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ABSTRACT Analysis of genomic data requires an efficient way to calculate likelihoods across very large numbers of loci. We describe
a general method for finding the distribution of genealogies: we allow migration between demes, splitting of demes [as in the
isolation-with-migration (IM) model], and recombination between linked loci. These processes are described by a set of linear
recursions for the generating function of branch lengths. Under the infinite-sites model, the probability of any configuration of
mutations can be found by differentiating this generating function. Such calculations are feasible for small numbers of sampled
genomes: as an example, we show how the generating function can be derived explicitly for three genes under the two-deme IM
model. This derivation is done automatically, using Mathematica. Given data from a large number of unlinked and nonrecombining
blocks of sequence, these results can be used to find maximum-likelihood estimates of model parameters by tabulating the proba-
bilities of all relevant mutational configurations and then multiplying across loci. The feasibility of the method is demonstrated by
applying it to simulated data and to a data set previously analyzed by Wang and Hey (2010) consisting of 26,141 loci sampled from
Drosophila simulans and D. melanogaster. Our results suggest that such likelihood calculations are scalable to genomic data as long as

the numbers of sampled individuals and mutations per sequence block are small.

HE coalescent process is highly variable: samples from

even a single well-mixed population rapidly coalesce
down to a few ancestral lineages, so that their deeper an-
cestry is determined by just a few random coalescence
events (Felsenstein 1992). Thus, small samples taken from
a large number of loci give much more information than
large samples from a few loci. For example, the distribution
of coalescence times, and hence the history of effective
population size, has been inferred from single diploid ge-
nomes (Li and Durbin 2011). Although it is now feasible to
sample very large numbers of markers, or indeed whole
genomes, we urgently need methods for analyzing such
data. In principle, we can calculate likelihoods from very
large data sets, if we have loosely linked blocks of sequence
within which recombination is negligible. Provided that
only a few genomes are sampled, we can tabulate the prob-
ability that any particular configuration of mutations will
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be seen at each locus and then multiply across large num-
bers of loci to find the likelihood of our model (Takahata
et al. 1995).

Wilkinson-Herbots (2008) and Wang and Hey (2010)
derive the distribution of coalescence times for a pair of
genes sampled from two populations that separated at some
time in the past and subsequently exchanged migrants. This
“isolation-with-migration” (IM) model is of particular inter-
est in evaluating the role of gene flow during speciation.
Hobolth et al. (2011) show how this and similar calculations
can be done more efficiently using matrix exponentials.

Here, we present an alternative method, based on gener-
ating functions, which provides direct information about the
pattern of mutational variation and can be automated using
symbolic algebra packages such as Mathematica. We give the
IM model as an example and show how the method extends
to linked loci.

The Generating Function of a Genealogy

The ancestry of a sample of genes, (), is described by the
lengths of the branches that are ancestral to every possible
subset. For example, suppose that we have three genes at
a locus, labeled Q) = {a, b, c}. We label lineages by the set
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of genes to which they are ancestral. Thus, if lineages an-
cestral to genes b and c¢ coalesced most recently, then the
branches {b} and {c} have the same length; i.e., t(; = t(g,
and tgay = tpy t+ tpp. With this topology, there are no
lineages ancestral to {a, b} or {a, ¢} and t,py = tiae = O.
Thus, both the topology and the branch lengths are encoded
by the vector of all possible branches ¢, which has elements tg
for S = Q.

The generating function (GF) for the branch lengths t
depends on a set of corresponding dummy variables, o
and is defined as the expectation s[w] = E[e"2%]. It is more
convenient to use this form—a Laplace transform—rather
than the alternative E[[[gc 2¢]. Generating functions are
widely used, primarily because the distribution of the sum
of two independent variables is given by the product of the
corresponding GF. In particular, Latter (1973) used a GF
approach to find the solution for the expected frequency
of heterozygotes under the symmetric IM model and
Griffiths (1981b) used the GF for the numbers of types to
calculate sampling distributions for the infinite-alleles
model. Griffiths (1991) applied this to the two-locus prob-
lem (see also Jenkins 2008). In the context of the coales-
cent, the GF has a concrete interpretation: under the
infinite-sites model, it is the probability of seeing no muta-
tions, given mutation rate wg along branch S.

