermore, RegionMiner was applied using default settings (i) to

calculate the distance correlations with the genomic intervals and

the genome-wide experimentally verified transcriptional start

regions (TSRs), which were derived from the mapping of selected

full length cDNAs (source: GenBank) and CAGE tags (source:

FANTOM3, http://fantom3.gsc.riken.jp/) using the oligo cap-

ping method, (ii) to determine the occurrence of E-boxes, (iii) to

perform an orthologous region search in 6 placental mammalian

(Eutheria) species (Pan troglodytes, Macaca mulatta, Bos tarus, Canis

familaris, Mus musculus and Rattus norvegicus) and (iv) to determine the

overrepresentation (in comparison to the genome and to promoter

regions defined as 2500 to +100 bp around the start sites of the

159,075 annotated transcripts in ElDorado comprising Refseq,

GenBank full-length transcripts and Ensembl records) of the MYC

motive as discovered by CoreSearch.

CoreSearch (Genomatix) with default settings was employed for

a de novo calculation of a MYC-binding motive using the 100

highest ranked genomic intervals [33]. CoreSearch starts with a

search for a highly conserved core sequence (called ‘‘tuple’’ in the

original publication) which occurs in almost all of the input

sequences. In most cases this initial search defines more than one

core. Consecutive selection steps are employed in order to reduce

the number of core candidates. The final selection is based on

maximization of the information content (consensus index), first of

the core and then of regions around the core.

siRNA-mediated MYC knock-down and gene expression
analysis

SiRNA-mediated knock-down of MYC was performed employ-

ing the BL cell lines Raji, BL41 and Blue1 in order to detect

changes of MYC-driven gene expression. For this purpose, the

cells were Amaxa-transfected using MYC smart pool siRNA and

control siRNA (Thermo Scientific/Dharmacon, Erembodegem,

Belgium), respectively. Resulting down-regulation of MYC protein

expression was monitored by immunoblot analysis [34] using a

monoclonal rabbit MYC antibody (clone Y69, Epitomics,

Burlingame, USA).

Total RNA of MYC siRNA-treated and control siRNA-treated

cells was extracted employing the RNeasy Midi kit according to

standard protocols (Qiagen, Hilden, Germany). Affymetrix

GeneChip analysis (HG-U133A) was performed according to the

manufacturer’s recommendations, starting with 5 mg total RNA.

CEL files were generated with the help of the GCOS 1.3 software

(Affymetrix). The CEL files of all experiments are available via the

Gene Expression Omnibus (GEO) of the National Center for

Biotechnology Information (www.ncbi.nlm.nih.gov/geo/) under

the accession number GSE30726.

For analysis of Affymetrix data the expression levels were

normalized using VSN [35]. Limma was used to fit a model for the

effect of treatment, cell type and experiment batch [36]. Probe sets

were tested for differential expression in cell lines with and with-

out MYC siRNA treatment using an empirical Bayesian method.

P-values were corrected for multiple testing by the method

proposed by Benjamini and Hochberg [37]. A corrected p-value of

,0.05 and a fold-change .1.2 were used as thresholds.

The differential expression of selected genes was confirmed by

Western blotting as previously described [34] with antibodies

against CD20 (clone L26, Dako, Glostrup, Denmark), CD79a

(clone JCB117, Dako), A20 (own-production), BLNK (sc-8003,

Santa Cruz, Santa Cruz, CA USA), CIAP2 (ab32059, Abcam,

Cambridge, UK), PAX5 (M7303, Dako), and Actin (ab6276,

Abcam) as a control.

Enrichment analysis of biological annotations
Ensembl annotations (hg19, GRCh37, Ensembl Genes 59)

closest to or overlapping with the 7,054 genomic intervals were

determined employing the Bioconductor package ChiPpeakAnno

(http://www.bioconductor.org/packages/2.5/bioc/html/ChIPpeak

Anno.html). The nearest transcription start region (TSR) was used as

reference point. By default, the distance is calculated as the distance

between the start of the binding site and the TSR that is the gene start

for genes located on the forward strand and the gene end for genes

located on the reverse strand.

