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ABSTRACT Deleterious mutations tend to be recessive. Several theories, notably those of Fisher (based on selection) and Wright (based
on metabolism), have been put forward to explain this pattern. Despite a long-lasting debate, the matter remains unresolved. This
debate has focused on the average dominance of mutations. However, we also know very little about the distribution of dominance
coefficients among mutations, and about its variation across environments. In this article we present a new approach to predicting
this distribution. Our approach is based on a phenotypic fitness landscape model. First, we show that under a very broad range of
conditions (and environments), the average dominance of mutation of small effects should be approximately one-quarter as long as
adaptation of organisms to their environment can be well described by stabilizing selection on an arbitrary set of phenotypic traits.
Second, the theory allows predicting the whole distribution of dominance coefficients among mutants. Because it provides quantitative
rather than qualitative predictions, this theory can be directly compared to data. We found that its prediction on mean dominance
(average dominance close to 0.25) agreed well with the data, based on a meta-analysis of dominance data for mildly deleterious
mutations. However, a simple landscape model does not account for the dominance of mutations of large effects and we provide
possible extension of the theory for this class of mutations. Because dominance is a central parameter for evolutionary theory, and
because these predictions are quantitative, they set the stage for a wide range of applications and further empirical tests.

DOMINANCE plays a prominent role in evolution. For in-
stance the genetic load with inbreeding (e.g., Whitlock

2002), the magnitude of inbreeding depression (e.g.,
Bataillon and Kirkpatrick 2000; Charlesworth and Willis
2009), the rate of adaptation in diploids (e.g., Orr and Otto
1994), the evolution of mating systems (e.g., Epinat and
Lenormand 2009), dispersal (e.g., Roze and Rousset 2005),
life cycles (e.g., Otto and Goldstein 1992), polyploid tissues
(e.g., Cailleau et al. 2010), and sex (e.g., Agrawal 2009) de-
pend on the distribution of dominance of mutations, to cite
a few; there are other situations where dominance matters
(Charlesworth and Charlesworth 1998; Lynch et al. 1999).

It is possible to precisely define the dominance of a
mutation on any particular character, by expressing the
character value of the heterozygote as a fraction of the

difference in character values between the two homozygotes.
Thus, dominance is not the absolute property of a mutation,
which may be dominant on a character and recessive on
another (Bürger and Bagheri 2008) or have varying dom-
inance in different environments (Bourguet et al. 1996). In
this article, the character of interest is fitness, the domi-
nance of which “became one of the longest and fiercest
controversies in the history of evolutionary biology” (Orr
1991). This debate even “marked the end of [the] previ-
ously cordial interchange of ideas” between Wright and
Fisher (Provine 1986). In Fisher’s theory (1928), the re-
peated occurrence of deleterious mutations should select
for more dominant “wild-type” alleles by modifier genes,
leading to genotypes increasingly sheltered against the
harmful effects of mutation. Three problems with this ex-
planation have been raised. First, the selection pressure in
favor of a modifier of dominance is very weak, proportional
to the mutation rate: it could thus be easily overwhelmed
by any deleterious pleiotropic effect of dominance modi-
fiers. This was essentially the objection of Wright (1929,
1934). Although this may not be a problem in a very large
population or if mutations are maintained polymorphic at
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high frequency (e.g., by migration; Otto and Bourguet 1999),
it clearly limits the scope of this theory. Second, the selection
pressure in favor of a modifier of dominance should depend
on its effect on dominance but not on the strength of selec-
tion, which was contradicted by the fact that lethal muta-
tions are more recessive than nonlethal ones in Drosophila
(Charlesworth 1979). Third, mutations in Chlamydomonas,
an almost exclusively haploid organism, also tend to be
recessive, even when considering traits that are uniquely
expressed in the haploid stage (such as their flagella).
Because there has been no opportunity to select for dom-
inance in such a haploid organism, this finding was also
claimed to falsify Fisher’s theory (Orr 1991, but see
below).

In Wright’s theory (Wright 1934), later elaborated as the
“metabolic control theory” (Kacser and Burns 1981), reces-
sivity results from the fact that enzymes in a metabolic path-
way must share the control of the flux through this pathway
(although this argument may be weaker in complex path-
ways; Omholt et al. 2000; Bagheri and Wagner 2004). As
a consequence, the flux or concentration of metabolites in
a pathway can change substantially only if one enzyme’s
activity is dramatically reduced (Figure 1). Thus, provided
fitness is a linear function of the flux or metabolite concen-
tration, the recessivity of deleterious mutations naturally
emerges. Over the years, these ideas have been much re-
fined, but the pivotal role of metabolic biochemistry to ac-
count for dominance is still controversial (De Visser et al.
2003; Bagheri and Wagner 2004; Bürger and Bagheri
2008). Nevertheless, this theory has a wide appeal, in par-
ticular because it is rooted in a mechanistic explanation for
the robustness of enzymatic pathways, and because it avoids
the issues raised against Fisher’s theory (Bourguet 1999).
What are the main problems with this theory? First, it rests
on enzymatic kinetics within cells. It ignores mutations that
do not affect enzymes (Phadnis and Fry 2005); plus it
ignores processes operating beyond cell level. For instance,
the fitness consequences of mutations affecting how
enzymes are regulated or where and when enzymes are
expressed cannot be summarized by the variation in their
kinetic constants. Second, and more importantly, metabolic
theory of dominance implicitly assumes that fitness is line-
arly and positively related to flux in pathways [or similarly,
linearly and positively (resp. negatively) related to down-
stream (resp. upstream) substrate concentrations in path-
ways)]. This assumption cannot be general because it
excludes the possibility that intermediate flux or substrate
concentrations would be optimal (Hurst and Randerson
2000). For instance it ignores the fitness cost of producing
the enzymes and more generally trade-offs among resource
use. It is important to stress here that not only monotonicity
between metabolic flux and fitness is required, but linearity.
While this may occur in some circumstances (Dykhuizen
et al. 1987), it is far from being empirically confirmed in
general. Third it is extremely difficult to predict overdomi-
nance with this theory. Overdominance is not something

very common in nature (Gemmell and Slate 2006). How-
ever, even if it is rare, it is incompatible with a simple met-
abolic view of dominance. Finally, the same data that have
been used to falsify Fisher’s theory can also be used to falsify
the metabolic theory. Lethal mutations are more recessive
than nonlethal mutations, but surprisingly, both have undis-
tinguishable fitness effect when heterozygous in Drosophila
(Simmons and Crow 1977) and yeast (Szafraniec et al.
2003). With a diminishing return curve relating enzymatic
activity to fitness, as assumed in metabolic theory, it is
straightforward to show that, in the heterozygous state,
lethal mutations, instead, should be on average more del-
eterious than nonlethal mutations (Figure 1).

The debate over dominance has been extremely polarized
between the views of Fisher and Wright, with little space for
alternative theories to be evaluated. One central reason for
such a long-lasting debate has been the lack of clear and
quantitative predictions on the distribution of dominance
that could be confronted with data. Further, beyond the
qualitative predictions made by the existing theories, it
would be useful to provide quantitative predictions to really
confront data and to develop more realistic evolutionary
models for diploid organisms. The first aim of this article
is to develop an alternative theory for the dominance of
mutation fitness effects. The second aim is to show that this
theory makes predictions that are upheld when confronted
with the available data.

