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Abstract

Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument
proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it
confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument
protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we
demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the
formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show
that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays,
we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-
interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected
lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken
together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and
ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for
herpesvirus infection in the nucleus.
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Introduction

Epstein-Barr virus (EBV) is a member of the human gamma-

herpesvirus subfamily that infects over 90% of the global adult

population [1,2]. EBV preferentially establishes latent infection in

B-lymphocytes but can also infect epithelial cells [3,4]. EBV

primary infection is one of the main causes of infectious

mononucleosis (IM); while EBV latent infection is associated with

multiple malignancies such as nasopharyngeal carcinoma, Burkitt’s

lymphoma, and Hodgkin’s lymphoma [3,4]. Furthermore, EBV is

responsible for the majority of lymphoproliferative diseases

associated with AIDS and immunosuppression following organ

transplant [5]. Like all herpesviruses, EBV exists in a dynamic

balance between productive and latent infection. The factors that

regulate the fate decisions for lytic reactivation from latency have

been investigated in some detail, but relatively little is known about

the fate regulation during the earliest stages of primary infection.

Upon entry into the nuclear compartment, herpesvirus DNA

genomes must confront several intrinsic anti-viral resistances that

restrict viral gene expression and replication. One prominent

nuclear structure involved in antiviral resistances is the PML

nuclear body (PML-NB), also referred to as nuclear domain 10

(ND10). PML-NBs are nucleoplasmic protein aggregates mainly

consisting of (but not limited to) the components PML, Sp100,

Daxx, and ATRX [6,7]. The size and abundance of PML-NB is

interferon inducible [8,9,10], and over-expression of the PML

protein represses viral infection [11]. PML-NB is the nuclear

localization site of many DNA viruses, including Herpes Simplex

virus (HSV-1), Human Cytomegalovirus (HCMV) and Adenovirus

(Ad5) [12,13]. These viruses then modify the morphology and/or

protein composition of PML-NBs shortly after infection [12,14].

The mechanism of PML-NB-mediated antiviral repression is not

clearly determined. PML, Sp100, and Daxx are all associated with

transcription repression, and this function may act on viral genomes

[15]. Daxx can act as a transcription co-repressor of many cellular

transcription factors [16,17,18,19], and forms repressive transcrip-

tion complexes with histone deacetylases (HDACs) [20,21] and

DNA methyltransferase I (DNMT I) [22,23]. Daxx has been shown

to induce heterochromatin markers on the HCMV genome and

repress viral gene expression in a HDAC dependent manor [24,25].

Daxx also forms a chromatin-remodeling complex with ATRX [26]

and both can form a repression complex at heterochromatin [27].

Furthermore, RNA interference (RNAi) studies have shown that

knockdown of Daxx or ATRX can result in a higher infection level

of HCMV [28,29,30] and also relieve the infection defect of mutant

HSV deficient in disrupting PML-NB [31].

Herpesviruses confront intrinsic anti-viral resistances immediate-

ly upon entering the host cell nucleus, and therefore must

counteract these resistances at the earliest possible time points to
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initiate viral gene expression. Herpesvirus tegument proteins, which

are pre-packaged and delivered with the infectious virion, are

strategically positioned to counteract the intrinsic anti-viral defenses

and support the early steps of infection [32]. Both alpha- and beta-

herpesviruses encode tegument proteins that regulate early events

during lytic replication, including the disruption of the PML-NBs.

HSV-1 immediate early gene ICP0, disrupts PML-NB structure by

degrading the core component PML [33,34,35] and eliminating

SUMO-modified Sp100 [36]; while HCMV tegument protein pp71

displaces ATRX and subsequently degrades Daxx [24,30]. Both

ICP0-deficient HSV-1 and pp71-deficient HCMV mutants are

deficient in infection, where viral gene expression is shutdown,

resulting in a dormant viral genome [29,37,38]. Interestingly, it has

been reported that disruption of PML-NB by ICP0 is mediated by de

novo synthesized ICP0, instead of tegument delivered ICP0 protein,

suggesting that this event is coordinated with early viral gene

activation or, perhaps, reactivation from latent infection [35]. We

have previously shown that EBV genomes localize to and then

disrupt PML-NB during lytic replication; while latent EBV

episomes are segregated away from PML-NBs during latency

[39]. EBV regulatory proteins, including the lytic cycle immediate

early gene Zta (also referred to as BZLF1, ZEBRA, and Z), and

latency associated EBNA1 and EBNA-LP, have been implicated in

PML-NB interactions [40,41,42]. However, it remains unclear if

PML-NBs regulate early events associated with viral gene

expression upon EBV nuclear entry, and if an EBV tegument

protein modulates this intrinsic defense.

The EBV major tegument protein BNRF1 is one of the most

abundant tegument proteins in the virion [43] and is essential for

the establishment of viral latent infection [44], yet its function is

largely unknown. BNRF1 homologues are present in all

gammaherpesviruses but absent in the alpha- and beta- herpes-

virus subfamilies. All BNRF1 orthologues share regions homolo-

gous to the cellular enzymes Phosphoribosylformylglycineamide

Amidotransferase (FGARAT) and Aminoimidazole ribonucleotide

(AIR) synthetase, ATP-dependent enzymes in the 4th and 5th steps

of the purine de novo biosynthesis pathway. However, no enzymatic

activity has been found in any BNRF1 orthologues. In a knockout

study, transfected BNRF1-deficient EBV genomes can reactivate

from latency, produce morphologically normal virions, and the

progeny can enter cells with little observed defects [44]. Yet, upon

infection of B cells the mutant virus showed a 20-fold lower

expression of a viral latency associated gene EBNA2 and failed to

induce B cell transformation [44]. This suggests an important role

of BNRF1 in supporting early infection. Furthermore, the BNRF1

orthologue encoded by murine herpes virus 68 (MHV68),

tegument protein ORF75c, induces PML degradation and is

essential for initiation of viral gene expression [45,46].

Here, we demonstrate that EBV BNRF1 is a novel PML-NB-

interacting viral protein, and that this interaction is important for

supporting EBV primary infection. We first show that Daxx is a

primary cellular interaction partner of BNRF1. BNRF1 co-

localizes with Daxx at PML-NB foci while disrupting the Daxx-

ATRX complex. Furthermore, we identify a novel Daxx

interaction domain on BNRF1. This domain is essential for

BNRF1 to interact with Daxx, localize to PML-NB, and displace

ATRX from Daxx. We then show that BNRF1 supports EBV

primary infection and promotes the expression of viral genes soon

after viral genomes enter the cell, and that the Daxx interaction

domain contributes to these functions. Lastly, we show that

knockdown of either Daxx or ATRX results in disruption of viral

latency, suggesting that Daxx and ATRX play a role in the

restriction of viral gene expression. Our study suggests that EBV

tegument protein BNRF1 disassemble the Daxx-ATRX antiviral

resistance complex to enable viral gene expression after cell

invasion, and likely regulate the chromatin organization for the

establishment of latent infection.

Results

BNRF1 interacts with cellular protein Daxx
To characterize the biological properties of the EBV major

tegument protein BNRF1, we took a proteomic approach to

screen for potential cellular interaction partners. BNRF1 was

cloned into a 3x FLAG tag expression vector under the control of

a CMV promoter. 293T cells were then stably transfected with

either FLAG-vector or FLAG-tagged BNRF1. Nuclear extracts

from stable cell lines were subject to immunopurification (IP) with

a FLAG antibody, and then analyzed by SDS-PAGE (Fig. 1A).