Ensembl annotations next to significant MYC-binding sites

(Table S2) and the genes differentially expressed as indicated by

our MYC siRNA experiments (Table S3) were uploaded to

DAVID (The database for annotation visualization and integrated

discovery) bioinformatics resources (http://david.abcc.ncifcrf.gov/)

[38,39]. We calculated the most overrepresented (enriched)

biological annotations using DAVID default conditions. The total

GRCh37 Ensembl gene annotations (Table S2) and the total

U133A Affymetrix gene Ids were used as background distribution

for the analysis of ChIP-Seq and U133A data, respectively.

Results

A genome-wide map of MYC-binding sites in BL
DNA-fragments obtained from five IG-MYC translocation

positive BL cell lines (Raji, CA46, Blue1, BL41, Ramos) were

analyzed after MYC chromatin immunoprecipitation (MYC-

ChIP) by next generation sequencing, leading to a total number

of more than 16 million and 12 million sequence reads in the

MYC immunoprecipitated (ChIP) and input samples, respectively.

Alignment to the human reference genome (hg19, GRCh37) using

Bowtie default settings mapped 10,882,577 ChIP reads and

8,495,924 input reads uniquely, which were used for further

analysis. More details for read numbers and identified peaks at

different stages of data processing are given in Table S4.

The software package HOMER (v2.6) [29] was used for peak

detection. Experiments were processed individually and all

discovered peaks were merged into one list of 19,580 genomic

regions that had been detected in at least one experiment. The

Bioconductor package DESeq (v1.4.0) [30] was used to test for

significant differences in the number of reads between ChIP and

input samples across the five cell lines, as described in materials

and methods. A list of 7,054 ranked peak regions with an

estimated FDR of 1e-4 was kept and mapped to closest or

overlapping genes (Ensembl Genes 59 database; GCRh37 dataset),

leading to a novel genomic map of BL-specific MYC-binding sites

(Table S5). The correlation of the Ensembl annotations with gene

biotype (Table S5) revealed that the majority of the 7,054 genomic

intervals were associated with protein coding genes (n = 5,793;

82.1%), whereas 565 (8.0%) were mapped to processed transcripts,

202 (2.9%) to pseudogenes and 79 (1.1%) to miRNAs, e.g. the

known MYC targets mir-17-92 cluster, hsa-mir-9-3, hsa-let-7a-1

or hsa-mir-29b-2 [40,41,42].

MYC ChIP-Seq Analysis in Burkitt Lymphoma
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Real-time DNA-PCR was carried out to verify selected genomic

intervals from independently generated ChIP experiments

(Figure 1, Figures S1, S2, S3, S4, S5, S6, S7, and S8). Highly

ranked genes such as NME1 (rank position 5) and NPM1 (rank

position 47) revealed a higher enrichment as compared to lower

ranked genes such as BOB1 or MS4A1 (CD20) (rank position 5453

and 5498, respectively), thereby confirming the reliability of our

ChIP-Seq data (Table S5).

Genome-wide distance correlation revealed that the majority

(89.7%) of the identified MYC-binding sites were located in close

proximity to transcriptional start sites within +/21000 bp

(Figure 2). Additionally, Genomatix RegionMiner analysis showed

that 73.8% of the regions directly overlapped with a transcrip-

tional start region. Only 0.9% of the regions overlapped with

repeats (Table 1). The proximity to transcriptional start sites was

more pronounced than in a previously published list of 593 MYC

binding loci derived from MYC-induced P493-6 cells [24]: 73.8%

versus 43.9% transcriptional start regions and 0.9% versus 25.1%

repeat regions (Table 1).

Moreover, we found 2,320 exact matches for the canonical E-

box sequence CACGTG in our 7,054 genomic intervals (total

length: 2,116,200 bp). This corresponds to a 4.6 fold higher

enrichment as compared to the 194 occurrences in 590 intervals

described by Zeller et al. (814,595 bp; 3 of 593 regions were

.10,000 bp and were skipped) [24].