Our theory proposes that the recessivity of deleterious
mutations is a necessary consequence of stabilizing selection
for a given optimum on a set of (n) unknown phenotypic
traits. These traits are not necessarily metabolic, but encom-
pass life history, behavior, etc. This theory extends a model
originally put forward by Fisher in another context (to de-
fend his micromutationist view of evolution)—his “geomet-
rical model of adaptation.” This model was not discussed in

Figure 1 Dominance of mutations as predicted by the metabolic control
theory. A loss-of-function mutation (c) reducing enzymatic activity to
50% (resp. 0%) when heterozygous (resp. homozygous) has a lethal
but strongly recessive effect on metabolic flux (or fitness). A mutation
decreasing less drastically the activity of the enzyme (b) has a milder and
less recessive effect on metabolic flux (or fitness). However, by construc-
tion (i) the heterozygous effect of the lethal mutation is larger than that of
the nonlethal (WAb . WAc) and (ii) overdominance cannot occur.
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the context of dominance of mutations, but provides a
general, yet unexplored, framework to predict it. Oddly
enough, Wright was close to such an approach but did
not develop it (Wright 1935). It is often viewed as heuris-
tic, but it in fact provides a “top-down” approach that has
few underlying assumptions, all of them being more real-
istic than often realized (Martin and Lenormand 2006b).
Furthermore, this model has proved useful to quantita-
tively predict, for example, the distribution of epistasis
among random mutations in two microbe species, follow-
ing principles similar to this study (Martin et al. 2007).
This approach also offers a quantitative prediction for the
overall distribution of dominance, across distinct environ-
ments, which allows more powerful tests of the theory. We
will see that these predictions are upheld when confronted
with the available data, although further quantitative tests
would be useful, and are possible with the experimental
methods available today.

Model

Natural selection is often thought of as favouring one
extreme of each measurable character. Doubtless there
is such a process under exceptional conditions, but it is
certainly more often the case that the best adapted in-
dividuals are those nearest the average in every respect.
(Wright 1935)

We used a generalization of Fisher’s model accounting for
arbitrary mutational correlations and selective interactions
between traits determining fitness. Any continuous model of
stabilizing selection, including the present one, naturally
generates dominance for fitness (W), even when mutations
are additive on the underlying phenotype (z), because the
relationship between phenotype and fitness can be nonlin-
ear only close to the optimum (Figure 2). In fact, the same
argument would hold for any secondary trait (not only fit-
ness) that can be thought of as the optimization of a set of
underlying primary traits (Wright 1935). Specifically, we use
a Gaussian fitness function W(z) relating phenotype to fit-
ness, which approximates any smooth function in the vicin-
ity of an optimum (Lande 1976). The assumption of a single
optimum is not very restrictive as it is relative to the scale of
mutational variation: it requires only that the mutant cloud
“sees” only a single optimum. We then assume that the
distribution of the homozygous phenotypic effects of muta-
tions around a wild-type phenotype is an arbitrary multivar-
iate Gaussian with mean zero. This Gaussian assumption is
not very restrictive either since the definition of each trait is
arbitrary and may be chosen or transformed appropriately
(Lande 1976). Finally, we model the phenotype of a hetero-
zygote as a fraction y of the phenotypic displacement corre-
sponding to the mutant homozygote. In the additive case,
the displacement for the heterozygote is simply half that of
the homozygote. This approach is consistent with the fact
that many metric characters are codominant. In a more gen-
eral model y is variable among mutants and additive only on

average (E(y) = 1/2, Var(y) = sy
2). This assumption is much

less restrictive than the purely additive model. From this
model, we can derive the joint distribution of dominance
and selection coefficients and different measures of average
dominance.

There are several ways to define dominance of a
given mutation, the most frequent being h = (whet2 1)/
(whom2 1) � shet/shom. This well-known definition (corre-
sponding to the fitness notation 1, 12 h shom, 12 shom) is
undefined when shom = 0, so that no meaningful distribu-
tion of h can be obtained when shom encompasses positive
and negative values. Alternatively, dominance of a given
mutation may be defined as a departure from multiplica-
tive fitness effects (Otto 2003)

i  ¼   logðwhomÞ2 logðw2
hetÞ � shom 2 2  shet: (1)

The latter definition is mathematically more robust and
can be used to derive a distribution of dominance in all
cases. From an empirical point of view, an estimation of
E(i) may be conveniently used as a measure of average

Figure 2 Two-dimensional illustration of the mutation model. This figure
illustrates the principle of the model in two dimensions (two traits). The
fitness function is a bivariate Gaussian function, which increases toward
an optimum with darker gray shading. Mutants are distributed around an
initial phenotype or wild type (green spot). The bottom-left sketch
explains how dominance on fitness arises even when the phenotype of
the heterozygous mutant is halfway between the initial and the homo-
zygous phenotype (additive phenotypes). The top-right sketch shows how
a random draw of mutants around an initial phenotype (green spot)
generates a distribution of homozygote and heterozygote fitness effects.
Any model of stabilizing selection naturally generates dominance for
fitness even when mutations act additively on the underlying phenotype.
This is due to the concavity of the fitness surface around the optimum.
With such a surface, deleterious mutations (purple) tend to be recessive
because if a step in one direction is deleterious (i.e., it increases the
distance to the optimum), two steps in the same direction necessarily
result in more than twice the deleterious effect. The reverse is true for
beneficial mutations (yellow) that tend to be dominant. Interestingly, this
model also predicts that some mutations (red) should exhibit overdomi-
nance in their fitness effect if mutations that bring the phenotype close to
the optimum in one step overshoot it in two steps in the same direction.

An Alternative Theory for Dominance 925



dominance. However, other approaches are most commonly
used. Average dominance is often measured over a set of
mutations, as either the ratio

hM ¼   EðshetÞ=EðshomÞ (2)

or the slope (hR) of the regression of shet on shom computed
from the conditional expectation

EðshetjshomÞ ¼   hR   shom þ shet  (3)

(shet0 being the intercept of the regression). Because of their
definitions (hR as a slope of a regression and hM as the ratio
of means), estimation of these two quantities poses different
problems in presence of measurement error (noise) and of
missing or omitted data. hM estimates are likely to be robust
with respect to noise, but strongly biased by the omission of
extreme points. hR estimates are likely to be robust to miss-
ing or omitted values, but downwardly and moderately bi-
ased by measurement error (we illustrate those behaviors on
Figure 3).