Bands unique to the BNRF1 lane (B) were cut out and analyzed by

liquid chromatography-tandem mass spectrometry (LC/MS/MS).

The major identified species was BNRF1, but substoichiometric

proteins enriched in the BNRF1 IP were also identified, including

Daxx, nucleophosmin (NPM1), and PARP1 (Fig. 1C). We

subsequently confirmed in BNRF1 transiently transfected 293T

cells that Daxx co-precipitates with BNRF1 (Fig. 1B) by both

FLAG pull-down and the Daxx reverse pull-down, indicating a

stable in vivo interaction between BNRF1 and Daxx. Neither

PARP1 nor NPM1 interaction with BNRF1 could be validated by

subsequent co-IPs (data not shown), we therefore focused our

efforts on characterizing the interaction with Daxx.

BNRF1 utilizes a novel Daxx interaction domain
To further characterize the interaction between BNRF1 and

Daxx, we introduced serial deletions on the FLAG-BNRF1

expression plasmid. We first made five deletion constructs of

BNRF1, sequentially deleting regions coding for 300 amino acids

(Fig. 2A, constructs d1 through d5). We then performed IPs with

either control IgG, aFLAG, or aDaxx on lysates of cells

transfected with the BNRF1 deletion constructs. Daxx co-

precipitated in the FLAG IP for all of the BNRF1 mutants with

the exception of the BNRF1 300–600 aa deletion mutant (d2)

(Fig. 2B, middle panels). Similarly, all of the FLAG-BNRF1

mutants, with the exception of d2, co-precipitated with Daxx IP

(Fig. 2B, right panels). Since d2 was expressed and recovered by

FLAG IP to similar levels as other BNRF1 mutants capable of

Author Summary

Persistent infection by Epstein-Barr virus (EBV) is associated
with a variety of diseases, including lymphoid and
epithelial tumors. Despite a wealth of information on the
mechanism of viral persistence, relatively little is known
about the early steps of EBV infection and viral gene
activation. Host cells actively mount resistances against
viral infection, which viruses need to overcome to invade
the cell. We have found that among the proteins packaged
in the EBV viral particle, BNRF1 plays an important role of
counteracting cellular defenses. We show that EBV protein
BNRF1 binds to the cellular protein Daxx and disassembles
the Daxx-ATRX complex, where both Daxx and ATRX are
cellular proteins known to inhibit viral gene expression. We
also confirm that BNRF1 can promote expression of early
viral genes, and that Daxx-binding by BNRF1 is required for
this function. Finally, we demonstrate that Daxx and ATRX
repress viral gene expression during latency. We conclude
that BNRF1 disassembles cellular antiviral defense machin-
ery to promote expression of viral genes in the host cell.

Daxx-ATRX Disruption by EBV Tegument BNRF1
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interacting with Daxx, we conclude that a putative Daxx-

interaction domain is located in the region between 300-600aa

of BNRF1.

We then further made six serial deletions of 60 amino acids in

the 300–600 aa region (Fig. 3A, constructs d21 through d26) to

narrow down the suspected Daxx-interaction domain to a smaller

region. After a subsequent round of IP pull-downs, we found that

all BNRF1 deletions, with the exception of d21, were defective in

binding Daxx (Fig. 3B), suggesting that the 360–600 aa region of

BNRF1 is responsible for interaction with Daxx. To determine if

this region was sufficient for interaction with Daxx, we expressed

only the 300–600 aa region in the FLAG-expression vector

(Fig. 3A, construct DID) and performed IP pull-downs. We found

that this region bound Daxx as efficiently as WT-BNRF1, in both

FLAG IP and in the reverse IP with anti-Daxx antibody (Fig. 3C).

Notably, we failed to find sequence homology of this Daxx

interaction domain with any known protein motif, and this

domain is also distinct from the FGARAT and AIR synthetase

homology regions. These findings suggests that BNRF1 utilizes a

previously unknown motif to bind Daxx, and that the Daxx

interaction domain (300–600 aa) may contain a complex protein

fold sensitive to smaller truncation deletions.

BNRF1 disrupts the Daxx-ATRX chromatin remodeling
complex

Daxx forms a chromatin remodeling complex with ATRX [26]

and ATRX has been implicated in the transcriptional repression

of both HSV-1 and HCMV during the early steps of infection

[30]. Moreover, both HSV-1 and HCMV utilize viral encoded

proteins that disrupt the interaction between Daxx and ATRX

[30,31]. To determine if BNRF1 also disrupted the interaction

between Daxx and ATRX, we assayed the effect of WT and

mutant BNRF1 proteins on the co-IP of Daxx with ATRX. We

observed that WT BNRF1 disrupted the interaction between

Daxx and ATRX (Fig. 3C, 2nd panel from top, right). However,

deletion mutants d22 and d26, which fail to interact with Daxx,

did not disrupt ATRX binding in Daxx IP assays (Fig. 3C, 2nd

panel from top, right). Interestingly, the Daxx interaction domain

by itself (DID), which binds Daxx efficiently, could only partially

disrupt ATRX binding. This suggests that Daxx binding by

BNRF1 is necessary, but not sufficient for the disruption of ATRX

with Daxx. We also found no evidence that BNRF1 co-IPs with

PML (Fig. 3C, 3rd panel from top).

To determine whether any other domains of BNRF1 contribute

to the disruption of ATRX from Daxx, we assayed FLAG-BNRF1

IPs for ATRX binding using the set of larger BNRF1 deletions

examined in Figure 2 (Fig. 3D). We found that WT BNRF1 did

not co-IP with ATRX, although it efficiently pulled down Daxx.

The BNRF1 d2 mutant failed to pull down Daxx or ATRX, as

expected. In contrast, the BNRF1 d3 and d4 mutants, which

disrupts most of the FGARAT and AIR synthetase homology

regions, efficiently pulled down both ATRX and Daxx. The d1

and d5 truncations, which lie outside of the FGARAT and AIR

synthase homology regions, pulled down only Daxx but not

ATRX, suggesting it efficiently disrupted the ATRX-Daxx

interaction similar to WT. These data suggest that the FGARAT

and AIR synthetase homology regions of BNRF1 may contribute

to the disruption of ATRX-Daxx complex.

