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Abstract

Adaptive decision making in real-world contexts often relies on strategic simplifications of
decision problems. Yet, the neural mechanisms that shape these strategies and their
implementation remain largely unknown. Using a novel economic decision-making task, we
dissociate brain regions that predict specific choices from those predicting an individual’s
preferred strategy. Choices that maximized gains or minimized losses were predicted by fMRI
activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that
followed a simplifying strategy (i.e., attending to overall probability of winning) were associated
with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through
differential functional connectivity with parietal and insular cortex, predicted individual variability
in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural
sensitivity to rewards. We conclude that decision making reflects more than compensatory
interaction of choice-related regions; in addition, specific brain systems potentiate choices
depending upon strategies, traits, and context.

Introduction

The neuroscience of decision making under risk has focused on identifying brain systems
that shape behavior toward or against particular choices (Hsu et al., 2005; Kuhnen and
Knutson, 2005; Platt and Huettel, 2008). These studies typically involve compensatory
paradigms that trade two decision variables against each other, as when individuals choose
between a safer, lower-value option and a riskier, higher-value option (Coricelli et al., 2005;
De Martino et al., 2006; Huettel, 2006; Tom et al., 2007). Activation in distinct regions
reliably predicts the choices that are made: increased activation in the anterior insula follows
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risk-averse choices (Paulus et al., 2003; Preuschoff et al., 2008) and increased activation in
the ventromedial PFC and striatum predicts risk-seeking choices (Kuhnen and Knutson,
2005; Tobler et al., 2007). In contrast, prefrontal and parietal control regions support
executive control processes associated with risky decisions, as well as the evaluation of risk
and judgments about probability and value (Barraclough et al., 2004; Huettel et al., 2005;
Paulus et al., 2001; Sanfey et al., 2003). These and other studies have led to a choice-centric
neural conception of decision making: tradeoffs between decision variables, such as whether
someone seeks to minimize potential losses or maximize potential gains, reflect similar
tradeoffs between the activation of brain regions (Kuhnen and Knutson, 2005; Loewenstein
et al., 2008; Sanfey et al., 2003). Accordingly, individual differences in decision making
have been characterized neurometrically by estimating parameters associated with a single
model of risky choice and identifying regions that correlate with individual differences in
those parameters (De Martino et al., 2006; Huettel et al., 2006; Tom et al., 2007).

Yet, following a purely compensatory approach to decision making would require
substantial computational resources, especially for complex decision problems that involve
multiple decision variables. It has become increasingly apparent that people employ a
variety of strategies to simplify the representations of decision problems and reduce
computational demands (Camerer, 2003; Gigerenzer and Goldstein, 1996; Kahneman and
Frederick, 2002; Payne et al., 1992; Payne et al., 1988; Tversky and Kahneman, 1974). For
example, when faced with a complex decision scenario that could result in a range of
positive or negative monetary outcomes, some individuals adopt a simplifying strategy that
de-emphasizes the relative magnitudes of the outcomes but maximizes the overall
probability of winning. Other individuals emphasize the minimization of potential losses or
the maximization of potential gains in ways consistent with more compensatory models of
risky choice such as expected utility maximization (Payne, 2005). Adaptive decision making
in real-world settings typically involves multiple strategies that may be adopted based on the
context and computational demands of the task (Gigerenzer and Goldstein, 1996; Payne et
al., 1993). As noted above, there has been considerable research on identifying brain
systems that shape behavior toward or against particular choices (risky or safer gambles);
however, much less is known about the neural mechanisms that underlie inter- and intra-
individual variability in decision strategies. We sought to address this limitation in the
present study by dissociating choice-related and strategy-related neural contributors to
decision making.

We used a novel incentive-compatible decision-making task (Payne, 2005) that contained
economic gambles with five rank-ordered outcomes, ranging from large monetary losses to
large monetary gains (Fig. 1). There were three types of choices: gain-maximizing, loss-
minimizing or probability-maximizing. Making a gain-maximizing (Gpax) choice increased
the magnitude of the largest monetary gain (i.e., the most money that could be won),
whereas making a loss-minimizing (Lmin) choice reduced the magnitude of the largest
monetary loss (i.e., the most money that could be lost). The gambles were constructed so
that these two choices (Gmax and Lmin) Were generally consistent with a compensatory
strategy (See Supplementary Material for a discussion of model predictions), such as
following expected utility theory and/or rank-dependent expectation models like cumulative
prospect theory (Birnbaum, 2008; Payne, 2005; Tversky and Kahneman, 1992). On the other
hand, making a probability-maximizing (Pmax) choice increases the overall probability of
winning money compared to losing money. Therefore, such choices would be consistent
with a simplifying strategy (e.g., “maximize the chance of winning”) that ignores reward
magnitude. Finally, we characterized our subjects’ strategic preferences according to their
relative proportion of simplifying (Pmax) versus compensatory (Gmax and Lmin) choices.
Such a definition positions the two strategies as the end points of a continuum with a high
value indicating an individual’s preference for a simplifying strategy and a low value

Neuron. Author manuscript; available in PMC 2011 November 10.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Venkatraman et al.

