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Abstract

Imprinted macro non-protein-coding (nc) RNAs are cis-repressor transcripts that silence multiple genes in at least three
imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome.
Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head
using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is
able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80–
118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA
fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than
8 kb show a gradual loss of sequencing tags towards the 39 end. Comparisons to published RNA-Seq datasets show that the
strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that
standardization of RNA preparation protocols would increase the comparability of the transcriptome between different
RNA-Seq datasets.
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Introduction

The study of whole transcriptomes, which detects all RNAs

expressed in one cell population, provides insights into mecha-

nisms regulating gene expression in development and disease. The

first large-scale mammalian transcriptome studies based on

genome tiling array hybridization or cDNA sequencing, unex-

pectedly revealed that most RNAs excluding structural tRNAs,

rRNAs and spliceosome RNAs were non-protein-coding (nc)

RNAs [1,2,3]. This ncRNA population, which is considered to

play a pivotal role in regulating gene expression, is currently

classified according to size [4]. Small ncRNAs include siRNAs,

miRNAs and piRNAs that are less than 30 bp and are involved in

transcriptional and post-transcriptional gene silencing, and also

snoRNAs that are less than 200 bp and primarily guide rRNA

chemical modifications. These small ncRNAs can be processed

from mRNA introns or from independent long or macro precursor

ncRNAs [5,6,7]. Macro ncRNAs that are currently defined as

transcripts greater than 200 bp but can exceed 100 kb in length,

function without being processed into small ncRNAs. Well-known

examples of functional macro ncRNAs in mammals are imprinted

macro ncRNAs of which Airn, Kcnq1ot1 and Nespas have been

shown to repress 1–10 genes in cis [8,9,10].

The development of Next Generation Sequencing applied to

RNA (referred to as RNA-Seq) provides an accurate, unbiased and

quantifiable transcriptome [11,12]. Different technologies such as

the Illumina/Solexa and ABI SOLiD platforms use cDNA

fragment clusters to produce short sequencing tags without vector

subcloning [13]. Transcriptome analysis by RNA-Seq is a multi-

step protocol that can be divided in three main parts. The first part

termed ‘template preparation’ includes the isolation of total RNA

from cells or tissues and the preparation of fragmented cDNA.

The second part usually referred to as ‘sample preparation’

includes all steps to produce a library from the fragmented cDNA

that is used by the sequencing platform to generate millions of

short sequence reads or tags. In the last part, bioinformatic

procedures convert the sequence tags into an interpretable format

by aligning them to a reference genome and quantifying

expression levels of annotated genes [14].

The ease and cost effectiveness of RNA-Seq has led to a

growing amount of publications that share their transcriptome

studies with the scientific community [11,15]. This raises

important issues on the need to optimize RNA-Seq pipelines to

ensure they represent the complete coding and non-coding

transcriptome as well as to ensure reproducibility and compara-

bility of transcriptomes generated at different sequencing loca-
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tions. It is becoming clear now that differences in template

preparation protocols create biases in the detection of gene

expression and several bioinformatic applications have been

developed to compensate for this bias [16,17]. However compared

to the rapid development of bioinformatic analysis tools, little

progress has been made in standardizing template preparation

protocols in a similar manner as proposed for microarray

expression platforms [18]. Most current knowledge of the strengths

and weaknesses of RNA-Seq is based on studies using polyA

enriched RNA as a starting material [19,20]. Currently very little

information is available on the ability of RNA-Seq to detect the

full ncRNA transcriptome, and information is particular lacking

about the detection of imprinted macro ncRNAs.

The majority of cellular RNA is composed of ribosomal RNAs

(rRNAs). As sequencing this part of the transcriptome is usually

not the main research focus, the RNA sample is prepared either

by selection of polyadenylated (polyA) RNAs or by selective

removal of rRNAs (ribo-depletion). RNA-Seq using polyA

selected RNA detects protein-coding mRNAs at a depth sufficient

to determine tissue-specific gene expression differences and can

also detect at least a subset of ncRNAs [19,20]. However, it has

also been shown that the template fragmentation step induces

important differences in the gene coverage by sequence tags and

that the 39UTRs are under-represented in polyA RNA-Seq

[12,20,21]. The effect of ribosomal RNA depletion on RNA-Seq

(ribo-depleted RNA-Seq) and the resulting transcriptome has

been less studied. It is generally assumed that ribo-depleted RNA-

Seq may perform better than polyA RNA-Seq, as it will detect

ncRNAs lacking a polyA tail and those that are very long and

likely to be broken into fragments lacking a polyA tail. A recent

study investigated the use of ribo-depleted RNA-Seq for detecting

the protein-coding and non-coding transcriptome [22], but

several important issues have not yet been addressed. These

include: (i) the influence of template fragmentation on gene

expression and gene coverage, (ii) the reliability of expression

levels determined by ribo-depleted RNA-Seq, (iii) the reproduc-

ibility of ribo-depleted RNA-Seq when using different sequencing

machines and ribosomal RNA depletion methods, and (iv) the

advantages of ribo-depleted RNA-Seq over polyA enriched

RNA-Seq in the detection of macro ncRNAs.

In order to address these issues we modified an established

protocol for RNA-Seq using the Illumina/Solexa platform [20]

and used it to analyse the non-ribosomal transcriptome of two

distinct mouse tissues by RNA-Seq. In brief this protocol includes

column-free RNA preparation, ribosomal RNA depletion, RNA-

hydrolysis and ds-cDNA synthesis. The resulting ds-cDNA is

compatible with the needs of the major NGS platforms used to

date [13]. We first show that ribo-depleted RNA-Seq is highly

reproducible between different sequencing locations, even when

using two different ribosomal RNA depletion strategies. Secondly,

we show that template fragmentation by RNA-hydrolysis produces

more homogenous gene coverage than cDNA shearing, and that

both fragmentation methods lead to under-representation of 59

and 39 UTRs. Notably, by comparing the protein-coding

transcriptomes obtained here to published RNA-Seq datasets

from similar tissues, we show that the use of similar template

preparation protocols is critical for obtaining a comparable

transcriptome. Lastly, we show that RNA populations prepared

by ribo-depletion allow RNA-Seq to reliably detect both the non-

coding and protein-coding transcriptome, and also to identify

biologically relevant gene expression differences in both these

RNA types between the two analysed mouse tissues. Importantly

our template preparation protocol allowed the detection of well-

studied imprinted macro ncRNAs that failed to be identified in

comparable polyA and ribo-depleted RNA-Seq datasets that used

different template preparation protocols.