The typical MYC-binding E-box motive could also be calculated

de-novo from our ChIP-Seq data (hereafter called MYC.01-binding

site) and is shown in Figure 3. The corresponding matrix is given in

Table S6. Genomic intervals with stronger ChIP-Seq signals (i.e. a

higher ranking position in Table S5) contained more MYC.01

binding sites compared to genomic intervals with a lower rank

position (Figure 4). Performing the same analysis as an independent

control with the Genomatix E-box matrix family (generated by

Genomatix from independently published experimental evidence)

revealed similar results (Figure 4). Genomatix analysis demonstrated

that the MYC.01 binding site was enriched 12.71-fold over the

genomic background and 5-fold over the promoter background.

5,558 of the 7,054 (78.8%) binding sites are evolutionary

conserved with orthologous regions in at least 4 out of 6 placental

mammalian genomes (Pan troglodytes, Macaca mulatta, Bos tarus, Canis

familaris, Mus musculus and Rattus norvegicus; Table S5).

Enrichment of functional classes of genes
Gene set enrichment analysis using the DAVID software

[38,39] showed that a set of genes involved in RNA metabolism

was most strongly enriched in our list of MYC targets genes in BL

(Table S7). In line with this finding, genes encoding proteins with

specific RNA or DNA-binding domains (e.g. RNA recognition

motives (RRM) and helicase domains (HELICc)) were significantly

overrepresented. Moreover, gene sets associated with ribosomal

biogenesis, spliceosome, aminoacyl-tRNA biosynthesis or pyrim-

idine and purine metabolism or involved in the cell cycle were

frequent targets of MYC binding. Interestingly, genes associated

with histone acetyltransferase and methyltransferase complexes

were also accumulated suggesting a function of MYC in the

control of epigenetic mechanisms. This notion is reinforced by the

enrichment of genes containing plant homeodomain (PHD) finger

and the SET domains which are supposed to be involved in

chromatin-mediated transcriptional regulation [43]. Strikingly, the

genes of the Polycomb group (PcG) proteins EZH1 and EZH2,

which are histone methyltransferases catalyzing the repressive

trimethylation of lysine 27 on histone H3 (H3K27me3), were

among the MYC target genes [44]. In addition 12 further PcG

complex protein members (EED, BMI1, PHF1, MTF2, PHF19,

L3MBTL, PHC3, SCMH1, PCGF1, CBX4/6/7) displayed MYC

binding in BL. 10 of these (71.4%) had orthologous regions in at

least 4 of 6 placental mammals (Table S5) [44].

Especially remarkable was our finding that genes involved in B-

cell receptor signaling as well as B-cell differentiation and activation

(e.g. CD19, CD20 (MS4A1), CD21 (CR2), CD22, CD79a/b, SYK, LYN,

Figure 1. Validation of the ChIP-Seq results by real-time DNA-PCR for selected genomic intervals. Real-time DNA-PCR for 9 selected
genes and 3 negative controls was performed with DNA-fragments obtained by ChIP-experiments independent from those used for ChIP-Seq. The
ranking position according to Table S5 is indicated under the gene. The enrichment was calculated relative to the ChIP input control.
doi:10.1371/journal.pone.0026837.g001

MYC ChIP-Seq Analysis in Burkitt Lymphoma
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Figure 2. Genome-wide distance correlation between transcriptional start regions (TSRs) and MYC-binding sites. On each TSR, a
10 kbp window was centered and the sum of the genomic intervals representing MYC-binding sites in these regions was determined. Blue line: 7,054
genomic intervals of this ChIP-Seq study. Pink line: 593 ChIP-PET regions from ref [24]. Note: If TSRs are in close proximity to each other, a neighboring
genomic interval will have the respective number of correlations with these TSRs. Therefore, more than 7,054 correlations were detectable.
doi:10.1371/journal.pone.0026837.g002

Table 1. General statistics of the genomic intervals detected by ChIP-Seq analyses in comparison to a ChIP-PET study.