Results

Page 3

indicating a preference for a compensatory strategy. We emphasize that, as defined
operationally here, strategies for decision making may be either explicit or implicit.

To distinguish neural mechanisms underlying choices from those underlying the strategies
that generate those choices, we collected several forms of behavioral and functional
magnetic resonance imaging (fMRI) data. Consistent with many previous studies (De
Martino et al., 2006; Sanfey et al., 2003), we characterized brain regions as choice-related if
the magnitude of their activation predicted a specific behavior (e.g., select the option
providing the largest gain) throughout our subject sample. In contrast, we characterized
brain regions as strategy-related based on their association with individual difference
measures; i.e., if the magnitude of their activation depended on whether or not an individual
engages in their preferred strategy, regardless of which of the choices that entails. Moreover,
strategy-related regions should exert a modulatory influence on choice-related regions. A
strong candidate for a strategy-related region is the dorsomedial prefrontal cortex, which has
been shown to play an important role in tasks involving decision conflict, as well as in
making decisions that run counter to general behavioral tendencies (De Martino et al., 2006;
Pochon et al., 2008). Moreover, this region exhibits distinct patterns of functional
connectivity to affective and cognitive networks (Meriau et al., 2006), making it a candidate
for shaping activation in those networks based on context and computational demands
(Behrens et al., 2007; Kennerley et al., 2006).

Using large-sample behavioral experiments, we first demonstrate systematic individual
variability in decision making, with a significant bias towards choices that maximize the
overall probability of winning (i.e., toward a simplifying strategy). Then, using fMRI, we
show that distinct neural systems underlie choices made on each trial and variability in
strategic preferences across individuals. Finally, we also demonstrate a striking relation
between neural sensitivity to monetary outcomes and individual differences in strategic
preferences, indicating that robust decision strategies may follow from the neural response
to rewards. These results demonstrate that decision making under uncertainty does not
merely reflect competition between brain regions predicting distinct decision variables; in
addition, the relation between neural activation and subsequent decisions is mediated by
underlying strategic tendency.

We conducted two behavioral experiments (N1 = 128, N, = 71) and one fMRI experiment
(N = 23), all involving the basic paradigm illustrated in Fig. 1. Subjects were young adult
volunteers from the Duke University community (see Supplementary material for details on
the experiments). Research was conducted under protocols approved by the Institutional
Review Boards of Duke University and Duke University Medical Center.

Across both behavioral experiments (details available in Supplementary Material), we found
a significant bias towards the probability-maximizing choices (Supplementary Fig. 1),
extending prior findings in the behavioral literature (Payne, 2005). In addition to
demonstrating the robustness of the preferences toward the Pyax Choices, the second
experiment also indicates that this bias can be reversed or accentuated by experimental
manipulations. The findings from these studies are also consistent with Py, Choice
representing a simplifying strategy (see Supplementary Material). Finally, importantly for
the goals of our imaging studies, we also found substantial inter-individual variability: some
subjects nearly always preferred a simplifying strategy (choosing the P,y Option in most
trials); others nearly always preferred a compensatory strategy (choosing the Gyax Of Lmin
options in most trials), while still others switched strategies on different trials resulting in
both intra- and inter-subject variability in strategy (Supplementary Fig. 2).
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Variability in Underlying Neural Mechanisms

We used high-field (4T) fMRI to evaluate the neural systems associated with strategic
decision making under uncertainty. We adapted the basic design from our behavioral
experiments to the fMRI setting. Subjects first made a series of choices without feedback.
On each trial, subjects initially viewed the decision options and then learned the assignment
of choices to responses, to eliminate any potential confounding effects of response selection
(Pochon et al., 2008). Then, following the completion of all decision trials, we resolved a set
of those trials for real monetary rewards. This allowed us to measure reward-related
activation without altering subsequent decisions through learning.

Consistent with our two behavioral experiments, fMRI subjects made P« choices on
approximately 70% of the trials when the choices were matched for expected value.
Moreover, the proportion of Pyax Choices was systematically modulated by the tradeoff in
expected value between the choices, indicating that subjects were not simply insensitive to
expected value (Supplementary Table 1). We evaluated intra-subject choice consistency
using split-sample analysis. We split each subject’s choices into samples from odd-
numbered runs and from even-numbered runs. There was a strong correlation between the
proportion of P« choices in each sample (r = 0.61; p < 0.01), even without considering
other factors like relative expected value. For comparison, we used a similar split-sample
approach to estimate subject-specific parameters for canonical expected utility and
cumulative prospect theory models of decision making (see Supplementary Material). We
found that model parameters estimated from one-half of the experimental data did not
significantly classify choices within the other runs (Supplementary Fig. 3). Finally, the
proportion of P« choices decreased with increasing self-reported tendency to maximize (r
=—0.67, p < 0.001; Supplementary Fig. 4).