Information about the branch lengths themselves can
be recovered from the GF. The mean lengths, E[ts], are
found by differentiating with respect to ws and setting o
to zero; higher moments are found by differentiating more
than once. The actual distribution can be found by taking
the inverse Laplace transform, which may be done either
algebraically (if the GF has a certain form) or by numerical
integration.

In practical applications, we wish to know the probability
that there are kg mutations on branch S. Under the infinite-
sites model, with mutation rate ., this is given by taking the
expectation of a Poisson distribution with mean .t over the
distribution of coalescence times,

s uts)S ] () sy
P[ks]E|:e W ! :| Tl (awlgs , (@D)

which is proportional to the kith differential of the GF with
respect to wg, taken at wg = w, and setting all other w’s to
zero. We see that Equation 1 defines a term in a Taylor
series, so that the probability of a particular configuration
of mutations is given by the coefficient in the expansion of s.
In other words, if we set wg = . — x5 and expand around the
point xs = 0, then the probability of seeing ks mutations on
branch S is the coefficient of xlgs, multiplied by p*s. Similarly,
the joint probability of seeing a configuration of kg, , ks,, . ..
n}l{;ltaktsions on branches S;, S,, ... is the coefficient of
Xg.'Xg?. .., multiplied by wksi™ -, In the following, we
scale time relative to twice the effective population size,
2N i.e., the scaled mutation rate is 2Nu = 6/2.
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While we assume an infinite-sites mutation model for
simplicity throughout, the GF can also be used to obtain
the probabilities of mutational configurations for more
complex mutation models. For example, under the Jukes-
Cantor (Jukes and Cantor 1969) model mutations to a dif-
ferent state happen at rate (3/4)w and the chance of a back
mutation is (1/4)p. The probabilities that two sequences
differ or are the same at any particular site are 3(1—e *)/4
and (1 + 3e ™) /4, respectively. Given a pair of sequences
of length n the probability of seeing j sites in a different
and n — j in the same state is given by taking the expectation
of a Binomial distribution over the distribution of coalescence
times:

m=] () wey (Gee) (1)) e

This can be written as a sum of the GFs of pairwise coalescence
times:

= (68 B GG
3

Thus, in principle, we can obtain results under a finite-sites
mutation model directly from the GF without the need to
take derivatives.

The generating function is a sum of terms, each corre-
sponding to a particular topology. For a given topology,
many branches will have zero length by definition, and so
the GF will be independent of the corresponding ws; some
branches will have the same lengths (e.g., t4 = ti;) and so
the corresponding terms will be a function of the sum of the
respective dummy variables (e.g., wpy + wy). Under the
infinite-sites model, this brings a substantial simplification if
we see mutations on internal branches, because any terms
that do not depend on the corresponding dummy variables
can be dropped from the GF: they represent topologies in-
consistent with the data. The joint likelihood for a given
mutational configuration can then be calculated by multiple
differentiation of the remaining terms, which involves a sum
over only the possible topologies.

The General Recursion

The recursion for the generating function of genealogical
branch lengths can be derived by tracing back from the
present to the most recent event, which might be a co-
alescence, a recombination, a movement between demes,
a change in population structure, or whatever. Events i occur
at rate A; and (tracing back in time) change the configura-
tion of genes from the sampling configuration () to );. Con-
figurations include the number of lineages and—depending
on the model—their locations and/or genetic backgrounds.
For example, suppose that we start with three lineages {a},



{b}, and {c}. A coalescence between lineages {b} and {c}
generates a new configuration {{b, c}, {a}}, in which there
are now two lineages—one ancestral to {b, c} and the other
to {a}. We derive a recursion that expresses the GF {;[}] as
a sum over the possible configurations before the previous
event. The time back to that event is exponentially distrib-
uted with rate >, A;, and so the distribution of the lengths of
the terminal branches is just the convolution of this with
their previous distribution. Taking Laplace transforms, this
corresponds simply to multiplication by the factor
1/(32iAi + 32521 @s), since a convolution of distributions
transforms to a product of the previous GF and the GF of
an exponential distribution with rate } ;A;. Summing over
all possible events we have