Description ChIP-Seq analysis ChIP-PET analysis

Total number of genomic intervals 7,054 590*

Total number of base pairs 2,116,200 858,180

Regions overlap with at least one locus 83.5% 63.9%

Regions overlap with at least one exon 62.9% 34.4%

Regions overlap with at least one intron 65.2% 59.5%

Regions overlap with promoters 67.7% 30.8%

Regions overlap with at least one Transcriptional start region 73.8% 43.9%

Regions overlap with intergenic regions 16.6% 36.6%

Regions overlap with repeats 0.9% 25.1%

The ChIP-Seq data of this study are based on five established BL cell lines, the ChIP-PET data of Zeller and colleagues were produced by analysis of the model cell line
P493-6 [24].
*A total of 590 regions were checked ( = 100%), 3 regions were skipped for overlap analysis (.10,000 bp).
doi:10.1371/journal.pone.0026837.t001
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BLK, BLNK, BOB1 (POU2AF1) and PAX5) were identified as active

MYC-binding sites (Table S5). Since MYC is regarded as an

important oncogene in several types of malignant lymphomas

(including BL), this new observation might be of high relevance for

the understanding of the biology of these lymphomas. This is further

underscored by the result that Ensembl annotations related to

evolutionary conserved intervals in at least 4 of 6 placental

mammals revealed also an enrichment of the B-cell receptor

pathway (Table S8).

siRNA-mediated silencing of MYC in BL cell lines
We employed MYC siRNA to analyze the impact of MYC on

gene expression. Treatment of three BL cell lines (Raji, BL41,

Blue1) with MYC-specific siRNAs resulted in a reduction of the

MYC protein of approx. 75% (Figure 5). Gene expression profiling

using Affymetrix GeneChips (U133A) of the siRNA-treated and

control siRNA-treated cell lines revealed that upon MYC silencing

168 and 17 genes were up-regulated, whereas 828 and 87 genes

were significantly down-regulated with fold changes of 1.2 and 1.4,

respectively, and with a corrected p-value,0.05 (Table S3).

In line with our ChIP-Seq data, DAVID gene set enrichment

analysis revealed that down-regulated genes were related to cell

cycle, as well as to transcriptional and translational processes

(Figure S9, Table S7 and S9). Most interestingly, several of the up-

regulated genes were related to the B-cell receptor signaling

pathway, B-cell activation and antigen processing and presentation

(Table S9).

Western blot analysis supported the RNA data: a moderately

increased protein expression was observed for several B-cell

antigens (CD20, CD79a, BLNK, PAX5), as well as for NF-kB

associated proteins (A20, CIAP2), which are down-stream

components of the B-cell receptor pathway (Figure 5).

Discussion

The understanding of MYC biology is of paramount impor-

tance to elucidate its role in the pathogenesis of Burkitt lymphoma

(BL), a disease characterized by a consistent high MYC protein

expression due to a genomic translocation. Therefore we

undertook a comprehensive approach to identify MYC-binding

sites by chromatin immunoprecipitation with subsequent deep

sequencing (ChIP-Seq). This led to a ranked list of 7,054 MYC-

binding genomic intervals in BL (Table S5).

ChIP-Seq is a complex technique which requires further

independent validation to confirm the reliability of the data.

Our ChIP-Seq data are supported by three independent lines of

evidence: (i) Confirmation of the exact MYC-binding position in

the promoters of previously published MYC target genes (e.g.

NPM1, NME1) and identification of MYC-binding sites associated

with miRNAs known to be regulated by MYC (e.g. the mir-17-92

cluster, hsa-mir-9-3, hsa-let-7a-1 or hsa-mir-29b-2) (Figure 1,

Table S5) [24,40,41,42]. (ii) The vast majority of the MYC-

binding sites occurred at transcriptional start sites in line with the

role of MYC as a transcription factor (Figure 2). (iii) The typical

MYC-binding E-box motive could be calculated de-novo from our

ChIP-Seq data (Figure 3).