Neural Predictors of Choices—Our initial analyses identified brain regions whose
activation was driven, across subjects and trials, by the selected choice. There was greater
activation in anterior insular cortex (aINS) and ventromedial prefrontal cortex (vmPFC; Fig.
2A) for the compensatory magnitude-sensitive choices (combined across Gmax and Lmin)-
These regions are typically associated with emational function, particularly the affective
evaluation of the outcome of a choice in decision-making tasks (Bechara et al., 2000g;
Dalgleish, 2004; Paulus et al., 2003; Sanfey et al., 2003). We subsequently performed a
region of interest analysis to explore specifically the differences in activation between Guax
and Lnin. Note that this analysis was restricted, a priori, to a subset of fifteen subjects with a
sufficient number of choices in each condition of interest. We found a clear double
dissociation between aINS and vmPFC: G« choices were associated with greater
activation within vmPFC while Ly, choices were associated with increased activation in
alNS (Fig. 2B,C). Conversely, Pmax choices resulted in increased activation in the
dorsolateral prefrontal cortex (dIPFC) and posterior parietal cortex (PPC; Fig. 2A,
Supplementary Table 2), regions typically associated with executive function and decision
making under risk and uncertainty (Bunge et al., 2002; Huettel et al., 2005; Huettel et al.,
2006; Paulus et al., 2001). These regions showed greater activation for Ppax Choices
compared to both Gpax and Lin, but no difference between Gpax and Liyin options (Fig.
2D).

Neural Predictors of Strategic Variability across Individuals—We next
investigated whether there were brain regions whose activation varied systematically with
individual differences in strategic preferences. To do this, we entered each subject’s
strategic preference as a normalized regressor into the across-subjects fMRI analyses of the
contrast between choices. Strategic variability predicted individual differences in activation
in two clusters (Fig. 3A,B): the dorsomedial prefrontal cortex (dmPFC) and the right inferior

Neuron. Author manuscript; available in PMC 2011 November 10.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Venkatraman et al.

Page 5

frontal gyrus (rIFG). Within these regions, there was no significant difference in activation
between the choices. However, there was a significant interaction: activation increased when
an individual with preference for the more compensatory strategy made a simplifying Pmax
choice and vice versa. We focus on the dmPFC in the rest of this manuscript, based on our
prior hypothesis about the role of this region as well as the fact that only this region
significantly predicted trial-by-trial choices (as discussed later).

We next evaluated whether dmPFC activation might shape activation in those regions that
predicted specific choices (i.e., Pmax: dIPFC and PPC; Liin: aINS and Gpax: VmPFC), using
seed-voxel-based whole-brain functional connectivity analyses. This would provide
additional converging evidence for the role of this region in determining choice behavior,
contingent on preferred strategies. We found a double dissociation in the functional
connectivity of dmPFC depending upon the choice made by the subject (Fig. 3C,D). When
subjects made Pp,x choices, connectivity with dmPFC increased in dIPFC and PPC,
whereas when subjects made more magnitude-sensitive compensatory choices, connectivity
increased in the aINS (and amygdala, but not in vmPFC). Moreover, the relative strength of
the connectivity between dmPFC and these regions was significantly associated with
individual differences in strategy preferences across subjects (Supplementary Fig. 5).
Finally, we also conducted additional analyses to rule out the possibility that dmPFC
activation was related to response conflict, as has been found in several previous studies
(Botvinick et al., 1999; Kerns et al., 2004); details can be found in Supplementary Material.

Thus, we provide a broad range of converging results — drawn from overall activation,
functional connectivity, factor analysis of behavioral data (see Supplementary Material),
association with individual differences in strategy, and trial-by-trial analysis (below) — that
together indicate that dmPFC supports strategic considerations during decision making,
shaping behavior toward or against individual’s strategic preferences.

Integrating Choices and Strategies to Predict Behavior—We used the brain
regions implicated above as choice-related (aINS, vmPFC, dIPFC, PPC) or strategy-related
(rIFG, dmPFC) to predict choices on individual trials. We extracted, for every trial for every
subject, the activation amplitude in each of these regions of interest, along with the decision
made on that trial. We used a hierarchical logistic regression approach to evaluate which of
these regions were significant and independent predictors of trial-to-trial decisions (Table 1).