Analysis

Here, we analyze the general n-dimensional model. As we
see, accounting for dimension affects some, but not all re-
sults. However, to provide intuitive insights, we give in sup-
porting information, File S1, the derivation in the simpler
one-dimensional subcase. We noteW(z) the fitness of a phe-
notype z (of dimension n, the number of phenotypic traits
under selection). As explained above, W is multivariate
Gaussian in our model

WðzÞ [  exp
�
2 1=2  ztSz

�
; (4)

where superscript t denotes transposition, and S is an arbi-
trary n · n symmetric positive semidefinite matrix that
describes all the selective interactions between phenotypic
traits. We focus on a wild-type phenotype zo, whose fitness
distance to the optimum is measured by so [ 2 log W(zo) =
1
2  zo

tSzo. We then note zo + dzi the phenotype of a mutant
homozygous for a mutation i (note that adding independent
environmental noise contributing to the phenotype does not
change the argument; Martin et al. 2007; Chevin et al.
2010). Its log-relative fitness shom is thus

shom  [  logðWðzo þ dziÞ=WðzoÞÞ ¼2 ztoS  dzi  2  1=2  dz
t
iS  dzi:

(5)

The phenotypic effect of heterozygotes is determined by a
fraction y of the homozygote phenotypic displacement. Thus,
the phenotype of the mutant heterozygote is zo + y dzi. The
log-relative fitness of the mutant heterozygote shet is

shet  [  logðW  ðzo þ y  dziÞ=WðzoÞÞ ¼2 y  ztoS  dzi   2 y2=2  dztiS  dzi:

(6)

Defining dominance i as a departure from multiplicative
fitness effect (Equation 1), we find

i ¼ ð2y  2   1Þ  ztoS  dzi   þ
�
y2   2 1=2

�
  dztiS  dzi: (7)

Because dz has a multivariate Gaussian distribution in
our model (with mean 0 and arbitrary positive semidefinite
covariance matrix M), there is a linear transformation of the
original phenotypic space such that M becomes the identity
matrix I and the arbitrary matrix S becomes a diagonal ma-
trix L (with diagonals elements li equal to the eigenvalues
of SM) (Martin and Lenormand 2006b). In this new base the
phenotypic vector z becomes the vector x. With these new
notations, Equation 7 becomes

i ¼ ð2y  2   1Þxto  L  dxi þ
�
y22  1=2

�
dxti  L  dxi: (8)

Measures of average dominance

As explained above, there are different ways to measure
average dominance. Mathematically, the most straightfor-
ward is to compute moments of i from Equation 8. Its mean
and variance are

EðiÞ ¼
�
s2
y  2  1=4

�
TrðLÞ (9)

VarðiÞ ¼   4  s2
y   x

t
o  L

2   xo  þ  2  Tr
�
L2��E�y4�2s2

y

�þ  Tr2ðLÞVar�y2�;
(10)

where Tr(.) denotes matrix trace. Both depend on sy
2 and

Var(i) also depends on E(y4). To get a better intuitive sense

Figure 3 Sketch of the behavior of hR (line) and hM (thick
cross) to measurement of noise and missing or omitted
data. (A) All data, thick cross, ratio of means; line, regres-
sion. (B) Noisier data, the regression slope decreases, the
ratio of means is less affected. (C) Missing or omitted large
effects (open circles); the ratio of means changes, the re-
gression slope is less affected.
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of these results, it is useful to express them in terms of the
mean and variance of homozygous fitness effects. To sim-
plify Var(i), it is also convenient to consider the case where
y is drawn in a symmetric b-distribution (a very flexible
assumption encompassing uniform to approximately normal
distribution of y). We obtain

EðiÞ ¼ EðshomÞð1=2  2   2s2
y   Þ (11)

VarðiÞ ¼   Var*ðshomÞ=4þ s2
y

h
Var*ðshomÞð1þ 4eÞ þ 4  EðshomÞ2

i
þ Oðs2

y Þ2;
(12)

where e = so /|E(shom)| measures the level of maladapta-
tion of the wild type in a given environment and Var*(shom)
stands for the variance of shom when the wild type is at the
optimum (e = so = 0). Results (11) and (12) indicate that
departures from a purely additive model of phenotypic
effects of mutations has a very limited impact on the pre-
diction of average dominance, since sy

2 is likely to remain
small (e.g., it is only �0.08 in the extreme case of a uniform
distribution of y). This result is illustrated on Figure 4. More-
over, Equations 11–12 also provide a direct method to esti-
mate sy

2 and check whether the data support nonadditive
phenotypic effects. More usual measures of average domi-
nance hM (Equation 2) or hR (Equation 3) yield

hM � 1=4þ s2
y

hR � 1
4

�
1þ 4s2

y þ 4e
1þ 2e

�

shet0 � so
2

�
12 4s2

y

1þ 2e

� : (13)

If the phenotypic effect of mutations is additive (E(y) ¼
1/2 and sy ¼ 0) and the wild type is close to the phenotypic
optimum (e � 0), then hM � hR � 1/4. This result is easily
seen from Equation 5–6, noting that E(y2) ¼ 1=4þ s2

y . If the
phenotypic effect of mutations is only additive on average
(E(y) ¼ 1/2 but sy . 0), it tends to bias upward the average
dominance (both hM and hR). However, this bias is not large.
For instance, if we consider the extreme situation in which y

is uniformly distributed over the range [0, 1] (so that (sy ¼

1/12), we obtain, close to the optimum, hM � hR � 1/3. The
distance to the optimum does not affect hM, whereas hR
tends to 1/2 when the wild type is far away from the opti-
mum. Note that when the wild type is not at the optimum,
some mutations are beneficial (and tend to be dominant),
and others are overdominant (because shet0 . 0 so that shet
can be, e.g., positive while shom is negative; Figure 2).

Simulation results presented on Figure 5 (dots) were
obtained by drawing both S and M matrices into a standard
Wishart distribution W50[I,50] (a probability distribution for
nonnegative-definite random matrices, in this case of dimen-
sion 50) and scaled so that in all cases E(shom) ¼ 0.05. In
Figure 5, the phenotypic effects (dzi) of one thousand muta-
tions were sampled from a multivariate Gaussian distribu-
tion with a variance–covariance matrix M. In the top of
Figure 5, the heterozygous phenotype is halfway between
the homozygotes (y ¼ 1/2) whereas in the bottom, the phe-
notypic change in the heterozygote is computed as a random
fraction y of the homozygous phenotypic change with
E(y) ¼ 1/2 and sy

2 ¼ 0.02 (more specifically, in the bottom,
y � Beta[23/4, 23/4]). These simulations show the agree-
ment with the analytical results described above. They also
illustrate the dispersion of individual mutational effects un-
der the different assumptions. Figure 6 gives hM for the
different class of mutations (deleterious, overdominant with
shom . 0, overdominant with shom , 0, beneficial) as a func-
tion of the scaled distance to the optimum e. Despite the fact
that each class-specific hM varies with e, the hM averaged
over all mutations stays constant with increasing distance to
the optimum because the proportion of the different classes
of mutations also vary with e.

We also used simulation to investigate the effect of
a departure from quadratic log-fitness on measures of
average dominance. A different exponent (k) can be used
in the fitness function to reflect this variation in peakedness
(Martin and Lenormand 2006a; Tenaillon et al. 2007). We
investigated k in the range 1.5–3 (more extreme k being
very unlikely given the available evidence; Martin and
Lenormand 2006a). Variation in k does affect average dom-
inance, although the effect is limited in the most likely (nar-
rower) range: hM ranges between 0.2 and 0.3 when k lies
within [1.8, 2.3]. Interestingly, the departure from the k ¼ 2

Figure 4 Limited impact of departures from
a purely additive model. Ratios average domi-
nance computed with different values of sy

2,
relative to the value computed in the additive
case. For illustration, the distribution of y corre-
sponding to different values of sy

2 (cases sy
2 ¼

0.0012, 0.003, 0.008, 0.02, 0.05 illustrated)
are shown in the insets (the distribution are
within [0,1]). Bottom line: ratio E(i)/E(i)add. Top
line: ratios of hM/hM add and hR/hR add when the
wild type is as optimum (so ¼ 0) (they super-
pose). Gray line: ratio hR/hR add when the wild
type is not at the optimum (case considered,
so ¼ 0.06 and E(shom) ¼ 0.05).
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case also quickly decreases with increased distance to the
optimum, of the order of one mutational step or more (i.e.,
at e . 1; see Figure 7).