BNRF1 co-localizes with Daxx to PML nuclear bodies and
disperses ATRX from nuclear bodies, in a Daxx interaction
domain-dependent manner

Daxx is a prominent component of PML nuclear bodies [47],

and Daxx localization at these nuclear bodies are disrupted by

viral proteins of both HSV-1 and HCMV [24,34]. Thus, it is

Figure 1. BNRF1 binds the cellular protein Daxx. (A) Colloidal
blue stained SDS-PAGE of FLAG-immunoprecipitated BNRF1 and
interacting partners. 293T cells were stably transfected with empty
FLAG vector (V) or FLAG-tagged BNRF1 (B). Cell lysates were subject to
Immunoprecipitation (IP) by anti-FLAG antibodies, then analyzed by
SDS-PAGE. Bands unique to lane B were cut out and identified by LC/
MS/MS. (B) IP confirmation of BNRF1/Daxx interaction. 293T cells were
transiently transfected with empty vector (V) or wild-type BNRF1 (B).
Cells harvested two days post-transfection were subject to IP with non-
specific IgG, anti-FLAG or anti-Daxx antibodies, and analyzed by
Western blot (WB) with anti-FLAG or anti-Daxx antibodies. (C) Summary
of LC/MS/MS data from FLAG-BNRF1 purification. Genebank accession
number (GI), percent of peptide coverage, number of peptides
identified, and protein name are indicated.
doi:10.1371/journal.ppat.1002376.g001

Figure 2. Mapping the Daxx-interaction domain on BNRF1, and
the effect of BNRF1 on the Daxx-ATRX complex. (A) Diagram of
wild-type BNRF1 (WT) and mutation constructs with 300 aa deletions
(d1-d5). Dark gray block denotes the amino-terminal FLAG tag. Light
gray blocks denote regions with sequence homology to the cellular
enzymes Aminoimidazole ribonucleotide synthetase (AIR_S) and Type 1
glutamine amidotransferase (GATase1, an enzymatic domain of
FGARAT), as identified by the National Center for Biotechnology
Information (NCBI) conserved domain search. (B) IP pull down analysis
of the BNRF1 deletion constructs. 293T cells were either transfected
with empty FLAG vector (V), the BNRF1 constructs WT, or mutants d1-
d5. Cell lysates of transfected cells were then subject to IP pull-downs
with non-specific IgG, anti-FLAG, or anti-Daxx- antibodies, then Western
blots were probed for Daxx (top panels), and FLAG-tagged proteins
(lower panels). Input is shown for each mutant in the left most panels.
doi:10.1371/journal.ppat.1002376.g002

Daxx-ATRX Disruption by EBV Tegument BNRF1
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important to investigate the sub-cellular location of BNRF1-Daxx

interaction, and check if BNRF1 disrupts Daxx localization to the

nuclear bodies. For immunofluorescence (IF) microscopy studies,

we selected Hep2 carcinoma cell lines because of their larger size

and prominent PML nuclear bodies, and their common use in

many previous studies with herpesvirus protein interactions with

PML-NBs. Hep2 cells were transiently transfected with empty

FLAG vector (V) or BNRF1 constructs WT, d26, or DID. Cells

were then fixed two days post transfection and subject to IF

staining. We found that WT BNRF1 partially co-localized with

nuclear foci containing Daxx (Fig. 4A, S1A and Table S1), PML

(Fig. 4B, S1B and Table S1), and Sp100 (Fig. S1D), suggesting that

BNRF1 interacts with Daxx at the PML nuclear bodies. We also

noticed that DID itself is sufficient for localizing to PML nuclear

bodies, while the d26 deletion mutant showed a weak dispersed

pattern in the cell (Fig. 4A and B, S1 and Table S1). The co-

localizations were also confirmed by line scan analysis, where the

BNRF1 WT and DID intensity peaks overlap with Daxx and PML

peaks (Fig. S2). To ensure that the diffuse pattern of the d26

mutant is not due to deficient protein expression, the same set of

transfected cells as used for IF were also assayed by Western blot

for total expression levels of BNRF1 proteins (Fig. 4D). We found

that d26 protein was expressed at levels similar to that of WT,

despite its diffuse staining in IF studies, confirming its protein

expression in the cells used in our microscopy study. These

findings indicate that the interaction with Daxx is necessary and

sufficient for BNRF1 to localize to the nuclear bodies.

To understand the BNRF1 disruption of Daxx-ATRX complex

in a sub-cellular spatial context, we also examined ATRX by IF in

BNRF1-transfected Hep2 cells (Fig. 4C and S1C). Again, we

found ATRX foci co-localizing with WT BNRF1 and DID but not

d26, which is also confirmed by line scan analysis (Fig. S2C).

However, we also found a substantial reduction in ATRX foci

intensity when cells were transfected with WT BNRF1, but no

apparent reduction when transfected with d26 or DID-mutants

(Fig. 4C). The failure of DID to disperse ATRX is consistent with

its only partial disruption of ATRX from Daxx IP (Fig. 3C).

Quantification of Daxx (Fig. 4E), PML (Fig. 4F), and ATRX

(Fig. 4G) nuclear foci in BNRF1-expressing cells compared to non-

expressing cells revealed that BNRF1-expressing cells contain a

significantly lower (p,0.0001) average number of ATRX nuclear

foci than non-expressing cells (Fig. 4G). In contrast, we found no

significant difference in the number of Daxx (Fig. 4E) and PML

nuclear foci (Fig. 4F) in BNRF1 transfected cells. Taken together,

these results suggest that BNRF1 not only disrupts the Daxx-

ATRX complex, but also actively disperses ATRX away from

nuclear bodies.

HSV-1 ICP0 and HCMV pp71 each induce the degradation of

PML and Daxx proteins respectively, yet we did not observe any

evidence of this with BNRF1 in our microscopy studies. To

investigate the potential degradation of PML, Daxx and ATRX

proteins by BNRF1, we examined the stability of these proteins in

BNRF1 stably transfected cells (Fig. 5A). 293T cells stably

transfected with control vector (clone C) or WT BNRF1 (stable

transfection clones 3 and 9) were lysed and subject to Western blot

analysis. We found no evidence of degradation or gross post-

translational modification of PML, Daxx, nor ATRX in BNRF1-

expressing cell lines. We also analyzed the protein stability of PML

and Daxx in Hep2 cells transiently transfected with control vector,

WT BNRF1 or d26, and again found no evidence of BNRF1-

induced protein degradation (Fig. S3). This suggests that BNRF1

does not mimic the protein degradation function of HCMV pp71

or HSV-1 ICP0, but rather, disrupts Daxx-ATRX interactions

through alternative mechanisms.

The diffuse distribution of the BNRF1-d26 mutant raised the

question of whether the Daxx interaction domain of BNRF1

correlated with nuclear localization. To test this, we utilized

biochemical fractionation methods to isolate nuclear and cyto-

plasmic proteins from 293T cells (Fig. 5B). We found that WT

Figure 3. The Daxx-interaction domain on BNRF1 is located
between sites 360-600 aa, and BNRF1 disrupts Daxx-ATRX
binding. (A) Diagram of BNRF1 mutation constructs with 60 aa
deletions (d21–d25) within the 360–600 aa Daxx-interaction domain
(DID) and the DID only. Blocks in the diagram drown as Fig. 2A. (B) IP
analysis of BNRF1 60 aa deletion constructs. 293T cells were transfected
with various BNRF1 expression vector constructs, and cell lysates were
subject to IP pull downs with non-specific IgG and anti-FLAG
antibodies, then Western blots were probed for Daxx (top panel), or
FLAG-tagged proteins (lower panel). (C) IP analysis of 293T cells
transfected with vector control (V), WT BNRF1 (WT), BNRF1 deletion
mutants d22, d26, or DID. Input, IgG control IP, FLAG IP, or Daxx IP
(panels left to right) as indicated above each panel. Western blots of IPs
were probed with antibody to Daxx, ATRX, PML, FLAG, or Actin, as
indicated to the left of each panel. (D) IP Western of 293T cells
transfected with vector control (V), WT-BNRF1 (WT), or BNRF1 deletion
mutants d1, d2, d3, d4, or d5. FLAG-IPs were analyzed by Western blot
with antibodies to ATRX (top panel) Daxx (middle panel), or FLAG
(lower panel).
doi:10.1371/journal.ppat.1002376.g003
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BNRF1 localized to both cytoplasmic (,60%) and nuclear (40%)