We first entered into the model subjects’ overall preference for the simplifying strategy
(proportion of Pyhax choices). We found, unsurprisingly, that this was a highly significant
predictor of trial-to-trial choices. Next, we used activation values from our brain regions of
interest, considering them both in isolation and with strategic preference already entered into
the model. We found that activation in insular cortex was a significant predictor of
magnitude-sensitive choices, while parietal activation was a significant predictor of Pyax
choices. Critically, activation in these brain regions improved the fit of the model even when
the behavioral data had already been included. None of the other regions, including dmPFC,
predicted either type of choice. Yet, when we weighted dmPFC activation with each
subject’s strategy preference, the resulting variable became a significant and robust predictor
of behavior, and overall model error was reduced (Table 1). Thus, dmPFC activation does
not predict either type of choice, but instead predicts choices that are inconsistent with one’s
preferred decision strategy.

We emphasize that the brain-behavior relations reported here were highly significant even
though the behavioral choice data across trials for each subject (a behavioral strategy
indictor) were already included in the logistic regression model. That is, we could use the
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fMRI activation evoked within key brain regions to improve our predictions of subjects’
decisions on individual trials over what was predicted from behavioral data alone.

Neural Reward Sensitivity Predicts Individual Differences in Strategy—Finally,
we evaluated whether an independent neural measure of reward sensitivity could predict the
strategic preferences outlined in the previous sections. At the end of the scanning session,
each subject passively viewed a subset of their improved gambles, which were each resolved
to an actual monetary gain or loss. While subjects were anticipating the outcome of each
gamble, there was increased activation in the ventral striatum (vSTR), a brain region
commonly implicated in learning about positive and negative rewards (Schultz et al., 1997;
Seymour et al., 2007; Yacubian et al., 2006). Then, when the gamble was resolved, vSTR
activation increased to gains but decreased to losses (Fig. 4A,B). Moreover, there were
striking and significant correlations between strategic variability and vSTR activation: those
individuals who showed the greatest vSTR increases to gains and decreases to losses both
preferred the simplifying P,y Strategy (Fig. 4C) and scored low on a behavioral measure of
maximizing (Supplementary Fig. 6). These results suggest that the use of a simplifying
strategy that improves one’s overall chances of winning (Pmax) may result from increased
neural sensitivity to reward outcomes.

Discussion

When facing complex decision situations, many individuals engage in simplifying strategies
—such as choosing based on the overall probability of a positive outcome — to reduce
computational demands compared to compensatory strategies. Here, we demonstrated two
neural predictors of strategic variability in decision making. First, during the decision
process, the dmPFC shapes choices (in a manner depending on strategic tendency) through
changes in functional connectivity with insular and prefrontal cortices. Second, independent
neurometric responses to rewards predicted strategic preferences: those individuals with the
greatest striatal sensitivity to reward valence are most likely to use a simplifying strategy
that emphasizes valence, but ignores magnitude. These results provide clear and converging
evidence that the neural mechanisms of choice reflect more than competition between
decision variables; they additionally involve strategic influences that vary across trials and
individuals.

A large literature suggests that decisions between simple gambles can be predicted by
compensatory models like expected utility and Cumulative Prospect Theory (Fennema and
Wakker, 1997; Huettel et al., 2006; Preuschoff et al., 2008; Wu et al., 2007). Individual
differences in sensitivity to the parameters within these models lead to distinct patterns of
choices, even when the same model is applied to all individuals (Huettel et al., 2006; Tom et
al., 2007). As decision problems become more complex, however, the assumption of a
single canonical decision strategy becomes more and more problematic. As suggested by
Tversky and Kahneman (1992) and Payne et al. (1993), people employ a variety of
strategies to represent decision problems and evaluate options. Some of those strategies will
be consistent with traditional models like expected utility maximization, whereas other
strategies will be more heuristic or simplifying. Further, depending on the decision context,
people shift among multiple strategies to maintain a balance between minimizing cognitive
effort or maximizing decision accuracy, among other goals (Payne et al., 1993). Finally,
strategy use to solve the same decision problem differs across individuals, perhaps reflecting
trait differences such as a tendency towards satisficing versus maximizing. Our findings,
involving a complex risky choice task, across both behavioral and neuroimaging
experiments, provide evidence in favor of intra- and inter-subject variability in the use of
strategies across participants. Importantly, we show that the parameters estimated using
traditional economic models of risky choice were poor predictors of choices in our
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paradigm, providing possible evidence for differences in decision strategy within and across
participants.