Distribution of dominance

As just mentioned, there is a large heterogeneity in the
dominance of individual mutations in the model. This is
readily seen in Equations 10 and 12 giving Var(i) above.
This heterogeneity is also large for h, the usual single mu-
tation-based measure of dominance. In fact, for a given av-
erage dominance, individual mutations have a variety of
dominance effects in the model, including overdominant
mutations (h , 0 or h . 1) and dominant beneficial muta-

tions (0.5 , h , 1) when the wild type is not at the opti-
mum. Figure 2 illustrates this behavior and provides an
intuitive explanation of this result. Overdominant mutations
are mutations “overshooting” the optimum, where the het-
erozygote phenotype lies closer to the optimum than the
phenotype of either homozygote. Beneficial mutations are
the mutation pointing toward the optimum. They tend to be
dominant because the fitness surface flattens near the opti-
mum, yielding a diminishing return on fitness of the larger
phenotypic change in homozygotes. We now focus on the
full distribution of i. Because departures from a purely ad-
ditive model have a very limited impact on our predictions
(see above), we derive below for simplicity the results under
the additive assumption (y=1/2 exactly for all mutations).
In this case, the distribution of homozygous effects shom
reads

shom ¼ 2 xto  L  dx2 1=2  dxti  L  dxi (14)

with mean and variance equal to

EðshomÞ ¼ 2
1
2
Tr  ðLÞ

VarðshomÞ ¼ xtoL
2xo þ 1

2
Tr
�
L2� � Var*ðshomÞð1þ 2eÞ

(15)

Similarly, the dominance i now reads

i ¼ 2 1=4  dxti  L  dxi: (16)

The expressions (9) and (10) simplify to

E ðiÞ ¼ 2
1
4
TrðLÞ ¼ 1

2
EðshomÞ

VarðiÞ ¼ 1
8
Tr
�
L2� ¼ 1

4
Var*ðshomÞ: (17)

Figure 6 Average dominance for different mutational classes. hM (y-axis)
measured as a function of the scaled distance to the optimum e. The
dotted line (∙∙∙) is the average over all mutation and is constant. The dot-
dashed (– . –) line indicates hM for mutations that are deleterious in both
heterozygous and homozygous state (purple points on Figure 5). The
dashed line (– – –) indicates hM for mutations that are beneficial in both
heterozygous and homozygous state (yellow points on Figure 5). The solid
line indicates hM for mutations that are overdominant, with beneficial
(thin line) or deleterious (thick line) homozygous effect (red points on
Figure 5). Values obtained by exact simulations with E(n) ¼ 1/2, sy

2 ¼
0.02. Different values of E(shom) give undistinguishable curves.

Figure 5 Heterozygous vs. homozygous fitness effects
under different models assumptions. The relationship be-
tween homozygous (shom, x-axis) and heterozygous (shet,
y-axis) fitness effects of mutations is compared in four
situations. Left vs. right: wild type is either at the optimum
(so ¼ 0, left) or away from it (so ¼ 0.06, right). Top vs.
bottom: mutation effects on the underlying phenotype are
either all additive (top, E(n) ¼ 1/2, sy ¼ 0) or only additive
on average, with a random dominance coefficient (bot-
tom, E(n) ¼ 1/2, sy

2 ¼ 0.02, 95% of y values fall in the
range [0.26–0.74]). Dots show the value of (shom, shet) for
exact simulations of 1000 mutants, with corresponding
values of hM and hR given on each graph. The same color
code as in Figure 2 is used: purple, deleterious recessive;
yellow, dominant beneficial; red, overdominant. The
dashed line is the regression of shet on shom, which is
undistinguishable from our prediction (hR and shet0, Equa-
tion 13). The black dot gives E(shet) and E(shom). The three
plain lines indicate shet ¼ shom/4, shet ¼ shom/2 and shet ¼
shom. hM varies little overall, but hR increases from 1/4 (left)
to a value closer to 1/2 (right) when the wild type is far
away from the optimum. In the latter situation, overdom-
inant mutations and dominant beneficial mutations are
also frequent.
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From (16), we see that i is a quadratic form in Gaussian
vectors. Matching the two first moments in (17), it can be
well approximated by a negative Gamma distribution Gðai; biÞ
of shape and scale parameters ai and bi. These parameters
can be expressed in terms of measurable quantities:

ai ¼ EðshomÞ2
Var*ðshomÞ

(18)

bi ¼ 2
Var*ðshomÞ
2EðshomÞ

: (19)

Importantly, this result indicates that, assuming additivity
on traits, the distribution of i can be fully predicted using
quantities measured from homozygous mutant fitnesses
alone (E(shom), Var*(shom)). Note that while Equations 18–
19 depend on the variance Var*(shom) in homozygous fitness
effects when the wild type is at the optimum, this can still be
computed using (15) when the wild type is not at the opti-
mum, provided that e can be estimated empirically.

To summarize, the dominance i follows a negative Gamma
distribution (2i � Gða*; b*=2Þ) whose parameters a* and
b* are those of the Gamma distribution of shom at the opti-
mum (so ¼ 0). These parameters can be estimated indepen-
dently from data on homozygous effects alone; i.e., this model
entirely predicts the distribution of i without using any data
on i. The lack of a large and reliable data set on single
mutants prevented us from confronting this prediction, but
such a test would be a further way to challenge this theory.

Joint distribution of shom and i

From Equation 14 and 16 we can see that shom and i are not
independent. Thus additional information and further tests
of our theory may be obtained by studying their bivariate
distribution. We derive this bivariate distribution assuming
additivity on traits (y ¼ 1/2) as above. First we take the
equivalent landscape, L ¼ b*I, where I has dimension
ne ¼ 2a* (Martin and Lenormand 2006b) to obtain spherical

symmetry. We then express dx in cylindrical coordinates, in
terms of its norm r (r2 = dx.dx) and u the angle with respect
to the direction of the optimum. We have

cosu ¼ x0 :  dx
jx0jjdxj ¼  

yffiffiffiffiffi
ne

p ; (20)

where the probability density function of y 2½2 ffiffiffiffiffi
ne

p
;

ffiffiffiffiffi
ne

p � is
G½ne=2�ffiffiffiffiffiffiffiffi

nep
p

G½ðne 2 1Þ=2�
�
1 2 y2=ne

�ðne23Þ=2
; (21)

where G½:� denotes Euler’s Gamma function (Welch and
Waxman 2003). This distribution is independent of r. It
could be well approximated by a standard Gaussian as long
as ne is large enough. However, we do not make this approx-
imation as empirical distributions of mutation effects are
consistent with very low ne in different organisms (Martin
and Lenormand 2006b). We then rewrite shom as a function
of i , 0 and y,

shom ¼ 2i2 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 8is0=ne

p
: (22)

The bivariate {shom, i} is then found by transforming the
bivariate {y, i} using (22) (combining the negative Gamma
distribution of i and the distribution of y above). The bivar-
iate density F of {shom, i} is defined in the range
2  i2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28  s0   i

p
 #  s#  2  i  þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

28  s0   i
p

and is

F½shom; 9i� ¼ 2Ki=bi
e

�
ðshom 2 2iÞ2 þ 8s0i

�ai23=2
; (23)

where ai ¼   ne=2 and bi ¼ shom=ne are the parameters of the
Gamma distribution of i and K is a constant

K ¼  
812ais0ðs0biÞ2aiffiffiffiffi
p

p
G½ai2   1=2� : (24)

This distribution is illustrated on Figure 8. It could be
used to provide a more powerful test of the present theory

Figure 7 Peakedness of the fitness function. Effect of the peakedness of the fitness function (k, as described in the text) on average dominance (hM, left;
hR, right) as a function of the scaled distance to the optimum e ¼ so/E(shom). The case of a quadratic log-fitness (k ¼ 2) is indicated by the thick line (other k
values are from top to bottom: k ¼ 1.5; 1.7; 1.8; 1.9; 2; 2.1; 2.2; 2.3; 2.5; 3). Average measure obtained by simulations (E(shom) ¼ 0.05; sy

2 ¼ 0.02).
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with bivariate data. Note that from Equation 23 the distri-
bution of dominance can be derived among any subset of
mutations, beneficial, deleterious, etc.