Results and Discussion

RNA for sequencing was obtained from retinoic acid differen-

tiated mouse CCE embryonic stem cells and 14.5 dpc mouse fetal

head (FH) and subject to ribosomal RNA depletion using either

the RiboMinus Kit (Invitrogen) or the Ribo-Zero Kit (Epicentre,

see Materials and Methods). FH is a complex combination of

multiple tissues but primarily contains fetal brain whereas

differentiated CCE cells resemble an extra-embryonic epithelial

cell type called primitive endoderm [23]. The number of tags and

the GEO accession number for each sequenced lane are shown in

Table S1.

RNA-Seq at different locations produces highly similar
results

For CCE cells, we prepared two technical replicates of one-

round RiboMinus and for FH we prepared one or two rounds of

RiboMinus (Table S1). To directly compare two fragmentation

methods RNA-hydrolysis and cDNA-shearing, we applied both

methods to the same RiboMinus samples. The same cDNAs were

sequenced in two locations: Vienna-IMP (Research Institute of

Molecular Pathology) and Nijmegen NCMLS (Nijmegen Centre

for Molecular Life Sciences). We found that 46–73% (RiboMinus)

of tags mapped to ribosomal / mitochondrial sequences (blue

boxes in Figure 1A and Figure S1A). We then mapped the

remaining sequence tags to the mouse genome (mm9). Overall we

found 9–24% (RiboMinus) of tags mapped once in the genome

(green boxes), 4–9% (RiboMinus) multiple times (red boxes) and

9–21% (RiboMinus) of tags did not match any dataset (purple

boxes in Figure 1A and Figure S1A). As multiple RiboMinus

datasets were available we analysed these in more detail. There

was no significant difference detectable in any tag group between

the two tissues, CCE and FH, when the sequencing was performed

at the same location (Vienna-IMP or Nijmegen) using RNA-

hydrolysis and at least two replicates per tissue (t-test, p.0.05). A

similar comparison was not possible for cDNA-shearing as we only

sequenced one FH sample at the two locations (Table S1).

Importantly we found no significant differences in any tag group

when comparing the data prepared in two different locations

(Vienna-IMP and Nijmegen) from RNA-hydrolysis or cDNA-

shearing irrespective of the tissue with at least three replicates per

location (t-test, p.0.05), indicating high reproducibility of the

technique. We did note a higher variability in the results for FH,

however there was no trend for less ribosomal tags between one or

two rounds of RiboMinus ribosomal RNA depletion (compare

FH1 and FH2 Figure S1A). This finding confirms earlier reports

that different locations produce similar proportions of sequence

tags [24].

RNA-hydrolysis and Ribo-Zero minimise ribosomal
sequencing tags

We decided to expand this analysis to test if any significant

difference was detectable between the different fragmentation

methods. Therefore we compared all data from RNA-hydrolysis to

all data from cDNA-shearing, irrespective of the tissue or location

(Vienna-IMP and Nijmegen). This comparison shows more unique

and nomatch as well as less ribosomal/mitochondrial tags were

obtained from RNA-hydrolysis compared to cDNA-shearing (t-test,

p,0.05). The number of repeat tags did not change significantly

between the two fragmentation methods (t-test, p.0.1). This

indicates that RNA-hydrolysis performs better than cDNA-shearing

Macro ncRNA Abundance in Ribo-Depleted RNA-Seq
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Figure 1. Optimisation and reproducibility of ribo-depleted RNA-Seq. (A) Distribution of different sequence tag types from RNA prepared
from CCE differentiated ES cells subject to ribosomal RNA depletion using either the RiboMinus or the Ribo-Zero Kit and fragmented either by RNA-
hydrolysis or by cDNA-shearing. Sequencing was performed in two different sequencing locations (Vienna-IMP, Nijmegen, RiboMinus) or in one
sequencing location (Vienna-CeMM, Ribo-Zero). The percentage of tags in each category is shown for two technical sequencing replicates (CCE1,
CCE2) of material prepared by RiboMinus and cDNA-shearing (sheared, lanes nr. 1,2,5,6) or RiboMinus and RNA-hydrolysis (hydrolysed, lanes nr.
3,4,7,8), for the combination of three technical sequencing replicates of RiboMinus and RNA-hydrolysis (lane nr. 9) and for one sequencing of Ribo-
Zero and RNA-hydrolysis (lane nr. 10). green: unique tags matching only once in the genome; blue: rRNA+mitoRNA tags matching to ribosomal
(RiboMinus and Ribo-Zero) or mitochondrial (RiboMinus) RNAs; red: repeat tags matching more than once in the genome; purple: nomatch tags do
not match to the genome. (B) Scatter plots comparing the RPKM (Reads Per Kilobase of exon model per Million of reads) transcription levels of RefSeq
protein-coding genes between combined tags from RiboMinus and RNA-hydrolysis (H) and RiboMinus and cDNA-shearing (S) from CCE within the
same location: Vienna-IMP (left) and Nijmegen (right). (C) Scatter plots as in B comparing RPKM transcript levels of all combined tags from the two
sequencing locations (Vienna-IMP and Nijmegen, left) or between the combined RiboMinus data and the Ribo-Zero data (right). R: Pearson’s
correlation, note that a perfect correlation is R = 1.
doi:10.1371/journal.pone.0027288.g001

Macro ncRNA Abundance in Ribo-Depleted RNA-Seq
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in producing more unique and less ribosomal RNA tags and is

therefore the favourable template fragmentation method.

To optimise ribosomal RNA depletion we used an improved

depletion method, Ribo-Zero, in combination with RNA-hydro-

lysis. For the RNA from both FH and CCE tissues, one Ribo-Zero

treatment was performed, the RNA was hydrolysed and

sequenced in Vienna-CeMM (Research Center for Molecular

Medicine). This resulted in a more efficient removal of ribosomal

RNAs as only 4–14% of all tags were of ribosomal origin. We also

observed an increase in uniquely matching (36–54%) and multiple

matching tags (28–30%) (blue, green, red boxes Figure 1A lane

Nr.10 and Figure S1A lane Nr.8). Interestingly tags with nomatch

in the genome did not change (14–21%, purple boxes Figure 1A

Nr.10 and Figure S1A lane Nr.8). This analysis is, to our

knowledge, the first one to use the combination of Ribo-Zero and

RNA-hydrolysis on mouse tissues and we show this approach

efficiently removes ribosomal RNAs and generates a high number

of uniquely matching sequencing tags.