One influential conjecture in decision making is that people frequently use a variety of
simplifying heuristics that reduce effort associated with the decision process (Shah and
Oppenheimer, 2008; Simon, 1957). Pax Choices in the current task are consistent with such
an effort-reduction framework, given that they were associated with faster response times in
the behavioral experiments (note that we do not have accurate estimates of response times in
the imaging experiment as we sought to explicitly separate the decision and response phases
in our design), and that the proportion of Py,ax Choices decreased adaptively with increasing
cost in terms of expected value in all experiments. We suggest, therefore, that strategic
preferences in the current task reflect tradeoffs — resolved differently by individual subjects
and over trials — between one strategy that simplifies a complex decision problem by using a
simple heuristic of maximizing the chances of winning (Pmax) and another, more
compensatory strategy that involves consideration of additional information as well as the
emotions associated with extreme gains (Gmax) or 10sses (Lmin)-

To the extent that the Pyya choices reflect a more simplifying strategy, the pattern of
activations seen in this study seems counterintuitive: the regions conventionally associated
with automatic and affective processing (aINS and vmPFC) predicted magnitude-sensitive
choices that were more consistent with traditional economic models such as expected utility
maximization, whereas the regions conventionally associated with executive functions
(dIPFC and PPC) predicted choices more consistent with a simplifying strategy. The lateral
prefrontal cortex has been shown in previous studies to be active during probabilistic
decision-making (Heekeren et al., 2004; Heekeren et al., 2006) as well as sensitive to
individual differences in the processing of probability (Tobler et al., 2008). Neurons within
this region have also been shown to track reward probabilities (Kobayashi et al., 2002) and
process reward and action in stochastic situations (Barraclough et al., 2004). Similarly, the
parietal cortex also plays an important role in tracking outcome probabilities (Dorris and
Glimcher, 2004; Huettel et al., 2005). Given that Pry,,x choices are based on the overall
probability of winning, activation in dIPFC and PPC could be associated with tracking
subjective probabilities in these gambles.

Conversely, the Gimax and Liin choices increase the chances of an aversive outcome, relative
to a neutral aspiration level (Lopes and Oden, 1999). Supporting this interpretation, we
found a clear double dissociation with activation in vmPFC predicting Gyax choices and
activation in aINS predicting Ly,in choices. The contributions of vmPFC to gain-seeking
behavior (at the expense of potential losses) have been documented in both patient (Bechara
et al., 2000) and neuroimaging studies (Tobler et al., 2007). Conversely, there has been
substantial recent work demonstrating the importance of alNS for aversion to negative
consequences, even to the point of making risk-averse mistakes in economic decisions
(Kuhnen and Knutson, 2005; Paulus et al., 2003; Preuschoff et al., 2008; Rolls et al., 2008).
Together, these findings suggest that the conventional notion that decisions reflect
compensatory balancing of decision variables is an oversimplification. In addition, different
brain regions bias how people approach decision problems, which may in turn lead to one
form of behavior or another depending on the task context.

Furthermore, the balance between cognitive and affective brain regions did not, by itself,
explain individual differences in strategy preferences. Activation in another region, dmPFC,
predicted variability in strategic preferences across subjects. We note that the role of dmPFC
in complex decision making remains relatively unknown. One very recent experiment found
increased activation in this region when subjects faced greater decision-related conflict
(Pochon et al., 2008), as dissociable from the more commonly reported response conflict
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(Botvinick et al., 2001). A similar region of dmPFC was implicated by de Martino and
colleagues (De Martino et al., 2006), again when subjects made decisions counter to their
general behavioral tendency (i.e., against typical framing effects). However, it is important
to note that all subjects in their study exhibited a bias toward using the framing heuristic,
while in the current study, subjects varied in their relative preference for two different
strategies. Therefore, a parsimonious explanation for the function of this region of dmPFC is
that it supports aspects of decision making that are coded in relation to an underlying
strategic tendency, not effects specific to framing. Further support for this hypothesis is
provided by the differential functional connectivity of the dmPFC to dIPFC and anterior
insula for simplifying and compensatory choices respectively. These findings are consistent
with the interpretation that activation differences of the dmPFC shape behavior by
modulating choice-related brain regions, with the strength of this modulatory effect
dependent on an individual’s preferred strategy.

We additionally observed a striking relationship between neurometric sensitivity to reward
and strategic biases across individuals. Our initial analyses found that activation of the vSTR
increased when anticipating the outcome of a monetary gamble, increased further if that
gamble was resolved to a gain, but decreased if that gamble was resolved to a loss. This
pattern of results was consistent with numerous prior studies using human neuroimaging
(Breiter et al., 2001; Delgado et al., 2000; Seymour et al., 2007) and primate
electrophysiology (Schultz et al., 1997). However, we additionally observed the novel result
that the magnitude of the vSTR response was a strong predictor of individual strategic
preferences. Specifically, the sensitivity to gains and losses in the vSTR is greatest for
individuals who prefer the Pyhax Choices, consistent with their strategy of maximizing their
chances of winning. We emphasize that the gambles were not resolved until after all
decisions were made, so this effect could not be attributed to learning from outcomes.
Although our design does not allow determination of the direction of causation, these results
suggest that an increased sensitivity to reward valence may lead to simple decision rules that
overemphasize the probability of achieving a positive outcome.