Empirical Test

Data survey

To test our theory, we surveyed the different estimates of
average dominance that have been published in the last 40
years. The different data sets in our survey are listed in
Table 1. We focused on the regression estimate of average
dominance (hR in our notation), which was the most widely
available. These data typically exclude large effect muta-
tions. Thus, this estimator is also likely to be less biased
compared to hM (see above). For instance, in Drosophila
experiments (representing a large fraction of the available
data), estimates are based only on the so called “quasi-
normal” mutants. In our survey, we excluded two studies.
We excluded the Ohnishi data (Ohnishi 1977a,b,c) because
these experiments, although historically important, have
been seriously questioned and because inconsistent domi-
nance estimates were made depending on the method (Gar-
cia-Dorado and Caballero 2000). We also excluded the
Mackay et al. experiment (Mackay et al. 1992), because
the results are inconsistent with basic observation expected
in a mutation accumulation experiment: in this experiment
the mutant lines do not exhibit more variance than the
control lines after mutation accumulation. Other detailed
information on each study is given in the legend of Table
1. Several other estimates of average dominance (range
0.15–0.35), based on segregating deleterious alleles in nat-
ural populations of flies and plants, have also been obtained
(Lynch and Walsh 1998). As these estimates make strong
assumptions such as mutation–selection equilibrium, they
are not detailed here. Importantly, these data seem to quan-
titatively agree with the more direct estimates that we sur-
veyed. To average results over studies, taking into account
the standard error of each estimate and possible true varia-

tion between studies in average dominance, we used a ran-
dom effect weighted mean meta-analysis (Gurevitch and
Hedges 1999). We first averaged measures per studies and
then across studies.

Quantitative agreement to the theory

As mentioned above, hR is computed over a set of mutations
as the slope of the regression of shet on shom. Here, shom =
log(whom) and shet = log(whet) denote the log-fitness relative
to that of the nonmutated initial genotype of a homozygous
and heterozygous mutant, respectively. Again, our model
predicts

hR � 1
4

�
1þ 4s2

y þ 4e
1þ 2e

�
; (13)

where, again, e = so/|E(shom)| and measures the level of
adaptation of the wild type, in the environment considered.
More precisely, it is the fitness distance between the opti-
mum and the wild type (so), scaled to the absolute value of
average homozygous effect of mutations |E(shom)|. At the
optimum (e = 0), hR equals one-quarter in the additive
model (y = 1/2) and tends toward one-third in the extreme
situation where y is uniformly distributed in the range
[0, 1]. As the distance to the optimum becomes larger, hR
tends toward one-half. Overall, our model predicts that hR
should be in the range [1/4, 1/2] and closer to 1/4 when
measured under optimal conditions (such as laboratory con-
ditions on model organisms).

Figure 9 illustrates the different estimates as well as their
confidence interval, which agrees with our theory and does
not point toward strong departure from strict additivity in
the model. In all experiments except one, the average mea-
sure of dominance does not significantly differ from our pre-
diction (Figure 9). However, due to the large uncertainty in
the estimates from most studies, a meta-analysis provided
a more powerful evaluation of the prediction. We found that
across studies, average dominance was hR ¼ 0.27 (confi-
dence interval [0.18, 0.36]). Other qualitative surveys
(Charlesworth and Charlesworth 1998; Szafraniec et al.
2003) also gave one-quarter as an average measure of dom-
inance of mildly deleterious mutations. The estimates of
average dominance based on segregating deleterious alleles
in natural populations of flies and plants (range 0.15–0.35)
were not included in this survey but are also in agreement
with this figure (Lynch and Walsh 1998). Computing this
average dominance does not contradict the fact that average
dominance varies to some extent among studies (although
much of the variation arises due to within-studies measure-
ment error). Additional and more precise studies would help
in quantifying this aspect. Beyond the average measure of
dominance, our model predicts that overdominant muta-
tions can easily be observed when away from the optimum.
This is precisely what Peters et al. (2003) found when study-
ing the effect of mutations in Caenorhabditis elegans (Table 1).
The power of such tests based on the average estimate of

Figure 8 Bivariate distribution F{i,shom}. Illustration of the bivariate dis-
tribution F{i, shom}, given in Equation 23 (black lines) with exact simula-
tion of 10,000 mutants (gray dots). Parameter values are so ¼ 0.04 and E
(shom) ¼ 0.05, ne ¼ 3.5.
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dominance is necessarily limited, and we believe that more
insights could be gained by comparing whole distributions
of homo- and heterozygous fitness effects (or shom and i)
with explicit predictions for this distribution (Equation 23,
Figure 8). Such an approach would also avoid the problem
of the different possible definition of dominance.

Mutations of large effect

One limit of the simplified landscape model proposed so far
is that, because it focuses on log-fitness on a smooth
landscape, it naturally ignores “ruggedness” and abrupt fit-
ness effects. In particular, this approach ignores lethal or
large-effect mutations despite the fact that they represent
a large fraction of newly arising mutations (Fudala and
Korona 2009). This may not be problematic since most of
these mutations may be also excluded from mutation accu-
mulation experiments that we have surveyed. However,
mutations of large effect do occur and it is interesting to

see whether their fitness effect can also be understood in
a landscape framework. There are two extreme ways to in-
troduce this class of mutations. The first, maybe most in-
tuitive, is to consider that the fitness function is truncated
for some extreme trait values (Figure 10A), and the second
is to consider that lethal mutations are caused by random
genetic incompatibilities unrelated to the trait values as
depicted in “holey landscapes,” (Gavrilets 1997) (Figure
10B). Note that we depict this situation with “holes” for
the ease of illustration; it does not mean that some specific
combinations of trait values have a low fitness. It means only
that genetic incompatibilities may arise for some mutations
in some backgrounds, somewhat independent of trait
values. In the first case, the heterozygous effect of strongly
deleterious mutations should always be greater than that
of mildly deleterious ones. Indeed mutations that are far
enough from the optimum to be strongly deleterious in
two copies must be already far from the optimum in one

Table 1 Estimates of average dominance

hR hM Trait Method Note Analyzed Species Reference

0.029 — Viability MAa Excluded Drosophila melanogaster Garcia-Dorado and Caballero (2000)
0.10 —

0.2 —

0.328 — Viability MA Included Chavarrias et al. (2001)
20.03 — Early ♀ fec. MAb Included Houle et al. (1997)
0.12 — Late ♀ fec.
0.37 — ♂ longevity
0.26 — ♀ longevity

20.07 — ♂ mating ability
0.12 — Weighted mean
0.16 0.51 Viability TE Included Fry and Nuzhdin (2003)
0.01 0.45 Viability P-elem. Excluded Mackay et al. (1992)
0.21 — Viability MAc Included Simmons and Crow (1977)
0.29 — Viability MAc Included
0.40 — Viability MAc Included
0.49 — Viability MAc Included
0.21 — Viability MAc Included
0.21 — Viability MAc Included
0.40 — Viability MAc Included
0.133 0.195 Growth rate SM Included Saccharomyces cerevisiae Szafraniec et al. (2003)
0.64 — Productivity MA Included Caenorhabditis elegans Vassilieva et al. (2000)
0.05 — Surviv. to mat.