fractions. The d26 mutant, which is deficient in both Daxx

interaction and nuclear bodies localization, was expressed at lower

amounts yet showed a cytoplasmic to nuclear distribution similar

to WT (Fig. 5B). This is consistent with d26 having a weak diffuse

nuclear and cytoplasmic staining in IF (Fig. 4). Meanwhile, the

Figure 4. BNRF1 co-localizes with Daxx at PML-NBs and disperses ATRX from PML-NBs. Hep2 cells were transfected with either FLAG
empty vector, WT BNRF1, or the deletion constructs d26 and DID. Cells were fixed 2 days post transfection and co-stained with anti-FLAG, and DAPI,
and either anti-Daxx (A), anti-PML (B), or anti-ATRX (C) antibodies. Yellow regions in the merged panels denote co-localization of red and green
signals. Remaining un-fixed, transfected Hep2 cells were subject to cell lysate Western blot analysis to confirm transfection efficiency and expression
levels of the BNRF1 constructs (D). The number of nuclear bodies per cell nucleus was quantified by computational analysis of immunofluorescent
microscopy images. A total of ten 40x magnification microscopy images of random fields were analyzed for each foci count. Foci counts of either
Daxx (E), PML (F), or ATRX (G) were grouped into BNRF1 non-expressing and expressing sets. Bars on scatter plots denote the average foci per cell.
doi:10.1371/journal.ppat.1002376.g004

Daxx-ATRX Disruption by EBV Tegument BNRF1
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DID mutant, which binds Daxx and co-localizes with PML

nuclear bodies in the nucleus, was isolated at low, yet detectable

levels in the nucleus; although substantially more was recovered in

the cytoplasmic fraction. The efficiency of the fractionation was

confirmed by the presence of PARP1 exclusively in the nuclear

fractions, and a-tubulin exclusively in the cytoplasm. These

findings suggest that BNRF1 can localize to both cytoplasmic

and nuclear compartments, and that the Daxx interaction domain

might contribute partially to the nuclear entry or stability of

BNRF1.

The Daxx interaction domain is required for BNRF1 to
support EBV primary infection

A previous study using an EBV bacmid with a BNRF1-

knockout demonstrated that BNRF1-mutant virions can be

generated from producer 293 cells and can enter the cytosol of

infected B-cells; yet mutant virus failed to express one of the first

expressed latent genes, EBNA2, upon primary infection of B cells,

and were incapable of inducing B-cell proliferation [44]. To

understand the role of BNRF1-Daxx interaction in primary

infection, we took a complementation rescue approach with the

BNRF1-mutant virus. 293 cells stably transfected with either wild

type or BNRF1-knockout EBV bacmids were used for virus

production (Fig. 6). As the EBV bacmids also encode GFP, cells

infected with this bacmid-derived virus could be visualized by the

presence of green fluorescence. To induce viral production,

bacmid containing cells were co-transfected with the EBV

transactivator Zta and BALF4. To complement for BNRF1

deletion, production cells were also transfected with either control

vector, WT BNRF1 (WT), or the BNRF1 deletion mutant (d26)

which fails to interact with Daxx. Three days after transfection, the

media was collected and used to infect primary B cells isolated

from human peripheral blood mononuclear cells (PBMCs). We

detected high-levels of GFP positive proliferating B-cell clusters

when infected with virus generated from wild type bacmid

(Fig. 6Ai), but no GFP positive or clumped cells were detected

when infected with no virus (Fig. 6Aii) or virus from un-

complemented DBNRF1 bacmids (Fig. 6Aiii). However, when

DBNRF1 virus was complimented with WT BNRF1 we were able

to detect GFP positive cells and proliferating B-cell clusters

(Fig. 6Aiv). Notably, DBNRF1 virus complimented with the d26

mutant BNRF1 failed to express GFP or induce B cell proliferation

(Fig. 6Av), showing a similar defect as DBNRF1 virus with no

complementation. Quantification of at least three independent

infections confirmed that GFP positive and proliferating B-cells

were detectable only when DBNRF1 bacmid virus was comple-

mented with WT, but not with d26 mutant BNRF1 (Fig. 6B). To

ensure the infections between each complemented virus were

comparable, virus titer was quantified by real time PCR for virion

DNA. The viral titers of either empty vector or WT BNRF1

complemented virus was found to be similar, while some reduction

in virus titer was observed with d26 virus (Fig. 6C). We also tested

by Western blotting for incorporation of FLAG-BNRF1 proteins

in virions, and found that WT and d26 mutant BNRF1 proteins

were both packaged into virions to similar per particle levels

(Fig. 6D). These findings confirm that BNRF1 is required for

primary infection of B-cells, and suggests that the Daxx interaction

domain of BNRF1 is important for this function.

BNRF1 promotes expression of the immediate early gene
BZLF1

Other herpesvirus tegument proteins that interact with Daxx

and ATRX have been shown to function in the transcription

activation of viral genes during primary infection [25]. To

investigate the role of BNRF1 on viral gene transcription early

after primary infection, we infected human B-lymphocytes purified

from PBMCs with the DBNRF1 virus complemented with empty

FLAG-vector, WT BNRF1 or d26 mutant BNRF1 (Fig. 7A). Viral

gene expression in these newly infected cells was assayed at four

days post infection using Reverse Transcription qPCR (RT-

qPCR). We found that WT BNRF1 complementation induced an

up-regulation of EBNA1, EBNA2 and BZLF1 mRNA expression

compared with non-complemented virus or the d26-mutant

complementation. Interestingly, background levels of BZLF1

expression were detectable in non-complemented and d26 mutant

infections, suggesting that BNRF1 may only partly enhance

BZLF1 expression, which can occur at low levels independently of

BNRF1.

To investigate the potential mechanism of BNRF1 in viral gene

regulation, we first tested the effect of BNRF1 on reporter

plasmids using transient transfection assays, but found no

consistent effect on candidate viral promoters (data not shown).

We reasoned that reporter plasmids may lack essential BNRF1

target elements or chromatin assembly, and therefore assayed

BNRF1 activity on EBV bacmid genomes after transfection into

293 cells (Fig. 7B). EBV bacmid DNA (Bac36) and either empty

FLAG-vector, WT BNRF1, or the d26 mutant BNRF1 were co-

transfected into 293 cells and assayed 3 days post transfection for

viral gene expression using RT-qPCR. We found that WT

BNRF1 promoted a robust expression of BZLF1 transcripts (,20

fold), which was not observed in vector control or the d26 mutant

(Fig. 7B). BNRF1 also increased EBNA2 mRNA (,3 fold) relative

Figure 5. Stability and subcellular fractionation of BNRF1
proteins. (A) FLAG vector (clone C) or FLAG-BNRF1 (clones 3 and 9)
stably transfected 293T cells were lysed and analyzed by Western blot.
Blots were probed with antibodies to PML, Daxx, ATRX, FLAG (BNRF1),
or Actin, as indicated to the right. (B) 293T cells transfected with FLAG
vector (V), WT-BNRF1 (WT), d26, or DID mutant for 48 hrs were prepared
as total cell extracts (input), cytoplasmic or nuclear fractions.
Transfected cells fractions were assayed by Western blot with antibody
to FLAG (BNRF1), PARP1 (nuclear marker) or aTubulin (cytoplasmic
marker).
doi:10.1371/journal.ppat.1002376.g005
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to vector control, but this was not significantly increased relative to

that of the d26 mutant. These studies suggest that BNRF1 can

activate the expression of the EBV immediate early gene BZLF1 in

the context of the viral genome, and in the absence of other virion-

delivered tegument proteins.