> i Ai[eY] '
ik g1 ws)

$[Q] = ( &)

The denominator gives the total rate of events, » ;A; in the
interval from the present to the first event, plus the sum of
the wg that correspond to terminal branches (the “leaves” of
the tree). The numerator is the sum over all possible generating
functions at the previous event; (); denotes the configuration
prior to event i. This recursion yields a set of linear equations for
the {s[] that is readily solved; the limit is set by the number of
possible sample configurations of genes that have to be tracked.
To see how this works, we give a series of examples.

A Single Population

In the simplest case of a single well-mixed population, we
need to track only coalescence events. Scaling time relative
to twice the effective population size, 2N, the rate of coales-
cence is given by the number of pairs of lineages in a given
sample configuration (1)=ja|(0-1)/2. where there are ||
lineages. Thus

v <(|2‘> +1Z Is|=1 ws) {xyz}:znlp[ﬂ{x‘yﬂ? ®

where the sum is over all the (19') possible pairwise coales-
cences, between genes x and y. ()., denotes the sample
configuration after coalescence, i.e., {) with lineages {x}, {y}
replaced by the new lineage {x, y}. Since we define the GF
for a single gene as 1, we have for two genes

1
2

1

e = e e

©)

This is equivalent to the probability of identity in state with
wg + wp = 0. Note that for brevity, we have condensed the
notation so that {s[a, b] represents the GF for two lineages
ancestral to genes a and b, respectively; and {s[ab, c] repre-
sents two lineages, one ancestral to a and b, and the other

to ¢. For automated recursions (File S1), the full (and un-

ambiguous) notation §i[w, {{a}, {b}}], ¥lw, {{a, b}, {c}}]
would be used. For three genes

1

1 1 1
8 ((Hwab T o) (1 F oa + o) +<1+wbc+wa>>'
%

Each of the three terms corresponds to one of the three
possible topologies. For example, the last term depends on
wpe and corresponds to coalescence between {b} and {c}, so
that the interior branch t;. > 0. To find the probability of
each topology, we set all the wg to zero, and see that each
term contributes 1. To find the probability that there are k
mutations ancestral to b and c, we differentiate k times with
respect to wp,, set wp. to equal the scaled mutation rate 6/2
and all other wg to zero, and multiply by (—6/2)%/k!
(Equation 1). This gives the geometric distribution
(1/3)(26%/(2 + 6)*1) for k > 0, the factor 3 arising because
there is a 1/3 probability that b and c coalesce first, allowing
mutations of this class to exist. Alternatively, we could set all
the ws to 0, except for wp. = 6/2—x,, and then expand
around xp. = 0; the coefficients of x’lfcbc are proportional to
the chance of seeing k;. mutations that are ancestral to
b and to c. The joint probabilities of other mutational con-
figurations can be found in a similar way.

Migration

Suppose that two populations exchange migrants at a scaled
rate 2Nm. For simplicity, we assume that migration is
symmetric and both demes are of the same size (the gener-
alization to more demes, different population sizes, and
asymmetric migration is obvious) and that a set {}; of genes
is sampled from one deme and (), from the other. Now,
there can be coalescence, which reduces the size of one or
the other set, or migration, which transfers a lineage x from
one deme to the other creating, for example, new sample
configurations () 1, and Q5 _,. Thus

W[, Q]
1

[Q4] [Q2]
(( + +2Nm(|Q | + |Q2]) + Y seq, [sj=1 s + X s<0, [s]=1 ©S

2 2

X( Y U0y Q]+ X (01, 40]
ot

{xyrs

+ 2Nm Y [ Qo i) +2Nm Y u;[szu,“nz,x}).
{xjc, {x}s,

8

This leads to a set of linear equations that can readily be
solved. We need to distinguish only sample configurations
where the genes are in different demes, {s[a\b], or in the
same demes, s[a, b\@], say (again, we have condensed the
notation; @ represents the empty set, and \ the separation
between the two demes). From Equation 8 and using the
symmetry of the model,
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2Nm
V) = G s e o]
4Nm

= m‘l’[a» b\g]
1

(1+ 4Nm + wq + wp) )

x (Wlab\e] + 2Nm(la\b] + y[b\a]))
1
" (14 4Nm + wg + wp)

(la, b\o] + ble\a, b])

ll’[av b\ﬁ] =

(1 + 4Nmy[a\b)).