20.10 — Longevity
0.55 — Intrinsic rate incr.
0.48 — Convergence rate
0.69 — Generation rate

20.508 0.12 Productivity EMSd Included Peters et al. (2003)
20.508 0.08 Relative fitness

hM is given by E(shet)/E(shom) and hR by Cov(shet,shom)/Var(shom), where shet and shom are the distributions of the heterozygous and homozygous fitness effects of mutations,
respectively. The MA method refers to mutation accumulation of experiments that produce lines with unknown numbers of spontaneous mutations. EMS represents the
same method but with mutagen-induced mutations. TE represents transposable elements. P-elem represents for P elements and SM represents the study of lines carrying
exactly one single mutation. Different proxy for fitness are used in the experiments (viability, productivity, growth rate, indicated in the Trait column).
a Although historically important, Ohnishi estimates present several problems as explained in Garcia-Dorado and Caballero (2000). Originally, hR values were estimated to be
low and inconsistent between crossing schemes (0.1 in coupling crosses and 0.029 in repulsion crosses). The reanalysis in Garcia-Dorado and Caballero (2000) of the same
data yields a much higher value (0.2). Given all these uncertainties and the fact that other Drosophila estimates are available, we excluded this data set from our analysis.

b The weighted mean (0.12) given in the table is simply an average over traits given in Houle et al. (1997). We did not include it in our composite estimate of average
dominance.

c Simmons and Crow (1977) report recalculated values of hR for different Mukai’s experiments.
d In this experiment, overdominance was observed in several sublines. The overall pattern [Figure 3 in Peters et al (2003)] was strikingly similar to what our model would
predict away from the optimum (hR � 0.5 and presence of overdominance, Figure 5, right) although hM was lower (� 0.1). Note that the hR estimate given in the article
(0.02) is mistaken (A. Peters, personal communication).
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copy (hence have higher than average heterozygous effect).
In the second case, because holes are independent of trait
effects, heterozygous effects of strongly and mildly deleteri-
ous mutations should be drawn from the same distribution
and thus have the same mean value. The data on lethal
mutations in Drosophila (Simmons and Crow 1977) and
yeast (Szafraniec et al. 2003) clearly support the second
possibility. The data on the fitness effect of gene deletion
in yeast (Steinmetz et al. 2002) also show that strongly
deleterious deletion (around 20% of the deletions) have
independent heterozygous and homozygous effect as indi-
cated by the analysis of Agrawal and Whitlock (2011). Using
their “model7” (providing the best fit to the data), muta-
tions with s = 0.05 have hs = 0.013 while mutations with
s = 0.5 (a 10-times increase) have hs = 0.014 (a 1.06
times increase). In other words, mean heterozygote fitness
is constant for a wide variation of s values within the minority
of deletion of large effect. Such a flat relationship is exactly

what is predicted if the ruggedness on homozygotes takes the
form of holes as we intuitively present it (Figure 10B).

These observations show first that a smooth landscape
model is not sufficient to account for the distribution of
mutations of large effects. Second they show that incorpo-
rating ruggedness in the form of holes (rather than thresh-
olds) may account for the distribution of effect of this class
of mutations. This is not so surprising; genetic incompati-
bilities are commonplace as revealed by recent progress on
the genetics of speciation (Orr and Presgraves 2000) or the
observation that species can often have very similar pheno-
types and yet cannot interbreed. Of course, this does not
exclude the possibility that extreme trait values could be
lethal or that environmental variation can cause some form
of lethal fitness threshold too (Figure 10a), but it does sug-
gest that incompatibilities are the main source of strongly
deleterious mutation in the laboratory experiments men-
tioned above. New data would be valuable to further study

Figure 9 Survey of empirical estimates of average dominance. We confronted our prediction (hR within [0.25–0.5] and closer to 0.25, shaded region)
with different empirical estimates of hR (with their confidence interval), across species and different traits. D. melanogaster: (A) viability (Chavarrias et al.
2001), (B) viability (Fry and Nuzhdin 2003), (C) female early fecundity, female late fecundity, male longevity, female longevity, male mating ability,
weighted mean (not used to calculate our composite estimate of average dominance) (Houle et al. 1997), (D) viability, recalculated hR from different
Mukai’s experiments (Simmons and Crow 1977). C. elegans: (E) productivity, survival to maturity, longevity, intrinsic rate of increase, convergence rate,
generation rate (Vassilieva et al. 2000), (F) relative fitness (Peters et al. 2003). Saccharomyces cerevisiae, (G) growth rate (Szafraniec et al. 2003). (H)
Composite weighted estimate of hR across studies 0.27 [CI 0.18–0.36].

Figure 10 Alternative models for mutations of large ef-
fect and lethals. (A) The fitness function is truncated for
extreme trait values: any mutation with effect larger than
some fitness threshold has a much stronger deleterious
effect than with a smooth landscape model. As a conse-
quence, the average heterozygous effect of mutations of
weak homozygous effect (pink) is necessarily smaller than
that of mutations of large homozygous (blue). (B) Muta-
tions of large effects and lethals result from genetic in-
compatibilities unrelated to the trait values. For the sake
of illustration, these incompatibilities are illustrated as
small random holes on the fitness surface, but these holes
are not necessarily a fixed feature of the fitness surface,
they may differ across genetic background or environ-
ments. In this case the average heterozygous effect of mild
and strongly deleterious mutations (including lethal) is
equal on average.
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the difference in behavior between mutation of small and
large effect (including lethals).

Discussion

We propose a theory for the dominance of mutations rooted
in the idea of a smooth and relatively simple fitness
landscape. This approach is clearly a compromise between
precision, realism, and generality (Levins 1966). Such a bal-
ance is well suited to evolutionary genetics, but may be less
appropriate in different circumstances. Before trying to pres-
ent the advantages and main statements of this theory in
particular relative to previous ones, we can try to make clear
what the limits of such a theory are. First, this approach
applies to the effect of the bulk of newly arising mutations
of moderate phenotypic effects. It does not really address
the dominance of alleles maintained highly polymorphic at
particular loci. Second, as we have seen, it does not directly
incorporate, but can accommodate, the idea of ruggedness,
which might be essential to understanding the properties of
mutation of strong effect and lethals. We return to these
issues below. On the other hand, the central advantages of
this theory are that (i) it provides a testable, quantitative
prediction that seems to match the available data on average
dominance of mildly deleterious mutations with an economy
of assumptions; and (ii) it extends well beyond the question
of dominance and accounts for a variety of mutation effects.
We discuss these issues below. We also discuss what our
theory brings to recurrent question/controversies about
dominance, such as the h–s correlation, the phenomenon
of overdominance, and the dominance of fitness vs. nonfit-
ness traits.