Gene expression is reproducible between RNA depletion
methods and sequencing locations

In the next step we analysed if the gene expression levels of

protein-coding genes were comparable between the different

fragmentation methods and locations. To obtain a comparable

measure of gene expression we used RPKM (Reads Per Kilobase

of exon model per Million mapped reads) values that are corrected

for gene length and the total number of sequence tags. Although

FPKM (Fragments Per Kilobase of exon model per Million

mapped reads) values are starting to replace RPKM, the latter are

widely used to estimate expression levels of protein-coding genes as

well as ncRNAs [20,21,25,26] and are useful to unravel technical

bias in RNA-Seq protocols [15]. First we focused on RefSeq

protein-coding genes in the RiboMinus datasets. A comparison of

RNA-hydrolysis and cDNA-shearing showed that the RPKM

values correlate well within the same tissue, sequenced in two

different locations (Vienna-IMP and Nijmegen, Pearson correla-

tion: R.0.9, Figure 1B and Figure S1B). Due to this high

correlation, we pooled all tags from RNA-hydrolysis and cDNA-

shearing for the two sequencing locations (Vienna-IMP and

Nijmegen), recalculated the RPKM values and compared them to

each other (Figure 1C left and Figure S1C left). Again we found a

very good correlation for both CCE and FH (R.0.98). Finally we

compared the RPKM values from the combined RiboMinus

(Vienna-IMP and Nijmegen) to the Ribo-Zero datasets and found

a high correlation for both tissues (R.0.8, Figure 1C right, Figure

S1C right). This analysis shows that different ribosomal RNA

depletion strategies and the sequencing at different locations

produce comparable protein-coding gene expression levels.

RNA-hydrolysis produces homogenous coverage of
coding exons

A recent review reported that chemical breakdown of RNA

(RNA-hydrolysis) followed by cDNA synthesis produced a more

equal representation of genes with sequencing tags than physically

breaking up the cDNA (cDNA-shearing). In particular, this review

noted an extreme 39 positive bias for protein-coding genes from

cDNA sheared templates in polyA RNA-Seq [12]. As this review

analysed RNA-hydrolysis data from mouse [20] and cDNA-

shearing data from yeast [27] we decided to directly compare for

the first time both fragmentation methods, using the same RNA, for

differences in gene coverage. We combined the RiboMinus datasets

from both CCE and FH as we found that gene coverage was similar

between these tissues (data not shown, also demonstrated by [21]),

and compared RNA-hydrolysis and cDNA-shearing. We analysed

coding regions and untranslated regions (UTRs) of protein-coding

mRNAs separately. Note that UTRs are found at both the 39 and

the 59 end of protein-coding mRNAs and can contain introns [28].

We then separately plotted the relative tag coverage of genes that

are reliably expressed in CCE and FH (RPKM.3, see below) for

three cDNA size groups: small (,1 kb), medium (1–8 kb) and large

(.8 kb) (Figure 2A top, middle, bottom). We compared RNA-

hydrolysis (black line) and cDNA shearing (grey line) for all gene size

classes (Figure 2A). In all cases both the 59 and 39 UTRs (black

boxes Figure 2) showed a large loss of tag coverage compared to

coding exons. The coverage of the coding exons differed amongst

different size classes. Small genes showed an increased coverage of

their 59 and 39 ends for cDNA-shearing that was less pronounced

when using RNA-hydrolysis (Figure 2A top). For medium-sized

genes both fragmentation methods produced similar coverage at the

59 end, but cDNA shearing showed a loss of coverage towards the 39

end whereas RNA-hydrolysis produced a homogenous coverage

throughout coding exons (Figure 2A middle). Large genes showed a

similar picture for both fragmentation methods with increased tag

coverage at the 59 end of coding exons (Figure 2A bottom). This

analysis indicates that in RiboMinus RNA-Seq coding exons are

more homogenously covered than UTRs and that RNA-hydrolysis

produces a more homogenous tag distribution over coding exons

than cDNA-shearing. The data also shows no extreme 39 positive

bias for cDNA-shearing compared to RNA-hydrolysis. It is possible

that the published extreme 39 positive bias found for cDNA-

shearing was at least in part produced by the use of oligo-dT primers

rather than by the fragmentation method itself, however, this point

was not directly investigated in this study [12].

We next compared the gene coverage in the Ribo-Zero dataset to

the RNA-hydrolysis RiboMinus dataset. We again observed a loss of

sequence tags in both the 59 and the 39 UTRs. In comparison to the

RiboMinus preparation, Ribo-Zero produces more tags in the 59

and 39 ends of small genes compared to the body of the genes

(Figure 2B top), whereas the coverage of the other gene sizes was

largely unchanged between the two ribosomal RNA depletion

methods (Figure 2B middle and bottom). This indicates that with

the exception of small genes both ribosomal RNA depletion

methods produce similar gene coverage patterns. While it is not

clear what causes the difference in coverage of small genes, this data

clearly shows the influence of the template preparation protocol on

the coverage of genes by sequence tags. It is therefore possible that

the choice of the template preparation method helps to improve

coverage biases that originate from sequence specific features that

influence the alignment of sequence tags [29].

We observed an under-representation of both 59 and 39 ends of

genes of three size classes in sequencing tags from both RNA-

hydrolysis and cDNA-shearing templates and for both ribosomal

RNA depletion methods. We could directly link this phenomenon

to 59 and 39 UTRs by analysing them separately from the coding

regions. A similar drop of tag coverage at gene ends compared to

gene bodies was previously reported, but was not connected to

UTRs [12,22]. Interestingly a large scale study of different polyA

RNA-Seq datasets found discordance between expression values

calculated with and without 39 UTRs, indicating a lower coverage

specific to 39 UTRs as we show here [21]. However an equally

poor coverage of 59UTRs has not been previously reported. Our

findings are important for future analyses as they indicate that

factors independent of the polyA enrichment or the ribosomal

RNA depletion cause this loss in tag coverage. Independent of the

cause, this finding has important implications for quantifying gene

expression from RNA-Seq datasets. We show that the proposal to

use 39 ends to quantify gene expression [27], might lead to

Macro ncRNA Abundance in Ribo-Depleted RNA-Seq
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inaccurate results due to the low tag coverage of UTRs in

mammals. We support the suggestion that the exclusion of 39

UTRs would more accurately quantify expression [21] and

expand this suggestion to the additional removal of 59 UTRs.