Our genome-wide approach largely extends previous MYC

ChIP-analyses from one BL cell line using promoter tiling arrays

(ChIP-on-chip) covering only 4,839 proximal promoters [23]. In a

further pioneer study MYC-binding sites were assessed by ChIP

followed by pair-end ditag sequencing (ChIP-PET) in one artificial

human BL model cell line (P493-6) after synthetic induction of

MYC [24]. This approach revealed 1,143,746 PET units, 691,966

of which had a single mapping location in the human hg17 genome

finally resulting in only 593 MYC-binding sites (PET clusters with at

least 3 overlapping PETs) [24]. In contrast, our 7,054 MYC-binding

genomic intervals derived from 5 BL cell lines allow a much more

precise and representative consideration of the MYC landscape in

BL due to a much higher coverage of MYC-binding sites.

Gene set enrichment analysis using the Ensembl annotations

related to MYC binding (Table S5) revealed enrichments for

Figure 3. Sequence logo for the de-novo calculated MYC.01-
binding site. The transcription factor binding matrix (Table S6) was
generated by CoreSearch using the top 100 sequences of MYC genomic
intervals (Table S5). A typical E-box motive (CACGTG) was obtained.
Highly conserved positions are represented by higher stacks of base
symbols A, C, G, and T than less conserved positions. The relative
frequencies of the corresponding bases at each position are represent-
ed by the relative heights of the symbols within in each stack.
doi:10.1371/journal.pone.0026837.g003

Figure 4. Frequency of MYC-binding sites in comparison to the
ranking position of the 7,054 genomic intervals. Y-axis:
Frequency of the MYC.01-binding matrix (blue line) and the Genomatix
E-box matrix family (red line). X-axis: Ranking position of the 7,054
genomic intervals (Table S5). A moving average with a window size of
100 ranks was used.
doi:10.1371/journal.pone.0026837.g004
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ribosomal biogenesis, and pyrimidine and purine metabolism

(Table S7). This confirms previous findings and further underlines

the plausibility of our data [45,46]. Ribosomal biogenesis is a

primary function of the nucleolus and globally essential for RNA

translation [46]. This process is controlled by the ribosomal

biogenesis (RiBi) genes [46]. Recently some RiBi genes were

identified as MYC target genes [46]. We add further evidence to

the important role of MYC in ribosomal biogenesis by

demonstrating the binding of MYC to 68 of 87 (78.2%) genes in

the KEGG ribosome pathway in BL (Table S7). Interestingly, a

specific RiBi core-promoter signature which is partially composed

of E-boxes was found to be conserved from fly to man [47].

However, the nematode genome is a remarkable exception from

this rule since it appears to have secondarily lost its myc gene along

with the E-box containing RiBi core-promoter signature [47]. In

contrast to other animals, nematodes have a very specific total cell

number, and it is appealing to speculate that the lack of MYC is a

prerequisite for maintenance of this precise cell number, most

likely by a lack of MYC-driven cell proliferation.

Another important finding of our study is the binding of MYC

to many Polycomb group (PcG) genes in BL. PcG proteins were

identified in Drosophila more than 30 years ago as regulators of

anterior-posterior body patterning through the repression of Hox

genes [44]. One of the first indications that PcG proteins play a

role in cancer was the identification of BMI1 as MYC-

collaborating oncogene [48,49]. Here we establish another strong

linkage between PcG and MYC by showing that 14 PcG complex

genes are MYC targets including EZH1/2, EED and BMI1. Given

the important role of PcG in B-cell development, lymphomagen-

esis, and tumor stem cell development [44] it will be interesting to

further analyze the relation between MYC, PcG and PcG target

genes.

An unexpected observation based on our ChIP-Seq experi-

ments, was the finding of many B-cell genes (CD19, CD20

(MS4A1), CD21 (CR2), CD22, PAX5, SYK, LYN, BLK, BLNK, BOB1

(POU2AF1), CD79a/b) as active MYC target genes (Table S5,

Figure 1). Previously, merely single B-cell genes such as CD79b

were suggested as MYC target genes [23,24,50]. Our data

considerably extend the list of B-cell genes targeted by MYC

including one of the prominent B-cell transcription factors, namely

PAX5. PAX5, which harbors 4 MYC binding motifs, is one of the

master regulators for B-cell development and for the maintenance

of the B-cell phenotype of mature B-cells (Table S2). This raises

the question of whether MYC is an important transcription factor

involved in the B-cell differentiation, a notion which is very much

supported by recent findings derived from early murine B-cell

development [51]. Moreover, gene set enrichment analysis based

on our 5,558 MYC genomic intervals with orthologous regions in

at least 4 of 6 placental mammals showed significantly enriched B-

cell receptor pathway targets and B-cell development related GO

terms (Table S8).