A quantitative agreement

Contrary to previous theories, our theory makes a quantita-
tive and testable prediction about the average dominance of
mildly deleterious mutations, which is in good agreement
with the available data (Figure 9). However, these predic-
tions are open to further tests, in particular regarding the
overall distribution of dominance (Equation 23 and Figure
8), the effect of the environment (distance to the optimum
so; see Equation 13 and Figure 5) or the properties of lethal
and large-effect mutations. This quantitative agreement is
important for several reasons. The debate over dominance
involved long discussions, argument, and counterargu-
ments. However, despite the long-lasting history of the con-
troversy, there is no quantitative theory for dominance to
which we could confront the present one. Fisher’s, Wright’s,
and metabolic theories and all their subsequent develop-
ments do not provide a prediction for the distribution of
dominance; they state only that it should be less than one-
half. This is not to say that these theories do not point to-
ward relevant and interesting biological phenomena, but
that they remain qualitative and therefore more difficult to
directly confront with data. We hope that a merit of the
present approach is to offer a clearly testable alternative in

a debate that we feel has remained too qualitative over the
last 80 years. It is, however, important to note that we only
crudely compared our predictions to data (i.e., we only sur-
veyed measures of average dominance, and among the sub-
set of mildly deleterious mutations). The present theory
could be tested more extensively, and with more power of
rejection, provided additional detailed data become avail-
able on the full distribution of dominance of mutations on
fitness.

Phenotype to fitness map

This theory does not focus exclusively on enzymes so that it
appears to make less strong assumptions on the phenotype–
fitness map than metabolic theories do. The assumptions
made in landscape models, on the other hand, are often
considered less intuitive or less “biological” than metabolic
descriptions. The model does assume a given phenotype–
fitness map, but using the general concept of stabilizing
selection on a small phenotypic local scale (hence a treat-
ment of weak effect mutations here). We believe this pro-
vides generality compared to making assumptions about the
adaptive value of specific (metabolic) traits, especially a lin-
ear relationship between metabolic flux and fitness (see In-
troduction). Fitness integrates processes occurring well
beyond metabolism (development, morphology, resource ac-
quisition and allocation, mate choice, and so on) and we
believe that forcing all mutation effects into a metabolic
context limits the generality of the conclusions, even if an
important part of fitness affecting mutations are probably
related to metabolism. Like Fisher’s theory, this model
requires natural selection, but in a different way: natural
selection ensures that most of the time and for most of their
traits, populations will not be too far from their phenotypic
optimum, so that the fitness surface is likely to be, at least
locally, concave and quadratic in first approximation. The
concavity of fitness surfaces, which causes recessivity in
our model, is further supported by the fact that mutations
are always deleterious on average (Martin and Lenormand
2006a). However, like metabolic theory, this model avoids
Fisher’s assumption that the dominance of each wild-type
allele is molded by natural selection. In any case, as Mayo
and Burger advocated (Mayo and Burger 1997), a general
theory for the dominance of newly arising mutations does
not preclude that dominance could evolve in specific circum-
stances at selected loci exhibiting high polymorphism (see
review in Bagheri and Wagner 2004 and Llaurens et al.
2009; Schoen and Busch 2009; Chang and Noor 2010).
Dominance can evolve perfectly in some cases, but this
may not cause the bulk of newly arising mutations to be
recessive.

h–s correlation

It has been shown for a long time and in several experiments
that lethal mutations were much more recessive than mu-
tations of small effects (Simmons and Crow 1977). This
observation led to the idea that there is a widespread h–s
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correlation. Because such a relationship is not expected
in Fisher’s theory, it was used against it, as we already
explained (Charlesworth 1979). On the contrary, in the
metabolic theory, such a relationship holds for integrated
metabolic traits (such as flux or intermediate substrate con-
centration). Thus, metabolic theory is qualitatively compat-
ible with the observed h–s correlation. More recent analyses
on the yeast deletion database (Steinmetz et al. 2002) have
also shown the presence of a widespread h–s correlation.
However, the same data have been interpreted in favor
either of the metabolic theory (Phadnis and Fry 2005) or
of models that depend on indirect selection on homeostatic
gene expression (Agrawal and Whitlock 2011). At this point,
it is important to underline that the evidence for a h–s cor-
relation relies on mutations of large effects (say with s above
0.05–0.1), which represent a minority of all mutations, and
it is still unclear that there is a h–s correlation within muta-
tions of small effects. For instance in the yeast deletion da-
tabase mentioned above, and as far as these data can be
trusted (see below), 70–80% of the mutations have small
effects and do not exhibit a h–s correlation and the predic-
tion derived from a smooth landscape model would apply to
these mutations. For the remaining mutations it is certainly
simpler to say that heterozygous and homozygous effects
are independent than to say that there is a h–s correlation
[see above the analysis of Agrawal and Whitlock (2011) of
the yeast deletion data]. In this regard, it can be noted that
while metabolic theory predicts h–s correlations, it cannot
easily account for independent homo- and heterozygotes
effects.

As we have shown, a strong h–s correlation is not ex-
pected in a smooth landscape model, especially close to an
optimum (Equation 13), and measuring such correlation
among mild mutations could be an interesting way to eval-
uate this prediction. However, adding some ruggedness in
such models generates this correlation (see above and Fig-
ure 10) among mutations of large effect. Overall, it remains
quite plausible that different phenomena arise for mutations
of large and small effects. The high-throughput data mea-
sured on yeast gene deletion collection (Steinmetz et al.
2002) would have been a good starting point to investigate
this issue quantitatively as in Phadnis and Fry (2005) and
Agrawal and Whitlock (2011). However, this data set pres-
ents internal inconsistencies that preclude, in our opinion,
using them quantitatively, especially for the bulk of mutation
of small effects that are relevant to testing the smooth land-
scape theory presented here. Repeatability is very poor
among mutations of small effects and unexpectedly lower
between replicates in the same environment than across
environments (sometimes with negative correlations among
replicate measurements). The conclusions drawn in previ-
ous studies of this data set (Phadnis and Fry 2005; Agrawal
and Whitlock 2011) may hold in spite of these problems,
because they dealt mainly with the subset of strongly dele-
terious effects (�20% of deletions) where repeatability is
better. Clearly, more work is needed to better understand

the dominance of mutations of large effects. The theory we
outline in Figure 10B seems to qualitatively agree with the
available evidence and it may help generate simple quanti-
tative predictions. It may also serve to provide a framework
with which to further model genetic incompatibilities and
underdominance (Barton 2001) or to further investigate the
variation of dominance across broad functional categories
of genes (Kondrashov and Koonin 2004; Phadnis and Fry
2005; Agrawal and Whitlock 2011).