Gene expression by ribo-depleted RNA-Seq reliably
detects protein-coding and non-coding RNAs

Based on the good correlation of all sequencing data (Figure 1B,

C and Figure S1B, C) we pooled all RiboMinus tags obtained from

each tissue and used this combined data for further analyses. To

investigate if the ribo-depleted template preparation method used

here was comparable with published polyA RNA-Seq methods, we

used RPKM saturation curves [20] to analyse if our sequencing

depth of 21 million unique tags (CCE, RiboMinus) and 48 million

unique tags (FH, Ribo-Zero) allowed a reliable calculation of gene

expression levels for the protein-coding and non-coding part of the

RefSeq gene database. Figure 3A shows that with increasing tag

number more and more protein-coding genes (left) reach a RPKM

Figure 2. Tag coverage of genes differs between fragmentation methods and ribosomal RNA depletion methods. The coverage of
genes with sequence tags is shown as the normalized number of tags at relative positions throughout the gene length. UTRs and coding exons were
analysed separately and are plotted as 10 bins for 59UTRs and 39UTRs and 100bins for the coding exons (separated by vertical dotted line). (A) Comparison
of the coverage in the RiboMinus dataset for the combined tags of CCE and FH from RNA-hydrolysis (black) and cDNA-shearing (grey). (B) Comparison of
the coverage in the RNA-hydrolysis RiboMinus dataset (dotted line, same as in A) and in Ribo-Zero dataset plotted separately for CCE (black) and FH (grey).
For all analyses the genes were separated into three groups according to their cDNA length (coding exons and 59 and 39 UTRs) as indicated.
doi:10.1371/journal.pone.0027288.g002

Macro ncRNA Abundance in Ribo-Depleted RNA-Seq

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27288



value that does not change with further increasing tag number.

Importantly, at the final number of obtained tags all genes with an

RPKM greater than 3 reached saturation. This indicates that

despite the relatively poor ribosomal depletion obtained using the

RiboMinus Kit (Figure 1A), we have exhaustively sequenced the

protein-coding transcriptome. The picture is similar but delayed

for RefSeq ncRNAs as 90% of transcripts with an RPKM greater

than 3 have reached saturation at the final number of tags

(Figure 3A right). The Ribo-Zero dataset shows a similar picture

for protein-coding genes (Figure 3B left) but in this case lowly

expressed RefSeq ncRNAs also reach the saturation point

(Figure 3B right). This data shows that two different ribosomal

RNA depletion approaches produce reliable gene expression data

in a similar manner as shown for polyA enriched RNA-Seq [20].

Ribo-depleted RNA-Seq detects biologically relevant
expression differences in protein coding and non-coding
RNAs

In the next step we investigated if our ribo-depleted RNA-Seq

protocol was useful to detect well-known biological differences in

CCE and FH at the level of single genes. For this analysis we first

investigated known marker genes for each tissue type in both the

RiboMinus and the Ribo-Zero datasets. We found expression of

the alpha-crystallin A chain gene only in FH, which is specific for the

developing eye and therefore absent from CCE cells (Figure 4A

left panel). CCE mimics an early embryonic stage [23] and

therefore we found the well-known stem cell marker Pou5f1 (Oct4),

still expressed in CCE and absent in FH (Figure 4A right panel).

We also investigated differentially-expressed genes in both cell

types at a global level using the Ingenuity Pathway Analysis (IPA)

software for the RiboMinus dataset [30]. This analysis indicates

that the top ranked biological processes identify the unique

features of both tissues (data not shown).

Tissue specific expression of ncRNAs is less well described in the

literature and bioinformatic tools to analyse these genes in a

similar way to IPA analysis [30] are not available. However,

specific expression of several miRNAs in differentiated ES

compared to several mouse tissues has been reported [31]. We

could confirm this expression pattern for mmu-mir-292 and mmu-

mir-293 which are part of a larger pri-miRNA transcript detected

exclusively in CCE cells (Figure 4B left panel). Another miRNA,

mmu-mir-16-1, was reported to be present in differentiated ES cells

and several other mouse tissues [31]. In agreement with this

finding we identified this miRNA in CCE and FH as a large pri-

miRNA transcript (Figure 4B right panel). Mouse eye-specific

miRNAs have also been reported and we could confirm increased

expression of two of these miRNAs, mmu-mir-124-1 and mmu-mir-9-

2 in FH, which contains the developing eye (Figure 4C) [32].

Again these miRNAs are part of larger pri-miRNA transcripts.

Figure 3. Ribo-depleted RNA-Seq reliably detects expression of known protein-coding and non-coding genes. (A) Saturation curves
showing the percentage of RefSeq protein-coding genes (left) or RefSeq ncRNAs (right) with an RPKM+/25% of the final RPKM for the combined CCE
RiboMinus dataset (calculated at the maximum tag number) at different sequencing depths crated by randomly picking the indicated number of tags
(M: million). The lines show three groups of genes with similar RPKM expression levels. Error bars indicate the minimum and maximum of ten random
tag sets. If the curves reach a plateau before the final number of tags, this indicates that this gene group was sequenced exhaustively, as obtaining
more tags does not change their RPKM. The large error bars originate from small gene numbers in the categories, where a small number of changed
genes results in a large relative change. (B) As in A for the FH Ribo-Zero dataset.
doi:10.1371/journal.pone.0027288.g003

Macro ncRNA Abundance in Ribo-Depleted RNA-Seq
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These examples clearly illustrate that our ribo-depleted RNA-Seq

approach not only identifies miRNA precursor transcripts in a

similar way to polyA RNA-Seq [20] but also correctly identifies

ncRNA expression differences between CCE and FH samples.

Together this confirms that this ribo-depleted RNA-Seq protocol is

useful for studying the protein-coding and non-coding transcrip-

tome to a level that can be utilised for comparing different datasets.

Ribo-depleted RNA-Seq is advantageous for detecting
macro ncRNAs

Macro ncRNAs like Airn and Kcnq1ot1 are well-known functional

ncRNAs but little is known about their detection by RNA-Seq.