Daxx and ATRX restrict viral reactivation from latency
The previous experiments suggest that BNRF1 can function

during tegument delivery in early infection, as well as after de novo

synthesis, perhaps regulating the transition from latent to lytic

infection. To explore the role of Daxx and ATRX in the context of

EBV latent to lytic gene regulation, we test the effects of Daxx and

ATRX knockdown on viral lytic gene expression in Mutu I cells,

an EBV-latently infected Burkitt’s lymphoma cell line (Fig. 8).

Mutu I cells were transduced with puromycin resistant lentivirus

carrying either non-targeting shRNA (shNeg), shRNA against

Daxx (shDaxx), ATRX (shATRX), or ZEB1 (shZEB1.1) which

acts as a positive control for reactivation. ZEB1 has been shown to

repress Zta expression, and shRNA depletion of ZEB1 can

reactivate lytic gene expression in several cell types [48,49,50].

Mutu I cells were harvested 9 days after shRNA transduction and

selection, and then tested for viral reactivation by Western blot

and FACS (Fig 8). Western blot analysis of whole cell lysates

(Fig. 8A and B) revealed that knockdown of either Daxx or ATRX

induced a reactivation of EBV early antigens, as shown by

increased band intensities of both the immediate early gene Zta (2-

fold) and the lytic early antigen EA-D (3-fold). These induction

levels are comparable to that observed with the shZEB1.1 positive

control. The efficiency of shRNA-mediated knockdown was

confirmed by the loss of Daxx, ATRX and ZEB1 bands in the

corresponding lanes (Fig. 8A). We also verified reactivation by flow

cytometry quantification of the EBV viral capsid antigen VCA on

cells from three independent shRNA-treatments (Fig. 8C), where

we observed an approximately 6-to-10-fold induction by either

Daxx or ATRX depletion. These findings indicate that the

depletion of either Daxx or ATRX can promote viral lytic gene

expression from latently infected B-cells, and suggest that BNRF1

disruption of the Daxx-ATRX complex contributes to viral gene

control during early infection and reactivation.

Discussion

The specific class of antiviral defense dubbed the intrinsic

immunity [51,52] plays a broad and general role in restricting viral

infection. PML-NBs and its associated proteins such as PML,

Sp100, Daxx and ATRX, have been extensively studied as cellular

defenses against herpesviruses, specifically with the alphaherpes-

virus HSV-1 and betaherpesvirus HCMV. Upon the early stages

of infection right after cell entry, HSV-1 and HCMV utilize viral

proteins that effectively disrupt the structure and disable the

function of the PML-NBs in restricting viral gene expression and

replication. However, the gammaherpesvirus EBV has been

relatively less studied in terms of how it counteracts these cellular

resistances upon primary infection or reactivation. We show here

that the major tegument protein of EBV, BNRF1, interacts with

Daxx (Figs. 1–3, S1–2) and disrupts its ability to form a complex

with ATRX or recruit ATRX to PML-NBs (Figs. 3–4, S1–2).

Moreover, we show that BNRF1 functionally promotes viral early

Figure 6. gBNRF1 mutant virus infection can be rescued by
ectopic complementation with wild type, but not Daxx-
interaction-deficient BNRF1. Primary B cells were infected with
equal volumes of GFP expressing virus, either produced from wild type
bacmids or gBNRF1 mutant virus complemented with empty FLAG
vector, wild type, or the d26 Daxx-interaction-deficient mutant BNRF1.
Infected cells would express the GFP carried in the virus. Infection rate
as shown in fluorescent microscopy photos (A), or a manual count of
the average number of GFP-positive cells per well (B). Aliquots of the
virus used for infection were isolated for measurement of viral titers by
real-time PCR analysis of the number of viral OriLyt DNA copy numbers
(C). Viral particles reconstituted with FLAG vector, FLAG-tagged WT-
BNRF1 or d26 mutant were concentrated and analyzed by Western blot
with antibody to FLAG (D).
doi:10.1371/journal.ppat.1002376.g006

Figure 7. BNRF1 promotes viral gene expression. (A) Primary B
cells were infected with virus produced from gBNRF1 mutant bacmids
either complemented with empty vector, wild type BNRF1 or the d26
Daxx-interaction-deficient mutant BNRF1. Virus infected cells were
subject to reverse transcription PCR assay of viral gene expression for
EBNA1, EBNA2, or BZLF1. (B) 293HEK cells were co-transfected with wild
type EBV genomes and either empty vector, WT BNRF1 or the d26 Daxx-
interaction-deficient mutant BNRF1. Transfected cells were subject to
reverse transcription PCR assay of viral gene expression for EBNA1,
EBNA2, EBNA3C, or BZLF1.
doi:10.1371/journal.ppat.1002376.g007
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gene expression with a preference for the activation of the

immediate early gene BZLF1, and to a lesser extent the latent

activator EBNA2 (Figs. 6–7). These findings indicate that EBV,

like its relatives HSV1 and HCMV, encodes a viral tegument

protein that targets PML-NB components to promote viral gene

expression.

Daxx is a prominent PML-NB component, but is also associated

with a diverse, yet non-mutually exclusive variety of cellular

functions, including the regulation of apoptosis, chromatin

remodeling, gene repression, and antiviral resistance [47,53].

Daxx is a primary target of the HCMV pp71 protein, which both

binds and induces the degradation of Daxx [30]. Like HCMV

pp71, BNRF1 binds Daxx and prevents the Daxx-interaction

partner, ATRX, from associating with Daxx and localizing to

PML-NBs. BNRF1 and pp71 are both tegument proteins, whose

pre-made nature likely provides them with a temporal advantage

to disarm cellular repression machinery without the prior need of

viral gene transcription. However, unlike HCMV pp71, BNRF1

does not induce Daxx degradation, which remains prominently

associated with PML-NBs when BNRF1 is expressed (Figs 2–5).

BNRF1 and pp71 share no obvious amino acid sequence

similarity, and the Daxx interaction domains of these two proteins

vary significantly in amino acid composition and size of the

interaction domains. These findings suggest that BNRF1 is a

functional homologue of pp71, but utilizes a distinct mechanism

for the dissociation of ATRX from PML-NBs.

Herpesvirus tegument proteins have been implicated in the

determination of viral lytic or latent gene expression programs.

Restriction of tegument protein entry into the nucleus, as has been

shown for HCMV pp71 and HSV VP16, correlates with the

establishment of latency [24], suggesting that tegument proteins

may play a critical role in determining lytic or latent gene

expression programs. Interestingly, we found that the Daxx-

interaction deficient BNRF1 mutant d26, which fails to interact

with Daxx, showed a weak diffuse subcellular distribution instead

of the punctate nuclear dots of WT BNRF1 (Fig. 4 and S1).

Similarly, biochemical fractionation studies (Fig. 5B) suggest that

while BNRF1 can localize to both the cytoplasm and nucleus, it

may require the Daxx-interaction domain to efficiently accumu-

late in the nucleus. Potentially related is the observation that

HCMV pp71 translocation to PML-NBs is also dependent on its

interaction with Daxx [54]. Selective cytoplasmic retention of

several herpesvirus tegument proteins, including pp71 and VP16,

may play a critical role in determining lytic or latent gene

expression programs [55]. We suspect that BNRF1 might be

subject to similar regulation through its PML-NB localization.