Depending upon the circumstances, organisms may adopt strategies that emphasize different
forms of computation, whether to obtain additional information (Daw et al., 2006), to
improve models of outcome utility (Montague and Berns, 2002), or to simplify a complex
decision problem. Accordingly, the activation of a given brain system (e.g. dIPFC) may
sometimes lead to behavior consistent with economic theories of rationality (Sanfey et al.,
2003) and in other circumstances (such as the present experiment) predict a non-normative
choice consistent with a simplifying strategy. Our results demonstrate that decision making
reflects an interaction among brain systems coding for different sorts of computations, with
some regions (e.g., aINS, vmPFC) coding for specific behaviors and others (e.g., dmPFC)
for preferred strategies.

We conducted two behavioral experiments (N1 = 128, N, = 71) and one fMRI experiment
(N = 23). All subjects were young adults who participated for monetary payment. All
subjects gave written informed consent as part of protocols approved by the Institutional
Review Boards of Duke University and Duke University Medical Center. Details of the
procedures for the behavioral experiments can be found in the supplementary materials.

Twenty-three healthy, neurologically normal young-adult volunteers (13 female; age range:
18-31y; mean age: 24y) participated in the fMRI session. No subject was repeated from the
behavioral pilot session. All subjects acclimated to the fMRI environment using a mock

Neuron. Author manuscript; available in PMC 2011 November 10.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Venkatraman et al.

Page 9

MRI scanner and participated in two short practice runs consisting of six trials each, one
inside and one outside of the fMRI scanner. Three subjects were excluded from some
analyses involving strategy effects due to lack of variability in their response (two subjects
always chose the Ppy,x option while the third subject never chose the Pynax Option), leaving a
total of 20 subjects in the complete analyses of the decision-making trials. One additional
subject was excluded from the outcome-delivery trials due to a computer error in saving the
timing associated with the trials.

At the outset of the experiment, subjects were provided detailed instructions about the
payment procedures (see Supplementary Materials for details). They were then given a
sealed envelope that contained an endowment to offset potential losses; this envelope was
sufficiently translucent that they could see that there was cash inside, even though the
quantity could not be determined. Subjects were also told that there was no deception in the
study and were given an opportunity to question the experimenter about any procedures
before entering the scanner. All subjects expressed that they understood and believed in the
procedures.

Experimental Stimuli

In the fMRI experiment, all subjects were presented with a total of 120 five-outcome mixed
gambles in a completely randomized order. Each of the gambles comprised two positive
outcomes (an extreme outcome of $65 to $80; an intermediate outcome of $35 to $50), two
negative outcomes (an extreme outcome of —$65 to —$85; an intermediate outcome of —$35
to —$50), and a central, reference outcome. The reference outcome was $0 in half the trials
and a negative value ranging from —$10 to —$25 in remaining half of the trials. Probabilities
of each of the five outcomes varied between 0.1 and 0.3 in units of 0.05, and always
summed to 1 across the five outcomes. We describe the similar stimuli and methods for the
behavioral experiments in the Supplementary Material.

On each trial, subjects could choose between two options for adding money to one of the
outcomes. Adding to the reference outcome increased the overall chance of winning money
compared to losing money and hence was called the probability-maximizing (Pmax) choice.
Alternatively, adding money to an extreme option either increased the magnitude of the best
monetary outcome or decreased the magnitude of the worst monetary outcome, and hence
were referred to as gain-maximizing (Gmax) and loss-minimizing (Lmin) choices
respectively. The amount of money that subjects could add to the outcomes ranged between
$10 and $25 and could differ between the two outcomes. For trials with negative reference
values, one of the options for adding money always changed the reference option to $0. All
outcome values used in this experiment were multiples of $5.

Expected value relations between the two choices were systematically manipulated by
changing the amount and/or probabilities associated with each of the options (See
Supplementary Materials). Only trial types that placed the two choices in maximal conflict
(72 gambles per subject) were included in the primary imaging analyses; other trials were
included in the model as separate regressors, but not further analyzed. Note that the trials
were counterbalanced for valence of the extreme outcome (i.e., gain or loss) and for valence
of the reference outcome (i.e., neutral or loss).