The role of MYC in the B-cell development and B-cell function

is further underlined by our MYC knock-down experiments where

we observed an up-regulation of many genes well known for their

function in B-cells (Figure 5, Table S3 and S9). The up-regulation

of B-cell relevant genes as the consequence of MYC silencing is

additionally supported by recent results derived from the BL

model cell line P493-6 [52] since B-cell related genes such as

CD79a/b, CD19, CD20, CD22, CD72, as well as most HLA

molecules were down-regulated after MYC induction [52]. This

down-regulation of HLA upon MYC induction suggests an

important role of MYC as an immunomodulatory factor (Table

S3 and S9). HLA molecules play an essential role in antigen

presentation of the BL cells, and down-regulation of HLA

molecules by MYC can lead to a lack of immunogenicity in BL

cells [53].

Taken together, the 7,054 MYC-binding sites identified by our

ChIP-Seq approach greatly extend the current knowledge

Figure 5. Western Blot analysis after siRNA-mediated MYC knock-down in 3 BL cell lines. An up-regulation of selected NF-kB pathway
proteins (A20, CIAP2) and B-cell genes (CD20, BLNK, PAX5, CD79a) was detected by Western blot analysis of protein extracts derived from control
siRNA-treated and MYC siRNA-treated BL cell lines. b-Actin (one example shown) was used as loading control.
doi:10.1371/journal.pone.0026837.g005
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regarding MYC binding in BL and further elucidate the

complexity of the very comprehensive role of MYC in many

regulatory networks. Especially our discovery of MYC as a

transcription factor involved in B-cell differentiation and B-cell

signaling is of great importance for a better understanding of

MYC-driven lymphomas such as BL.

Supporting Information

Figure S1 MYC-binding sites in the NME1 gene. ChIP-

Seq reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated for the 59- ends of the NME1 gene by using the UCSC

genome browser (http://genome.ucsc.edu/). Reads in red map to

the forward strand and blue reads to the reverse strand. The

location of real-time DNA-PCR (Table S1) is schematically

indicated above the gene annotations as well as the genomic

intervals identified by bioinformatic analysis (Table S5).

(PDF)

Figure S2 MYC-binding sites in the NPM1 gene. ChIP-

Seq reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated for the 59- ends of the NPM1 gene by using the UCSC

genome browser (http://genome.ucsc.edu/). Reads in red map to

the forward strand and blue reads to the reverse strand. The

location of real-time DNA-PCR (Table S1) is schematically

indicated above the gene annotations as well as the genomic

intervals identified by bioinformatic analysis (Table S5).

(PDF)

Figure S3 MYC-binding sites in the BYSL gene. ChIP-Seq

reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated for the 59- ends of the BYSL gene by using the UCSC

genome browser (http://genome.ucsc.edu/). Reads in red map to

the forward strand and blue reads to the reverse strand. The

location of real-time DNA-PCR (Table S1) is schematically

indicated above the gene annotations as well as the genomic

intervals identified by bioinformatic analysis (Table S5).

(PDF)

Figure S4 MYC-binding sites in the PAX5 gene. ChIP-Seq

reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated for the 59- ends of the PAX5 gene by using the UCSC

genome browser (http://genome.ucsc.edu/). Reads in red map to

the forward strand and blue reads to the reverse strand. The

location of real-time DNA-PCR (Table S1) is schematically

indicated above the gene annotations as well as the genomic

intervals identified by bioinformatic analysis (Table S5).