Daxx and ATRX are known to play a global role in the control

of cellular and viral gene expression and chromosomal structure.

Daxx itself has been shown to associate with HDACs and to

function as a global repressor of transcription [20,21]. The Daxx-

ATRX complex has in vitro chromatin remodeling activities [26]

and can function as a histone H3.3 chaperone [56]. Recent studies

suggest also that ATRX interacts with G-rich repeat chromatin

regions [57], and in collaboration with Daxx load histone variant

H3.3 onto pericentromeric and telomeric chromatin [56,58,59].

H3.3 is generally associated with open chromatin and active

transcription when loaded by the histone chaperone HIRA [60].

However, the Daxx-ATRX complex loaded H3.3 has been found

to facilitate transcription from pericentromeric regions [58] but

repress transcription from telomeric regions [59]. Interestingly,

HIRA-loaded H3.3 can facilitate the lytic replication of HSV-1

during the early steps of infection [61]. Furthermore, the Daxx-

degrading pp71 blocks the establishment of heterochromatin on

the HCMV Major Immediate Early Promoter (MIEP) region [25].

These findings underscore the importance of host chromatin

regulatory mechanisms in the control of herpesvirus infection. We

suspect that the viral gene activation function of BNRF1 (Fig. 7) is

likely to be mediated by chromatin-dependent processes since we

failed to observe consistent transcription activation when assayed

in transient plasmid-based reporter assays using EBV promoters

for BZLF1 (Zp) or EBNA2 (Cp or Wp) (data not shown). We

propose that BNRF1 stimulates EBV early gene activity through

de-repression of the Daxx-ATRX mediated chromatin repression

mechanism, perhaps similar to that of pp71 de-repression of the

HCMV MIEP locus. However, the precise molecular mechanism

through which BNRF1 activates early gene transcription through

the disruption of ATRX-Daxx interaction remains to be

investigated.

While not explored yet, it is also not known if the FGARAT

enzyme-homology domain of BNRF1 has any function in the

context of supporting viral infection. This enzyme homology is

conserved among all gammaherpesvirus orthologues of BNRF1,

including the KSHV and MHV68 ORF75 family members.

Despite significant sequence similarity with BNRF1, KSHV and

Figure 8. ATRX and Daxx depletion leads to reactivation of
latent EBV. Mutu I cells were transduced with lentivirus shRNA with
non-targeting sequence (shNeg), or targeting for ATRX (shATRX), Daxx
(shDaxx) or positive control ZEB1 (shZEB1.1). Transduced cells were
selected for puromycin resistance for 9 days and then assayed by
Western blot with antibodies to Zta, EA-D, Daxx, ATRX, ZEB1, or
aTubulin, as indicated and visualized by HRP (A) and densitometric
scanning of Western blot band intensities (B). Three replicates of Mutu I
transduced as described above were assayed by flow cytometry with
antibody to EBV viral capsid antigen VCA and quantified as % VCA
positive fold change relative to shNeg. Error bars denote the standard
error among the independent experiments (C).
doi:10.1371/journal.ppat.1002376.g008
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MHV68 ORF75 proteins do not appear to interact with Daxx

(data not shown). However, MHV68 ORF75c targets PML-NBs

through the degradation of PML [45,46], an activity that we did

not observe with BNRF1. Thus, while these tegument family

members share the FGARAT homology regions, and may

similarly target components of the PML-NBs, they appear to

target different proteins and utilize distinct mechanisms. It is also

important to note that the disruption of ATRX by BNRF1 was

partially dependent on the FGARAT domain, since the DID

alone, which binds Daxx efficiently, only partially disrupt ATRX

binding in IP assays (Figs 2 and 3) while not causing any significant

ATRX dispersion from PML-NBs in IF assays (Fig. 4). Also,

deletions within the FGARAT domain (d3 and d4) resulted in a

mutant BNRF1 that co-precipitated with ATRX, creating a gain

of function not seen with WT BNRF1. All of this suggests that the

FGARAT domain may play a regulatory role in BNRF1

interactions with Daxx and ATRX.

In conclusion, our data demonstrates a novel example of

herpesvirus tegument protein interacting with components of the

cellular antiviral resistance. BNRF1 interaction with Daxx may

provide several functions, including the establishment of a

chromatin structure conducive to viral early gene activity. Our

findings demonstrate that EBV, like other herpesviruses, confront

the PML-NB associated intrinsic defenses through a viral factor

that is available and active upon the early stages of infection, and

shed light into the critical control mechanisms that govern the

early events of EBV infection before the establishment of latency.

Materials and Methods

Ethics statement
Human B-lymphocytes were obtained from the Wistar Institute

phlebotomy lab. All samples were from anonymous adult donors

and approved by the Wistar Institute Institutional Review Board.

Written informed consent was provided by study participants.

Cells
Hep2 and 293T cells were grown in Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS), 20 mM GlutaMAX (Gibco), 100 U/ml penicillin and

100 ml/ml streptomycin. 293HEK cells were grown in minimum

essential medium Eagle (MEM), supplemented with 10% FBS and

20 mM GlutaMAX (Gibco). DG75 and Mutu I cells are EBV

negative and positive (respectively) Burkitt’s lymphoma cell lines,

grown in RPMI 1640 medium supplemented with 10% FBS,

100 U/ml penicillin and 100 ml/ml streptomycin. Peripheral

blood mononuclear cells (PBMCs) were isolated from fresh

donated human blood by density gradient centrifugation with

Ficoll-Paque Plus purchased from GE healthcare. Primary B cells

were then isolated from PBMCs using Dynabeads Untouched

Human B Cell isolation kit (Invitrogen). All cells were grown in a

5% CO2 incubator at 37uC. Stable 293 cell lines expressing

FLAG-BNRF1 (clone 3 and clone 9) and empty FLAG vector

(clone C) were grown in DMEM as described for 293T cells above,

supplemented with 2.5 mg/ml Puromycin for selection.

Viruses bacmids and virus production cells
Viruses were produced using chloramphenicol and hygromycin

resistant bacmids containing the EBV genome and the gene

coding for green fluorescence protein (GFP). 293/EBV-wt cells (a

gift from H. J. Delecluse) are 293HEK cells stably transfected with

the wild type EBV bacmid [62]. 293/gBNRF1 cells (a gift from

H. J. Delecluse) are 293HEK cells stably transfected with an EBV

bacmid with the BNRF1 gene deleted [44]. 293/EBV-wt and

293/gBNRF1 cells were grown in RPMI 1640 medium

supplemented with 10% FBS and 100 mg/ml hygromycin.

Enzymes and antibodies
All restriction enzymes, T4 DNA ligase and associated buffers

were purchased from New England Biolabs. Monoclonal mouse

anti-FLAG antibody (F1804), Polyclonal rabbit anti-FLAG ani-

body (F7425), Polyclonal rabbit anti-Daxx antibody (F7810),

Monoclonal Anti-a-Tubulin antibody (T5168), Monoclonal mouse

anti-b-Actin-Peroxidase antibody (A3854), and Anti-mouse IgG

R-Phycoerythrin (PE) conjugated antibody (P8547) were pur-

chased from Sigma-Aldrich. Monoclonal mice anti-PML (PG-M3,

sc-966), and polyclonal rabbit anti-ATRX (H-300, sc-15408), and

polyclonal rabbit anti-ZEB1 (sc25388) were purchased from Santa

Cruz Biotechnology. Polyclonal rabbit anti-PARP1 antibody

(ALX-210-895-R100) was purchased from Enzo Life Sciences.