Therefore we investigated the ribo-depleted RNA-Seq datasets

produced here as well as published ribo-depleted and polyA datasets

for the detection of Airn and Kcnq1ot1. The first published dataset

used contains the polyA transcriptome obtained by a SOLiD

platform of embryoid body (EB) differentiated ES cells (that have a

similar biological origin to the CCE dataset described here,

Cloonan et al. [19]). The second dataset used contains polyA

selected transcriptome of adult mouse brain (Mortazavi et al. [20])

and was the closest available match to our FH sample for two

reasons. First FH is predominantly fetal brain and second this study

used a similar template preparation protocol and the same

Illumina/Solexa sequencing platform. We first investigated the

CCE and Cloonan et al. EB datasets for the expression of the Airn

and Kcnq1ot1 macro ncRNAs, which are expressed in both cell types

[33]. In both ribo-depleted CCE datasets generated here Airn shows

continuous expression over its 118 kb long gene body that is absent

in the Cloonan et al. EB dataset (Figure 5A). In contrast, the Igf2r

protein-coding gene was similarly detected in all data sets. The

83 kb long Kcnq1ot1 macro ncRNAs was similarly not detectable in

the Cloonan et al. EB dataset but was present as a continuous region

covered with sequencing tags in both ribo-depleted CCE datasets

(Figure 5B). Kcnq1ot1 is widely expressed in the mouse brain [34],

however, it was not present in the Mortazavi et al. adult brain

datasets but was detectable in both ribo-depleted FH datasets

(Figure 5C, Table 1). Interestingly the visual inspection of both Airn

and Kcnq1ot1 showed a similar loss of sequence tags towards the 39

end as shown for long genes. Note that both Airn and Kcnq1ot1

represent a single continuous transcript as the truncation of both

macro ncRNAs removed all downstream transcripts [8,9].

Figure 4. Ribo-depleted RNA-Seq detects tissue specific expression of known protein-coding and non-coding genes. (A) UCSC
genome browser (http://genome.ucsc.edu/, mm9) screen shots of RNA-Seq data for CCE (black, top) and FH (grey, bottom). The genome position is
given on top, black or grey bars indicate the number of sequence tags (tag numbers .10 are cut off) at this position. The position of RefSeq genes
(black line) with exons (black boxes), are shown below with the gene name. Left: the alpha-crystallin A chain gene is specific for the mouse eye and
therefore sequence tags over exons (indicating gene expression) are only found in FH and are absent from CCE. Right: the well-known stem cell
marker Pou5f1 (Oct4) shows sequence tags over exons only in CCE but not in FH. (B) Putative pri-miRNAs indicating either the specific expression of
all miRNAs of the cluster in CCE and the .10 fold reduced expression in FH (left) or the similar expression of the two miRNAs in the region in CCE and
FH (right). Red boxes indicate the position of annotated miRNAs (http://genome.ucsc.edu/, mm9) with the name given below. Asterisks mark miRNAs
overlapped by a low number of sequence tags. The position of the putative pri-miRNA, not annotated in the RefSeq database, is shown at the bottom
by a double-headed arrow. Details as in (A). (C) Putative pri-miRNAs indicating the .10 fold increased expression of the single miRNAs of the
respective cluster in FH compared to CCE. Details as in (A). Note that in A, B, and C RiboMinus data is shown and that the Ribo-Zero data produced
similar results (data not shown).
doi:10.1371/journal.pone.0027288.g004
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These results are noteworthy as both Airn and Kcnq1ot1 were

reported to be polyadenylated and to contain A-rich regions that

could be captured during polyA enrichment [35,36,37]. To test if

other ncRNAs are preferentially detected in our ribo-depleted

RNA-Seq we extended this analysis to other examples of

annotated ncRNAs that are expressed in the mouse brain

according to the ‘‘Affymetrix Exon Array 1.0: Normal Tissues

track’’ on the UCSC genome browser (http://genome.ucsc.edu/,

mm9). The two ribo-depleted FH datasets generated here,

detected five candidate ncRNAs (RPKM.3) that were not

detectable to a reliable level in the Mortazavi et al. adult brain

dataset (RPKM,3, Dlx6os, IPW, A330076H08Rik, D7Ertd715e, Ftx

Table 1 and Figure 5D). To further investigate if these ncRNAs

were not detectable due to a lack of A-rich regions we investigated

their expression in another polyA RNA-Seq dataset, Cui et al.

adult mouse brain [22]. Cui et al. used a similar polyA enrichment

strategy as Mortazavi et al., but used an enzymatic digestion to

fragment the RNA and a SOLiD sequencing platform. The Cui et

al. polyA dataset failed to detect the Airn and Kcnq1ot1 macro

ncRNAs (RPKM,3, Table 1) but reliably detected all other

ncRNAs listed in Table 1 (RPKM.3). Cui et al. also produced a

ribo-depleted RNA-Seq dataset using the RiboMinus ribosomal

RNA depletion approach and the same fragmentation method and

sequencing platform as for the polyA dataset [22]. Interestingly the

Cui et al. ribo-depleted dataset also failed to detect the Airn and

Kcnq1ot1 macro ncRNAs (RPKM,3, Table 1) but detected all

other ncRNAs shown in Table 1 (RPKM.3).

These findings indicate that different polyA RNA-Seq ap-

proaches and to a lesser extent, different ribo-depleted RNA-Seq

approaches vary in their ability to detect annotated ncRNAs.

Importantly the ribo-depleted RNA-Seq template protocol

presented here, is advantageous over other tested protocols in

the detection of macro ncRNAs, as it is the only one that detected

both examples of the functional Airn and Kcnq1ot1 macro ncRNAs.

These macro ncRNAs are largely unspliced RNA Polymerase II

transcripts with a high proportion of interspersed repeats that have

a very short halflife [35]. It is possible that these features make

them a difficult target for RNA-Seq and that the advantages of the

template preparation protocol described here are the rapid

processing of the tissue together with an enzyme-free fragmenta-

tion step.

Ribosomal RNA depletion methods determine the
comparability of RNA-Seq datasets

In the final step of our study we sought to investigate the

potential biases of the different ribosomal RNA depletion methods

(RiboMinus and Ribo-Zero) presented here in comparison to

other RNA-Seq datasets. As no publicly available datasets directly

match our datasets we could not compare gene expression levels

directly. Therefore we chose to investigate the cDNA length

distribution of differentially expressed genes between two datasets,

as the length bias is a well established phenomenon distinguishing

different template preparation protocols independently of biolog-

ical differences [17]. We first analysed the length distribution of

Figure 5. Ribo-depleted RNA-Seq detects macro ncRNAs more
efficiently than polyA RNA-Seq. (A) UCSC genome browser screen
shot as in Figure 4A of the Airn macro ncRNA gene. The Cloonan et al.
EB polyA RNA-Seq (grey, top), the RiboMinus CCE and Ribo-Zero CCE
RNA-Seq data (black, bottom) are shown. Black asterisks mark the
signals from the protein-coding mRNA Igf2r and grey asterisks mark the
position of a pseudogene expressed from chr.15 [41]. Note that the
ncRNA Airn is 118 kb in length (red arrow, extends outside the region
shown) and overlaps exons 2 and 1 protein-coding Igf2r gene (black
arrow, extends outside the region shown) in antisense orientation.
Therefore Airn and Igf2r signals are visible in the CCE data that has no
strand-specific information. For Cloonan et al., strand-specific informa-
tion was available and Igf2r signals are visible on the negative strand
(black asterisks, top) whereas only a low amount of signals are visible on
the positive strand expressing Airn. (B) As in A showing the functional