Experimental Design

Each trial began with the display of a five-outcome gamble for 4 or 6s (Fig. 1). Subjects
were instructed to examine each gamble as it was presented. Subsequently, subjects were
given a choice between two ways of improving the gamble. The amount that could be added
and the resulting modified outcome values were displayed in red for both choices, to
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minimize individual differences resulting from calculation or estimation biases. The
modified gamble remained on the screen for 6s, whereupon two arrows appeared to specify
which button corresponded to which choice. The association of the buttons to choice was
random. Subjects then pressed the button corresponding to their choice. Response times
were coded as the time between the appearance of arrows and the button press response
(Note that this may not be a true representation of the actual decision times in this task).
Subjects were instructed to arrive at their decision during the 6s interval and to press the
button corresponding to their choice as soon as the arrows appeared. The decision and
response phases were explicitly separated to prevent the contamination of decision effects
with response-preparation effects. During the inter-trial interval of 4-8 seconds, a fixation
cross was displayed on the screen. Notice that no feedback was provided at the end of each
trial and hence there was no explicit learning during the decision phase of the task.

Subjects participated in six runs of this decision task, each containing 20 gambles and
lasting approximately 6 minutes. Before those runs, subjects had the opportunity to practice
the experimental task (without reward) in two six-gamble blocks, one presented outside the
MRI scanner and the other presented within the MRI scanner but prior to collection of the
fMRI data. All stimuli were created using the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997) for MATLAB (Mathworks, inc.) and were presented to the subjects via MR-
compatible LCD goggles. Subjects responded with the index fingers of each hand via a MR-
compatible response box.

Following completion of the decision phase, there was a final 6-minute run in which 40 of
the improved gambles were resolved to an actual monetary gain or loss. These gambles were
selected randomly from the gambles presented during the decision phase and were presented
in modified form based on that subject’s choices. On each trial, subjects passively viewed
one of these improved gambles on the screen for 2s (anticipation phase), during which time
random numbers flashed rapidly at the bottom of the screen before stopping at a particular
value. A text message corresponding to the amount won or lost was then displayed for 15,
followed by an inter-trial fixation period of 3—7s before the onset of the next trial.

Imaging Methods

We acquired fMRI data on a 4T GE scanner using an inverse-spiral pulse sequence (Glover
and Law, 2001; Guo and Song, 2003) with parameters: TR = 2000ms; TE = 30ms; 34 axial
slices parallel to the AC-PC plane, with voxel size of 3.75*3.75*3.8mm. High resolution 3D
full-brain SPGR anatomical images were acquired and used for normalizing and co-
registering individual subjects’ data.

Analysis was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.63, part of
FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) package (Smith et al., 2004). The
following pre-statistics processing steps were applied: motion correction using MCFLIRT,
slice-timing correction, removal of non-brain voxels using BET, spatial smoothing with a
Gaussian kernel of FWHM 8mm, and high-pass temporal filtering. Registration to high
resolution and standard images was carried out using FLIRT. All statistical images presented
were thresholded using clusters determined by z > 2.3 and a whole-brain corrected cluster
significance threshold of p < 0.05.

We used separate first-level regression models to analyze decision effects and outcome
effects. The decision model comprised two regressors modeling the magnitude-sensitive
compensatory choices (Gmax and Lmin Were combined for additional power) and simplifying
Pmax choices in the conflict conditions, one regressor modeling the responses in the
remaining conditions, one regressor for the initial presentation of the gamble, and one
regressor to model the subject responses. (An additional post-hoc analysis on a subset of
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fifteen subjects separated the magnitude-sensitive choices according to whether they were
gain-maximizing or loss-minimizing.) Analysis for the outcome phase consisted of three
regressors: one to model the anticipation phase (as subjects were waiting for the
corresponding outcome to be revealed), one for positive outcomes (gain), and one for
negative outcomes (loss). All regressors were generated by convolving impulses at the
onsets of events of interest with a double-gamma hemodynamic response function. Second-
level analysis for condition and decision effects within each subject was carried out using a
fixed-effects model across runs. Random-effects across-subjects analyses were carried out
using FLAME (stage 1 only). When evaluating the effects of behavioral traits (transformed
into z-scores) upon brain function, we included our subjects’ trait measures as additional
covariates in the third-level analysis.

Logistic Regression Models of Trial-to-Trial Choices

For obtaining the parameter estimates from individual trials for trial-by-trial prediction
analysis, we used data that were corrected for motion and differences in slice scan timing
but were not smoothed. The data were also transformed into standard space, on which the
individual regions-of-interest (ROI) were defined. We used seven different ROls for this
analysis: the right anterior insula and ventromedial prefrontal cortex, which show greater
activation for Ly, and Gnax choices respectively; the right posterior parietal cortex, the
right precuneus, and right dorsolateral prefrontal cortex, which show greater activation for
Pmax choices; and finally the dorsomedial prefrontal cortex and right inferior frontal gyrus,
which track strategic variability across subjects. All ROIs were defined functionally based
on the third-level activation maps. Activation amplitude was defined as the mean signal
change (in percent) over the 6s time-interval from 4s to 10s after the onset of decision phase
(i.e., when subjects are shown the two alternative choices). This time window was chosen to
encompass the maximal signal change of the fMRI hemodynamic response. A summary
measure was obtained for each ROI by averaging over all constituent voxels.