(PDF)

Figure S5 MYC-binding sites in the MS4A1 gene. ChIP-

Seq reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated for the 59- ends of the MS4A1 gene by using the UCSC

genome browser (http://genome.ucsc.edu/). Reads in red map to

the forward strand and blue reads to the reverse strand. The

location of real-time DNA-PCR (Table S1) is schematically

indicated above the gene annotations as well as the genomic

intervals identified by bioinformatic analysis (Table S5).

(PDF)

Figure S6 NOP56 intron 8 (negative control). ChIP-Seq

reads obtained after MYC ChIP-Seq and from input controls

analyzing 5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are

illustrated by using the UCSC genome browser (http://genome.

ucsc.edu/). Reads in red map to the forward strand and blue reads

to the reverse strand. The location of real-time DNA-PCR (Table

S1) is schematically indicated above the gene annotations.

(PDF)

Figure S7 CCR7 (negative control). ChIP-Seq reads ob-

tained after MYC ChIP-Seq and from input controls analyzing 5

BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are illustrated by

using the UCSC genome browser (http://genome.ucsc.edu/).

Reads in red map to the forward strand and blue reads to the

reverse strand. The location of real-time DNA-PCR (Table S1) is

schematically indicated above the gene annotations.

(PDF)

Figure S8 SEMA4C (negative control). ChIP-Seq reads

obtained after MYC ChIP-Seq and from input controls analyzing

5 BL cell lines (BL41, Blue1, CA46, Ramos, Raji) are illustrated by

using the UCSC genome browser (http://genome.ucsc.edu/).

Reads in red map to the forward strand and blue reads to the

reverse strand. The location of real-time DNA-PCR (Table S1) is

schematically indicated above the gene annotations.

(PDF)

Figure S9 Significantly enriched KEGG pathways de-
tected by ChIP-Seq analysis (Table S7) in relation to
KEGG pathways detected by siRNA-mediated knock-
downs of MYC in BL cell lines followed by gene
expression profiling.
(TIF)

Table S1 Primer sequences for real-time DNA-PCRs.

(XLS)

Table S2 Complete list of Ensembl annotations (hg19,

GRCh37, Ensembl Genes 59) annotated with the number of

detected MYC-binding sites for each Ensembl annotation.

(XLS)

Table S3 Differential gene expression after siRNA mediated

knock-down of MYC. Three BL cell lines (Raji, BL41 and Blue1)

were analyzed employing U133A Affymetrix GeneChip hybrid-

ization.

(XLS)

Table S4 Number of reads in the Fastq files for all MYC ChIP-

Seq and input samples mapped to the human hg19 reference

genome. The number of reads within the putative peaks

discovered by HOMER and within the final list of 7,054 merged

peaks (DESeq) is shown in the far right column.

(DOC)

Table S5 7,054 peak regions (i.e. MYC-binding sites) with a

FDR below 1e-4 are ranked by their FDR. Their closest or

overlapping gene annotation (hg19, GRCh37, Ensembl Genes 59)

is given.

(XLS)

Table S6 MYC.01 Transcription factor binding matrix. The

MYC.01 binding matrix was generated de novo by CoreSearch

using the top 100 sequences in Table S5. The matrix results from

the alignment of highly similar short sequence motifs in 98 of these

input sequences; frequencies of A, C, G, and T at each alignment

position are given. The Consensus Index (Ci) is a measure for the

conservation of each position and is used for weighting each

position’s contribution to the overall score when searching for

matrix matches in a target sequence. A typical E-box motive

(CACGTG) was obtained (Figure 3).

(XLS)
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Table S7 Biological annotations associated with genes next to

the 7,054 genomic intervals (i.e. MYC-binding sites). Interesting

terms are highlighted in red.

(XLS)

Table S8 Biological annotations associated with 5,558 of the

7,054 genomic intervals with orthologous regions in at least 4 of 6

mammalian species. Genomatix RegionMiner with default

parameters was employed for the search of orthologous genomic

regions. Interesting terms are highlighted in red.

(XLS)

Table S9 Biological annotations associated with genes differen-

tially expressed after siRNA-mediated MYC knock-down in 3 BL

cell lines (Raji, BL41, Blue1). Interesting terms are highlighted in red.

(XLS)
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