83 kb Kcnq1ot1 macro ncRNA (red arrow). (C) As in B showing Mortazavi
et al. adult mouse brain polyA RNA-Seq (grey, top), the RiboMinus FH
(black, middle) and Ribo-Zero FH RNA-Seq data (black, bottom). (D) As
in C showing an annotated RefSeq ncRNA of unknown function. Signals
higher than indicated by the scale on the x-axis were cut off. Note that
the differences in the read numbers between RiboMinus FH and Ribo-
Zero FH reflect the increased number of uniquely aligned tags (see
Table S1).
doi:10.1371/journal.pone.0027288.g005
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genes that show differential expression in the RiboMinus

compared to the Ribo-Zero datasets (Figure 6A). We found that

the RiboMinus datasets detected small genes (,2 kb) significantly

more reliably than Ribo-Zero for both FH and CCE (Wilcoxon

p,0.05). There was no significant difference between the two

ribosomal RNA depletion methods for the detection of large genes

(.2 kb, Wilcoxon p.0.05). This result fits with the above

observation that small genes are less well covered with sequence

tags in the Ribo-Zero sample compared to the RiboMinus sample,

which might lead to a less reliable gene expression level in the

Ribo-Zero samples (Figure 2B).

We next tested the influence of the RiboMinus and the Ribo-

Zero method on the comparability of our datasets to the published

datasets introduced above. For determining differentially ex-

pressed genes we used a correction factor to maximise the number

of genes showing no difference (Figure S2). We found that the

Cloonan et al., EB dataset were significantly enriched for small

genes (Wilcoxon p, = 0.0006) and depleted for large genes

(Wilcoxon p,0.03) compared to the RiboMinus and Ribo-Zero

CCE (compare black and grey lines in Figure 6B and C left). In

contrast genes differentially expressed in RiboMinus FH sample

were significantly enriched for small genes (Wilcoxon p,0.003)

but not for large genes (Wilcoxon p.0.05) compared to the Cui et

al., adult brain polyA dataset (compare black and grey lines in

Figure 6B middle). This difference was not detectable when using

the Ribo-Zero FH dataset for the same comparison (Wilcoxon

p.0.05, Figure 6C middle). Finally we used the Mortazavi et al.

adult brain data and compared it to our FH data. This analysis

revealed no difference to the FH RiboMinus dataset for any gene

length (compare black and grey lines in Wilcoxon p.0.05,

Figure 6B right). When using the FH Ribo-Zero dataset a

significant enrichment of small genes (Wilcoxon p,0.003) but not

of large genes (Wilcoxon p.0.05) was detectable in the Mortazavi

et al. adult brain dataset (Figure 6C right).

It is notable that the difference of the FH and CCE datasets to

polyA RNA-Seq datasets that used a column-free RNA prepara-

tion protocol (Cui et al. and Mortazavi et al.,) was not as significant

(minimum: p,0.003) as the differences to the Cloonan et al.

dataset (p,0.0006) that used a column-based RNA preparation

method. This indicates that independent of the polyA enrichment

or ribosomal RNA depletion, a standardised RNA preparation

protocol increases the comparability of the resulting transcrip-

tomes markedly.

Conclusions
In this study we investigated the use of ribo-depleted RNA-Seq

for the study of whole transcriptomes. Using this approach we

found differences in the coverage of genes with sequence tags

when using different template fragmentation protocols, although

not as dramatic as reported previously when comparing studies

using different primers for the cDNA synthesis [12]. We show for

the first time, that ribo-depleted RNA-Seq produces reliable

coding and non-coding gene expression data and is highly

reproducible between different sequencing locations and when

using different ribosomal RNA depletion strategies. The ribo-

depleted RNA-Seq protocol presented here has a clear advantage

over comparable published RNA-Seq protocols, as it was the only

one to detect the two known functional Airn and Kcnq1ot1 macro

ncRNAs. Finally we show that the use of a standardised RNA

preparation, improves the comparability of the resulting tran-

scriptome. With this awareness we propose the use of a limited

number of tested protocols to allow the sharing of transcriptome

data within the scientific community. A ribosomal RNA depletion

approach, similar to the one presented here, could be one of these

protocols as it is simple but powerful in detecting a large variety of

protein-coding and non-protein-coding transcripts. This does not

remove the necessity of additional data correction procedures but

suggests that a closely matching experimental setup further

improves the comparability of the resulting transcriptomes,

allowing for even more accurate comparisons after data

correction.

Materials and Methods

Ethics Statement
No animal experiments according to the Austrian Laboratory

Animal Act were performed in this study, because humane killing

of laboratory animals is not defined as animal experimentation

under the Austrian Laboratory Animal Act (Animal Experiments

Act, Federal Law Gazette No. 501/1989). For this reason,

Table 1. Macro ncRNAs are more efficiently detected in RiboMinus and Ribo-Zero RNA-Seq.

RefSeq name, region RPKM expression values

UCSC genome browser mm9
Mortazavi et al. adult
brain polyA [20]

Cui et al. adult
brain polyA [22]

Cui et al. adult brain
RiboMinus [22]

FH-Ribo-Zero
(this study)

FH RiboMinus
(this study)