Mouse anti-EA-D antibody was purchased from Millipore. Anti-

EBV-VCA (0231) antibody was purchased from Pierce Thermo

Scientific.

Construction of BNRF1 expression plasmids and
truncations

BNRF1 was cloned into the HindIII-SalI sites of the p3xFLAG-

Myc-CMV-24 Expression Vector (Sigma-Aldrich), using the PCR

primers: gcgaagcttgaagagaggggcagggaaacgcaa and gcggtcgact-

cactcggaggggcgaccgtgcctg. BNRF1 deletion mutants were gener-

ated as follows. PCR Primers (Table S2) were designed so that the

front and rear halves of the DNA oligo each binds the 59 or 39

regions flanking the targeted deletion site on the BNRF1 template.

PCR reactions were setup using iProof High-Fidelity DNA

polymerase 2x master mix (Bio-Rad), with primers at 1 mM

concentration, and the FLAG-BNRF1 expression plasmid as the

template at a concentration of 50 ng DNA in a 25 ml reaction

setup. PCR was done with a Bio-Rad C1000 thermal cycler,

thermal cycles setup according to DNA polymerase mix

manufacturer suggested conditions. To clear out the wild type

BNRF1 template, 15 ml of the PCR product were treated with

30 U DpnI (New England Biolabs) in a 20 ml reaction for 2 hours

to over night at 37uC. 2 ml of DpnI-treated DNA were then

transformed into 50 ml of Library Efficiency DH5a competent

cells (Invitrogen). Colonies were screened for the deletion by

enzyme digestion analysis of miniprep DNA, and then confirmed

by DNA sequencing of the expected deletion site.

Immunoprecipitation
BNRF1 expression plasmids were transfected using Lipofecta-

mine 2000 (Invitrogen) according to manufacturer instructions.

Cells were harvested 2 days post transfection by washing cells off

the plate with PBS. Harvested cells were further washed 3 times

with cold PBS, and then subject to lysis with freshly prepared NET

lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM

EDTA, 0.5% NP-40, and 0.1% mammalian protease inhibitor

cocktail mix (P8340, Sigma-Aldrich), at 1 ml NET per IP pull-

down. Cell lysates were homogenized by doing 10 strokes in a

Dounce homogenizer. 60 ml of each lysate were isolated after this

step as input control. The remaining lysates were incubated at 4uC
rotating for 30 mins to fully solubilize proteins. Lysates were then

spun at 13000 rpm 5 mins to remove insoluble cell debris, then

antibodies were added (5 ml of each antibody per IP) to the cleared

lysates, and left rotating over night. 100 ml of 50% slurry of Protein

A sepharose beads (GE healthcare) in NET buffer was added to

each IP with rotating at 4uC for 2–3 hours, then washed three

times with NET for 10 mins (rotating at 4uC) per wash. Pulled
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down proteins were released by adding 50 ml 2x Laemmli buffer

(100 mM Tris-Cl pH 6.8, 4% SDS, 0.2% Bromophenol Blue,

20% Glycerol), and boiling for 10 mins at 100uC. The resulting

samples (excluding beads) were then loaded directly into protein

gels and subject to Western blot analysis.

For mass spectrometry identification of BNRF1 associated

proteins, FLAG-BNRF1 expressing and FLAG-vector control

stable cell lines were generated as mentioned above. Nuclear

extracts from 56107 cells were subject to immunopurification with

anti-FLAG Sepharose beads (A2220, Sigma-Aldrich) followed

extensive washing with NET buffer, and FLAG peptide elution.

Eluted protein was subject to precipitation with 10% trichlor-

oacetic acid (TCA) followed by SDS-PAGE and colloidal blue

staining. Sections of the gel with enriched polypeptides were

subject to LC/MS/MS at the Wistar Proteomics Facility.

Immunofluorescence microscopy
Hep2 cells were transfected with BNRF1 expression plasmids

using Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instructions, transfected cells were then reseeded at

2.76104 cells/well in 24 well plates containing microscope

coverslips 5 hours post transfection. 2 days post transfection,

coverslips with cells attached were harvested, fixed with 1%

paraformaldehyde at room temperature for 15 mins, then

permeablized with 0.3% Triton-X 100. Coverslips were then

stained with the first antibodies over night at 4uC. First antibody

dilutions used were as follows: mouse anti-FLAG at 1:20000,

rabbit anti-Daxx at 1:5000, rabbit anti-FLAG at 1:5000, mouse

anti-PML at 1:250, rabbit anti-ATRX at 1:250, all antibodies

diluted in PBS. Second antibody stainings were carried out for 1

hour at room temperature with the red-fluorescent Alexafluor594

goat anti-rabbit antibody and green Alexafluor488 goat anti-

mouse antibody (both from Invitrogen) each at 1/800 dilution in

PBS. Coverslips were washed twice in PBS for 5 mins between

each of the above treatments. Cell nuclei were stained briefly with

DAPI (diluted to a final concentration of 0.167 mg/ml in PBS) for

2 mins, then washed with PBS, 70% EtOH, then 100% EtOH to

wash out residual salts. Coverslips were air-dried briefly, and then

mounted onto microscope slides with Vectasheld mounting media

(Vector Laboratories). Mounted slides were examined under a

Nikon E600 upright microscope with a 100x oil objective. Photos

for nuclear body quantification were took using a 40x objective to

maximize the number of cells in each photo while retaining a clear

view of PML bodies.

Nuclear body quantification
Microscopy photos were analyzed using ImagePro Plus 6.2

software (Media Cybernetics). Photos were pre-processed by

subtracting out the background intensity using the operation

function (with a value of 230), and passing through a flatten filter

(a value of 10). A morphological ‘top hat’ filter was then applied to

emphasize points or grains brighter then the background. The

number of nuclear bodies in each cell nucleus was counted by

quantifying the object numbers after applying the signal intensity

threshold/segmentation tool to select the nuclear bodies as objects.

Cell boundaries were defined by the outline from DAPI channel

photos of the same field, while omitting all cells on the border of

the image border. Resulting quantification numbers were then

analyzed using Prism 4 software (Graph Pad Software), statistical

analysis did by Mann-Whitney U non-parametric, unpaired t test.

Subcellular fractionation assay
293T cells were transfected in 10 cm plates with 2 mg

expression plasmids of either empty FLAG vector, WT-BNRF1,

BNRF1-DID, or 6 mg of BNRF1-d26. Transfection was carried

out using 10 ml Lipofectamine 2000 (Invitrogen) per transfection,

following manufacturer instructions. Cells were harvested 24 hrs

post transfection. 1/6 of cells isolated as input control. The rest of

the cell pellets were fractionated with the Fermentas ProteoJET

Cytoplasmic and Nuclear Protein Extraction Kit (K0311). The

resulting cytoplasmic and nuclear fractions, along with the input

samples, were analyzed by Western blot.