Overdominance

One limit of previous theories is that they do not provide any
simple mechanism allowing for overdominance (see, e.g.,
Omholt et al. 2000 for metabolic theory). This theory does
provide such mechanism. To the extent that stabilizing se-
lection occurs on a trait, overdominance is indeed almost
inevitable as long recognized by Fisher, Wright, Haldane,
and Muller (Crow 1987). Fitness landscape theory predicts
that overdominance could be observed when studying more
particularly the effect of new mutations on fitness. Fitness
overdominance is observed (Simmons and Crow 1977;
Mitchell-Olds 1995; Peters et al. 2003; Zeyl et al. 2003)
when studying the effects of new mutations, even if its im-
portance is often minimized for technical, methodological
(Fry 2004), or historical reasons. On the other hand, the
literature on the maintenance of variation has largely ar-
gued against a predominant role of overdominance (Crow
1987). However, the existence of overdominance among
newly arising mutations does not preclude that they play
a minimal role in the maintenance of variation. With the
stabilizing selection model assumed here, overdominance
depends on the genetic background so that it would hardly
maintain polymorphism at more than one locus per indepen-
dently selected trait if these backgrounds vary, i.e., if there is
genetic variation at other loci (Hastings and Hom 1989). In
addition, even if a single locus segregates, a gene duplica-
tion can rapidly fix the heterotic gene combinations, which
would suppress the heterozygous advantage (Haldane
1932). Thus, distinguishing overdominance in newly arising
mutations from overdominance in standing variation is
probably an important step toward clarifying this debate.
Furthermore, the present landscape theory, by dealing with
both deleterious recessive mutations and overdominant
mutations, may help bridge the gap between the Fisher–
Wright debate over dominance and the Muller–Dobzhansky
debate over overdominance (Crow 1987) that have devel-
oped in parallel despite addressing related issues.

Fitness vs. traits

The fitness landscape approach helps clarify the scope of
a possible theory of dominance, which, in its current form,
can be related only to fitness. This does not imply that
we cannot get theoretical insights into the dominance of
some particular characters, such as metabolic flux, as has
been successfully done by metabolic theories. However, we
do believe that (i) many issues related to dominance in
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evolutionary genetics depend on dominance for fitness, not
for any other character, and (ii) it is difficult to provide
general predictions for arbitrary characters that are not
related to fitness. Indeed, strictly speaking, the distribution
of dominance of characters in general is not something that
can be defined unambiguously. This point caused consider-
able confusion, so that it is necessary to state it very clearly.
The definition of characters is somewhat arbitrary. One can
study size or weight of individuals in a population, but
equally valid is the study of log(size), log(weight), or
whatever function of size and weight one wishes. The set
of arbitrarily defined traits is infinite and the dominance of
“traits” will depend on these alternative definitions. If an
allele changes additively a particular trait x, it will exhibit
a possibly entirely different dominance when applied to f(x),
where f stands for any function. This does not say that it is
not perfectly valid and meaningful to compute the domi-
nance of an allele with respect to a particular well-defined
trait. It says only that we cannot aggregate measures of
dominance on different characters without a criterium on
the nature of the character.

Since the definition and measuring scale of characters are
arbitrary, the distribution of dominance is meaningful only if
it is sampled across mutations for the same character and
not across characters. This ambiguity has plagued the
debate on dominance on several occasions. For instance,
in his first article on dominance, Fisher (see the data
compiled in Fisher 1928) argues on the recessivity of muta-
tions by compiling a data set on dominance on different
characters not related to fitness, which is not relevant to
his own theory. Wright made an important step by implicitly
considering the dominance on a secondary character
depending on the dominance of a primary character, where
the secondary character is defined as a squared deviation of
the primary character from an optimum (Wright 1935).
However, this approach was unrelated to his theory of dom-
inance and did not lead him to revise his metabolic view and
more generally the view that a theory of dominance for
arbitrary traits could be achieved. Similarly, it is unclear
why metabolic theory could apply to character in general
and fitness in particular. It applies only to a limited set of
traits (flux, etc.) that are not typically the ones measured
when average dominance of mutation is investigated. For
instance, even within the theory, different characters exhibit
different dominance (enzyme activity is additive, whereas
flux, substrate concentrations, and so on are recessive).

Another example is the study by Orr (1991) who com-
piled the dominance of mutations on different characters in
the haploid Chlamydomonas. This compilation led to falsi-
fication of Fisher’s theory and was quite influential in this
respect. One important limit of this study was that the
traits chosen, although several were probably under selec-
tion, were not chosen to be proxies for fitness. As a last
example, we counted the number of single-locus genetic
disorders described as being recessive or dominant in humans
(OMIMDatabase, http://www.ncbi.nlm.nih.gov/sites/entrez?

db=omim). In this database, a roughly equal proportion of
mutations are classified as being dominant and recessive,
which seems entirely different from the usual finding in other
species (see our survey). However, it is unlikely that delete-
rious mutations in humans exhibit different dominance. A
likely explanation for this discrepancy is rather that the def-
inition of symptoms varies from case to case and differ from
the fitness effect. A disease typically occurring late in life has
little impact on fitness, for example, and more generally
symptom gravity may be poorly correlated with fitness effect
for many illnesses (see a similar argument in Motulsky 2010).
In our theory, the mathematical argument can hold for any
trait (not only fitness) that can be thought of as the optimi-
zation of a set of underlying primary traits. However, only
a measure of fitness can be thought as being comparable
for different organisms in different environments. This is
not contradicted by the fact that measuring fitness is often
imperfect as measured by a combination of life-history traits.
This is only the best of what can be done.

Generality

Finally, the present landscape theory is not tailored to
explaining dominance. It also applies more generally to
describing other aspects of mutational effects; for example,
it provides empirically valid predictions for epistasis be-
tween mutations (Martin et al. 2007), the variation in mu-
tational effects across environments (Martin and Lenormand
2006a), and the shape of the distribution of mutational
effects (Martin and Lenormand 2006b). Fitness landscape
models, whether one considers them oversimplifying or
not, at least offer a general, robust, and importantly testable
framework within which to understand the fitness effect of
mutations of small effects. There are different strategies for
model building (Levins 1966; Orzack and Sober 1993), and
the top-down approach presented here will certainly enrich
the debate between the polarized views of metabolic and
selective theories.
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Derivation of the model in the one-dimensionnal case 

 

We note W(z) the fitness of a phenotype z. W is Gaussian in our model:  

 

W(z) ≡ �
�

z2

2s2 (S1) 

 

where s is a positive parameter measuring the strength of selection. We focus on a wild-type phenotype zo, whose fitness 

distance to the optimum is measured by so ≡ − logW(zo) =	
z�

2

2�2
. We then note zo + dz the phenotype of a mutant homozygous 

for a mutation i (dz is normally distributed with mean zero and variance ��
2 ). Its log-relative fitness shom is thus  

 

shom ≡ log(W(zo + dz)/W(zo)) =−
dz
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The phenotypic effect of heterozygotes is determined by a fraction υ of the homozygote phenotypic displacement. Thus, 

the phenotype of the mutant heterozygote is zo + υ dz. The log-relative fitness of the mutant heterozygote shet is  

 

shet ≡ log(W(zo + υ dzi )/W(zo)) =−
dz

2
υ2

2�2
−

dz	υ	z0

�2
. (S3) 

 

Defining dominance ɩ as a departure from multiplicative fitness effect (eq. 1), we find  

 

ɩ = (2υ − 1) 
dz	z0
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As explained in the text, there are different ways to measure average dominance. The most straightforward is to compute 

mean ɩ from eq. 8: 

 

E(ɩ) = (συ
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Other measures of average dominance hM (Eq. 2) or hR (Eq. 3) yield the same equation than in the main text. 

 