Airn (NR_027784) Chr17:12934176–13008423 0.27 0 0.5 5.7 3.33

Kcnq1ot1 (NR_001461) chr7:150399016–
150482452

0.03 0.44 1.62 5.31 3.31

Dlx6os1 (NR_015388)* chr6:6770546–6819533 0.73 7.17 3.76 9.26 9.22

IPW (NR_015351)* chr7:66874528–66934248 0.67 4.57 6.20 5.97 8.19

A330076H08Rik (NR_015599)* chr7:69088787–
69127189

0.37 5.78 3.39 6.82 3.69

D7Ertd715e (NR_015456)* chr7:67114463–
67119317

0.43 3.80 5.94 8.52 5.26

Ftx (NR_028380)* chrX:100764844–100819093 0.52 13.63 3.78 3.05 3.75

Different ncRNAs annotated in the RefSeq database (http://genome.ucsc.edu/, mm9, RefSeq identifier given in brackets) are shown with their respective RPKM values in
two polyA and one RiboMinus RNA-Seq dataset from adult brain (Mortazavi et al., Cui et al., details see text) and the Ribo-Zero as well as the RiboMinus FH datasets
presented here. Note that the ncRNAs with unknown function (asterisks) show a reliable RPKM level (.3) in the Cui et al. polyA RNA-Seq datasets and in all the
ribosomal RNA depleted datasets. The functional Airn and Kcnq1ot1 macro ncRNAs (bold) that are expressed in mouse brain are only detected in the FH datasets
(RPKM.3, details see text).
doi:10.1371/journal.pone.0027288.t001
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approval of the study by an institutional ethics committee was not

required. 14.5 days postcoitum mouse embryos were obtained

after humane killing of wildtype FVB/N pregnant female mice by

cervical dislocation by skilled qualified personnel. Mice were bred

and housed at the Forschungsinstitut für Molekulare Pathologie

GmbH, Dr. Bohr-Gasse 7, 1030 Vienna, Austria in strict

accordance with national recommendations described in the

‘‘IMP/IMBA Common Institutional policy concerning the care

and use of live animals’’ with the permission of the national

authorities (Laboratory Animal Facility Permit MA58-0375/

2007/4).

RNA preparation
CCE feeder-independent ES cells [38] were grown under

standard conditions and differentiation was induced by LIF

withdrawal and retinoic acid (0.266 mM final concentration)

addition. Mouse fetal head was dissected at 14.5 days postcoitum.

Total RNA was isolated from cells and tissues according to a

standard TRI reagent (Sigma) protocol and treated with DNase I

(Ambion). Tissues were snap frozen in liquid nitrogen before

further processing or the Tri reagent was added directly to the

cells. 10 mg (Invitrogen RiboMinusTM Transcriptome Isolation Kit

Human/Mouse) or 5 mg (Epicentre Ribo-ZeroTM rRNA Removal

Kit Human/Mouse/Rat) of total RNA from cells or tissues was

subjected to ribosomal RNA depletion according to the manufac-

turer’s protocol. Note that the RNAs used for the RiboMinus and

the Ribo-Zero preparations are biological replicates. The quality

of the purified RNA was determined using the Agilent 2100

Bioanalyzer with the Agilent RNA 6000 Pico Kit according to the

manufacturer’s protocol.

Figure 6. The template preparation protocol determines the comparability of ribo-depleted RNA-Seq to polyA RNA-Seq. The cDNA
size distribution of genes showing more than 86expression difference (Figure S2), in the comparison of (A) FH RiboMinus - FH-RiboZero (left) and
CCE RiboMinus - CCE Ribo-Zero (right). (B) as in A for the comparisons of CCE RiboMinus-Cloonan et al. EB (left), FH RiboMinus-Cui et al. adult mouse
brain polyA (middle) and FH RiboMinus-Mortazavi et al. adult mouse brain polyA (right). (C) as in A for the comparisons of CCE Ribo-Zero-Cloonan et
al. EB (left), FH Ribo-Zero-Cui et al. adult mouse brain polyA (middle) and FH Ribo-Zero-Mortazavi et al. adult mouse brain polyA (right). For Cloonan
et al. EB both the gene expression data from the published alignment (shown in B, C, see Materials and methods) and from an alignment done with
the pipeline used here (data not shown) were used and produced the same highly significant differences. Two different size classes are shown with
different bin sizes (0–2 kb, 100 bp bins and .2 kb, 500 bp bins). Genes bigger than 11.5 kb are grouped in the last bin (arrow).
doi:10.1371/journal.pone.0027288.g006
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RNA fragmentation
RNA-hydrolysis was done as described [20] for 3.5 minutes

(RiboMinus) or 4 minutes (Ribo-Zero) and the fragmented RNA

was purified with the RNeasy Mini Kit (Qiagen). RNA size and

concentration was quantified with the Agilent 2100 Bioanalyzer

with Agilent RNA 6000 Pico Kit according to the manufacturer’s

protocol.

cDNA preparation
RNA fragmented by hydrolysis or intact RNA was used as

template for cDNA synthesis using 5 mg random hexamers

(Invitrogen) in a total volume of 20 ml according to the Superscript

II Reverse Transcriptase (Invitrogen) standard protocol. Second-

strand synthesis was performed by adding 91.8 ml water, 30 ml 56
Second strand buffer (Invitrogen), 3 ml 10 mM dNTP (Invitrogen),

4 ml DNA polymerase I (10 U/ml Invitrogen), 1 ml E. coli DNA

ligase (10 U/ml Invitrogen) and 0.2 ml RNase H (2 U/ml

Invitrogen), followed by incubation at 16uC for 2 hours. T4

DNA Polymerase (5 U/ml Invitrogen) (1 ml) was added followed by

an additional 10 min at 16uC. The ds-cDNA was purified by using

the MinElute Reaction Cleanup Kit (Qiagen), according to the

manufacturer’s protocol.

cDNA fragmentation
ds-cDNA prepared from intact RNA was fragmented in a

volume of 130 ml by a Covaris S1 device according to the

manufacturer’s protocol using the following conditions: Duty cycle

- 15.2%, Intensity - 6.0, Cycles/burst - 500, Duration - 60 sec,

Cycle repeat - 5. After ethanol precipitation, the sheared cDNA

was recovered in nuclease-free distilled H2O.

Next Generation Sequencing
Vienna-IMP and Nijmegen sequencing locations performed

these steps independently using the same machines and the same

ds-cDNA starting material. NGS in Nijmegen was done as

described for libraries with a fragment size of 300 bp [39]. In

Vienna-IMP 10 ng of fragmented cDNA was used to generate

sequencing libraries with a fragment size of 200–700 bp as

described by Illumina’s ChIP-Seq sample preparation protocol.

Libraries were quantified with the Agilent Bioanalyzer dsDNA

1000 assay Kit. Cluster generation and single read sequencing was

carried out using Illumina/Solexa Genome Analyzer (GA) II

systems according to the manufacturer’s guidelines with a 36 bp

read length for all samples. In Vienna-CeMM the procedure was

essentially the same with the exception that 5 ng of cDNA was

used to produce sequencing libraries with a fragment size of 150–

600 bp. Cluster generation and single read sequencing was carried

out using Illumina/Solexa HiSeq 2000 systems according to the

manufacturer’s guidelines with a 51 bp read length for all samples.