BNRF1 complementation virus infection assay
To induce lytic virus production, 293/EBV-wt and 293/

gBNRF1 cells were transfected in 10 cm plates with expression

plasmids of 1.75 mg BALF4, 3.25 mg BZLF1 or cDNA3 empty

vector, and 3 mg of either empty FLAG vector or 3 mg BNRF1 or

7.5 mg BNRF1-d26. Transfection was carried out using 15 ml

Lipofectamine 2000 (Invitrogen) per transfection, following

manufacturer instructions. The media of virus production cells

were harvested 3 days post transfection, filtered through 0.45 mm

filters, and added directly to freshly isolated primary B cells. B cells

in virus containing media were centrifuged for 1200 rpm 90 mins

at 25uC to enhance infection.

For measuring infection by GFP levels, infected B cells were

treated with 1 mM Sodium Butyrate and 20 ng/ml TPA 3 days

post transfection to enhance GFP expression, and the number of

GFP positive cells in each well were counted manually under a

Nikon TE2000 microscope using a 20x objective.

For measuring virus gene expression in infected B cells, cells

were collected 4 days post transfection, and total RNA was

purified using Trizol (Invitrogen). The resulting RNA was then

subject to DNase 1 treatment at 2 U/50 ml, 1 hour at 37uC, then

DNase was heat inactivated by adding a final concentration of

5 mM EDTA and incubated at 70uC for 10 mins. cDNA was

synthesized using the Super Script III first strand synthesis system

reverse-transcription kit (Invitrogen). The resulting cDNA was

then subject to real time PCR analysis by DCt method and

normalized to viral titers, measured as described below. Real time

PCR primers used are listed in Table S3.

To measure the amount of complemented BNRF1 protein that

were packaged into virions, gBNRF1 virions complemented with

WT-BNRF1, BNRF1-d26, or un-complemented, were produced

as mentioned above. 100 ml of the harvested and filtered virus-

containing media were isolated for viral titer measurement as

described below. The rest of the virus-containing media were

concentrated by loading the media above a 5 ml layer of 22.5%

sucrose in PBS, then centrifuged at 27000 rpm (,100,000 g) 4uC
for 1 hour in a SureSpin 630 Rotor (Thermo Scientific) with a

Sorvall WX 100 Ultra ultracentrifuge. The resulting virus pellet

was then resuspended in PBS, and analyzed by Western blot.

Protein gel loading volumes were normalized according to viral

titers to ensure equal amounts of virion protein in each well.

Virus titer measure by real time PCR detection of DNA
copy number

Viral DNA in media was extracted as described by C. Busse et

al. [63]. Virus-containing media were treated with 5 U/50 ml of

DNase I (New England Biolabs) for 1 hour at 37uC. DNase was

then deactivated by adding EDTA to a final concentration of

5 mM, followed by 10 mins heat inactivation at 70uC. Samples

were then mixed 1:1 with 0.1 mg/ml of proteinase K in water, and

incubated at 50uC for 1 hour, followed by 20 mins of heat

inactivation at 75uC. The released viral DNA was measured by

real time PCR analysis, using a serial dilution series of Namalwa

cell lysate as the standard curve, which contain two copies of

integrated EBV genome per Namalwa cell. EBV genomes were
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detected using primers specific to the OriLyt region: 59-

CGTCTTACTGCCCAGCCTACTC-39 (OriLyt-fwd), 59- AGT-

GGGAGGGCAGGAAATG-39 (OriLyt-rev).

Virus gene expression assay on bacmid/BNRF1
co-transfected cells

Wild type EBV genome bacmids were prepared from 2.5 mls

overnight LB culture using the Bacmax DNA purification kit

(Epicentre). 293HEK cells were seeded (2.3 million cells per plate)

the previous day in 10 cm plates, and transfected with 1.5 mg freshly

prepared bacmids along with 0.5 mg of either empty FLAG vector,

BNRF1, or BNRF1-d26 mutant. Transfection was carried out using

Effectene transfection reagents (Qiagen), following manufacturer

instructions. Cells were harvested three days post transfection, total

RNA was purified using Trizol (Invitrogen), and then subject to DNase

1 treatment at 2 U/50 ml, 1 hour at 37uC. DNase was heat inactivated

by adding a final concentration of 5 mM EDTA and incubated at

70uC for 10 mins. cDNA was then synthesized using the Super Script

III first strand synthesis system reverse-transcription kit (Invitrogen).

The resulting cDNA was then subject to real time PCR analysis byDCt

method. Real time PCR primers used are listed in Table S3.

shRNA-mediated knockdown of genes
shNeg (pLKO-shNeg), shDaxx (pLKO-shDaxx-2) and shATRX

(pLKO-shATRX90) constructs in lentivirus production plasmid

backbones were generous gifts from Roger Everett. shNeg (sequence

TTATCGCGCATATCACGCG) was designed to poorly target the

E.coli DNA polymerase and extensively screened to ensure that it

does not affect human nor viral transcripts. Use of shDaxx and

shATRX was previously described else where [30,31]. shZEB1.1 was

obtained from the TRC library (Sigma, Inc), with targeting sequence

GCAACAATACAAGAGGTTAAACTCGAGTTTAACCTCTT-

GTATTGTTGC). Mutu I cells were infected with lentiviruses

carrying pLKO.1-puro vectors by spin-infection at 400 g for 45

minutes at room temperature. The pellets were resuspended in fresh

medium and left growing overnight. The RPMI medium was

replaced each day, with 2.5 ug/ml Puromycin added for selection for

lentivirus transduced cells. The cells were collected after 9 days of

puromycin selection, and subject to Flow cytometry quantification of

EBV viral capsid antigen positive cells, and Western blot analysis.

Supporting Information

Figure S1 BNRF1 co-localizes with Daxx at PML-NBs
and disperses ATRX from PML-NBs. Hep2 cells were

transfected with either FLAG empty vector, WT BNRF1, or the

deletion constructs d26 (or d2 in panel D) and DID. Cells were

fixed 2 days post transfection and co-stained with anti-FLAG, and

DAPI, and either anti-Daxx (A), anti-PML (B), anti-ATRX (C), or

anti-Sp100 (AB1380, Chemicon International, used at 1/800

dilution in PBS) antibodies. Yellow regions in the merged panels

denote co-localization of red and green signals.

(TIF)

Figure S2 Signal intensity profiles analysis of BNRF1
co-localization with PML nuclear bodies. Color channel

merged panels from Fig. 4 were subject to line scan signal intensity

analysis as [64]. Signal intensity plots of red and green channels

were plotted bellow each photo, where the x-axis runs from left to

right along the yellow line drawn across several nuclear foci in

each photo. Overlaps of BNRF1 signals with Daxx (A), PML (B),

and ATRX (C) are analyzed.

(TIF)

Figure S3 Time-course study of the effects of BNRF1 on
PML and Daxx protein stability. Hep2 cells were transfected

with vector control, WT BNRF1, or BNRF1-d26 mutant

expression vectors. Total cell lysates were analysed by Western

blot at 0, 12, 24, or 48 hrs post-transfection. Western blots were

probed with antibodies to PML, Daxx, FLAG (BNRF1), or Actin,

as indicated to the right.

(TIF)

Table S1 Percentage of BNRF1 foci overlap with Daxx
or PML foci, as observed by IF microscopy.

(XLS)

Table S2 Primers used in site-directed mutagenesis of
BNRF1 deletion constructs.

(XLS)

Table S3 Primers used for real time PCR detection of
viral gene expression.

(XLS)
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