We then performed a hierarchical logistic regression using SPSS to predict the choices made
by subjects on each individual trial based on strategic preference (proportion of Ppax
choices), brain activation, and interactions between trait and activation. The complete model
included a total of 1440 trials (72 trials for each of 20 subjects). Parameters were entered
into the model in a stepwise manner, starting with just the behavioral trait measure, then
brain activations from the seven ROIs, and finally an interaction term consisting of
activation in dmPFC multiplied by strategic tendency. All parameters that significantly
improved the model at each stage are summarized in Table 1. The results were consistent
regardless of whether forward selection or backward elimination was used in the
hierarchical regression.

Functional-Connectivity Analyses

We used a modified version of the decision model described above to perform task-related
connectivity analysis. A seed region was defined using activation in the dmPFC that
covaried with the strategic variability across subjects (Fig. 3). For each run for each subject,
we then extracted the time-series from this region. A box-car vector was then defined for
each condition of interest, with the “on” period defined from 4s-10s after the onset of the
decision phase for each trial in that condition. These box-car vectors were then multiplied
with the extracted time-series to form the connectivity regressors. This allowed us to
examine brain connectivity as a function of strategy, specific to the decision phase. These
regressors were then used as covariates in a separate GLM analysis, which included the
original variables of interest, from the decision-model described above (Cohen et al., 2005).
Group activation maps were then obtained in the same way as the traditional regression
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analysis. A positive activation for the connectivity regressors indicates that the region
correlates more positively with the seed region during the experimental condition of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental task and behavioral results

(A) Subjects were first shown, for 4-6s, a multi-attribute mixed gamble consisting of five
potential outcomes, each associated with a probability of occurrence. Then, two alternatives
for improving the gambles were highlighted in red, whereupon subjects had 6s to decide
which improvement they preferred. Finally, after two arrows identified the buttons
corresponding to the choices, subjects indicated their choice by pressing the corresponding
button as soon as possible. Here, the addition of $20 to the central, reference outcome would
maximize the overall probability of winning (Pmax choice), whereas the addition of $20 to
the extreme loss would reflect a loss-minimizing (Lmin) choice. The next trial appeared after
a variable interval of 4, 6 or 8s. In other trials, subjects could have a chance to add money to
the extreme gain outcome, reflecting a gain-maximizing (Gmax) choice.
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Figure 2. Distinct sets of brain regions predict choices

(A) Increased activation in the right anterior insula (peak MNI space coordinates: x = 38, y =
28,z = 0) and in the ventromedial prefrontal cortex (x = 16, y = 21, z = —23) predicted Lpin
and Gnax choices respectively, while increased activation in the lateral prefrontal cortex (x =
44,y = 44,7 = 27) and posterior parietal cortex (x = 20,y = =76, z = 57) predicted Pmax
choices. Activation maps show active clusters that surpassed a threshold of z > 2.3 with
cluster-based Gaussian random field correction. (B-D) Percent signal change in these three
regions to each type of choice. On this and subsequent figures, error bars represent +1
standard error of the mean for each column.
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Figure 3. Dorsomedial prefrontal cortex predicts strategy use during decision making

(A,B) Activation in dorsomedial prefrontal cortex (dmPFC, x = 10, y = 22, z = 45; indicated
with arrow) and the right inferior frontal gyrus (rIFG) exhibited a p. 34 significant decision-
by trait-interaction, such that the difference in activation between compensatory and
simplifying choices was significantly correlated with preference for simplifying strategy
(mean-subtracted) across individuals. (C,D) Functional connectivity of dmPFC varied as a
function of strategy: there was increased connectivity with dIPFC (and PPC) for simplifying
choices and increased connectivity with aINS (and amygdala) for compensatory choices.
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Figure 4. Ventral striatal sensitivity to rewards predicts strategic variability

At the end of the experiment, some gambles were resolved to monetary gains or losses.
(A,B) Activation in the ventral striatum (x = 14, y = 16, z = —10) increased when subjects
were waiting for gambles to be resolved (anticipation) and, following resolution, increased
to gains but decreased to losses. (C) Notably, the difference between gain-related and loss-
related activation in the ventral striatum correlated with variability in strategic preferences
across subjects, with subjects who were most likely to prefer the probability-maximizing
exhibiting the greatest neural sensitivity to rewards.
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