All sequencing data has been submitted to the GEO database:

Accession number GSE22959.

Data analysis
High quality tags were aligned against mitochondrial sequences

(mm9, http://genome.ucsc.edu/, RiboMinus samples) and rRNA

sequences (GenBank BK000964.1, RiboMinus and Ribo-Zero

samples). Remaining tags were aligned to the mouse genome

(mm9, http://genome.ucsc.edu/) using BOWTIE [40], not

considering individual base pair qualities and allowing 2

mismatches for 36 bp tags and 3 mismatches for 51 bp tags.

Unique tags were defined as matching only once in the genome

and tags with more than one match were flagged as repeats and

excluded in subsequent analyses. We did not map tags covering

splice junctions as a previous study found that less than 1% of tags

map to exon-exon junctions in RiboMinus RNA-Seq [22].

Databases
The RefSeq (mm9, http://genome.ucsc.edu/, freeze: 2009-07-

24) entries were partitioned into a non-coding and protein-coding

fraction: 1. non-coding RNA: NCBI was searched using ‘‘ncRNA

RNA’’ AND ‘‘Mus musculus’’ 2. Protein-coding: all RefSeq entries

occurring in the non-coding RNA list and all entries that start with

‘‘NR_’’ were removed. The resulting list was the RefSeq protein-

coding gene set.

RPKM/PPKM
RPKM (Reads Per Kilobase of exon model per Million of reads)

was calculated as described [20] for the exons of the transcripts in

the respective RefSeq database. The pileup defines the number of

sequence tags covering each base of the genome. The PPKM

(Pileup Per Kilobase of exon model per Millions of reads) is

calculated as the RPKM but instead of the actual tags, the sum of

the pileups of each base in the respective exons was used. RPKM

and PPKM are highly correlated and a factor of 30 can be used to

convert RPKM to PPKM (RPKM 3 = PPKM 90).

Scatter plots
For scatter plots and Pearson correlation RPKM values were

adjusted +1 and log10 transformed.

Analysis of published datasets
Detailed information about the aligned sequence tags (pileups)

was available from the Cloonan et al. dataset [19] and was used to

calculate expression values (PPKM - Pileup Per Kb per Millions of

tags). This data was not available for the Cui et al. and the

Mortazavi et al. adult brain dataset [22], so we realigned the

publicly available sequence tags and used this to obtain RPKM

expression values.

Statistical analysis
t-tests were done in EXCEL: 1 tail, two-sample equal variance.

For the comparison of the different tag types the percentages of

tags were compared among all relevant, available replicates from

the list shown in Table S1. The Wilcoxon Two Sample Test

was calculated at http://www.fon.hum.uva.nl/Service/Statistics/

Wilcoxon_Test.html.

Gene coverage (59-39 bias)
All RefSeq protein-coding genes that were expressed in the

CCE and FH samples at an RPKM.3, were divided into 100 bins

and the number of tags in each bin was determined separately for

all sheared and all hydrolysed RiboMinus datasets and for the FH

as well as the CCE Ribo-Zero datasets and normalised for the tag

size and the total number of tags. Protein-coding genes were

analysed as coding exons and UTRs separate, based on the

RefSeq information. For the display UTRs bins were combined

(averaged) into 10 bins. The bins were plotted relative to the bin

with the highest tag count.

Size distribution
The expression ratios of the RPKM/PPKM values (corrected to

maximize the number of genes with expression differences smaller

than 86, see Figure S2) for RefSeq protein-coding genes were

calculated. Genes with an RPKM,3 were considered to be not

expressed. Differential expression was defined as a .86
expression difference. The genes in each set were grouped into
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bins differing by 100 bp in size if the cDNA was shorter than 2 kb

or in bins differing by 500 bp in size if the cDNA was bigger than

2 kb using cDNA sizes defined by RefSeq. cDNAs larger than

11.5 kb were grouped into the last bin. The amount of genes in

each bin was plotted relative to the total amount of genes in the

set. For the statistical analyses the relative gene number was used.

Supporting Information

Figure S1 Optimisation and reproducibility of ribo-
minus RNA-Seq in 14.5 dpc fetal head (FH). (A) Similar

analysis as in Figure 1A for sequence tags obtained from FH tissue.

Samples were depleted for ribosomal RNAs once (lanes

nr.1,2,4,5,7), or twice (lane nr. 3 and 6) using RiboMinus and

once using Ribo-Zero (lane nr.8). Note that the tag composition of

lane nr.2 differs from all other RiboMinus samples and therefore

most likely is a technical outlier. (B) Similar analysis as in Figure 1B

for sequence tags obtained from FH tissue. (C) Similar analysis as

in Figure 1C for sequence tags obtained from FH tissue.

(PDF)

Figure S2 Determining correction factors for the calcu-
lation of differentially expressed genes. The number of

genes showing expression differences as indicated by the bins on

the x-axis was calculated for RefSeq protein-coding genes for the

following RiboMinus (RM) datasets (shown in Figure 6B): (A) FH-

RM – Cui et al. polyA, (B) CCE-RM – Cloonan et al. EBs (C)

Mortazavi et al. adult brain - FH-RM (first tissue is shown on the

left, second tissue is shown on the right). Note that the 0 bin

contains all genes showing no expression in both datasets.

Expression is defined by an expression value larger than RPKM

3 for all comparisons except for CCE-RM - Cloonan et al. EB,

where a cutoff of PPKM 90 was used. All comparisons were

corrected to maximize the number of genes in the bins with

expression differences smaller than 86 except for (A) where no

correction was necessary. Differential expression was defined as a

larger than 8 fold expression difference. Grey bars show the

number of genes before the correction, black bars show the

number of genes after the correction. Note that the correction

factor is shown in the figure and that the expression values for the

tissue shown right were multiplied with this factor. For the Ribo-

Zero comparisons (shown in Figure 6C) the same analysis was

performed (data not shown) and the following correction factors

were used (RPKM values of the dataset written left were

multiplied with this factor): Cloonan et al. EB - CCE-RZ: 3.5,

FH-RZ - Cui et al. polyA: no correction, FH-RZ - Mortazavi et al.

adult brain: 1.5.

(PDF)

Table S1 Ribosome depletion, tag types and GEO
accession numbers obtained in the individual sequenc-
ing reactions.

(DOC)
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