This has the solution

M
Vla\b = (M + g + op)(1 + M + 0q + wp) — M? (10)
vla.b\g] = N vat o

(M + wg + op)(14+M + 0g + wp) — M2’

where M = 4Nm. Note that the GF is a function only of w, +
wp, given the constraint t, = t,. Equation 10 has been pre-
viously derived as the probability of identity in state with
wg + o, = 0 (Griffiths 1981a, equation 10). Taking the in-
verse Laplace transform gives the probability of pairwise
coalescent times,

_ 1 —Aot _ 1 =\t 1
Pa,b\(z)[t]*z(e 1 X — o +e 1+)l1—)l0

M(e—)\ot _ e—)\lt)
M —ro

Pa\b[t] =
(1D

where Ao =3(14+2M—+/1+4M?) and Ay =3(1+2M+
V14 4M?2). This result was derived directly by Herbots
(1997), using a partial fraction expansion (see Griffiths
1981a; Wilkinson-Herbots 2008, equation 18), but can also
be found from the discrete time transition matrix (Wakeley
1996). In fact, Ag and A, are the eigenvalues of the symmet-
ric transition matrix Q given by Hobolth et al. (2011) with
Sl = Sz, Sll = 822, and m; = ms.

Population Splits: The IM Model

Now, suppose that the two populations derive from a single
ancestral population T generations ago. Dealing with finite
times explicitly leads to complicated expressions (Wang and
Hey 2010). However, we can retain the simple form of the GF
by taking the Laplace transform with respect to the divergence
time, with dummy variable A. This has a concrete interpreta-
tion, as the expectation over a model in which the divergence
time is exponentially distributed with rate A, times a normal-
izing factor A. We can either fit this model directly or take the
inverse Laplace transform with respect to A, to find the GF of
the genealogy for a given divergence time T, which we denote
P. (More precisely, we take the inverse Laplace transform of
A=, since ¢ = E[e \TP] = [ Ae ATPdT.)
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The recursion is now

B[O, Q]
1

- Q Q
<A + (‘ 21‘) + (l ;‘) +2Nm(|Q1] +[Q2]) + 3 scn, sj-1 05 + 2520, [5|-1 ms)

B[O gy Q2] + 2

B[01, Qs xyy]
(Y} 0,

x <A\L[(llu!22]+ )>
yre

+ 2Nm Y ‘l‘[ﬂl.fx‘QZ.er]?LZNm > ‘l»'[gl.+x-,02.fx}>»
{x}s, {x}=s,

(12)

The additional term Ays[€) U Q] represents the replacement of
the GF for two separate demes by the GF for a single popula-
tion, which follows the standard coalescent (see Equation 5).
Expression (12) is otherwise identical to Equation 8.

As a simple example, consider two genes,

1
e\ = R N a0 + o
x (Ala, b] + 2Nm(y[e\a, b] + ¥la, b\a]))
1
- A+ 4Nm + o4 + op x ((1 + g + “’b) + 4lel’[avb\¢]>
1
Pla,b\g] =

T A+14+4Nm + og + wp
X (Ala,b] + ¥lab\g] + 2Nm({[a\b] + w[b\a]))
! +1+ 4Nm111[a\b]>,

T A+ 1+ 4NM + wg + wp \(1 + g + 0p)

(13)
which have a solution similar to Equation 10:

1

1+(x)a+(x)b
A1+ A+ wq 4 0p) + M(1 + 2A + 0g + wp)

(A + wg + 0 + (A + 0g + 0p)24+M(1 + 2A + 204 + Zmb))

1
o\a, b =———
Vio\a, 2] 1+ wg + wp
A+ g + op + (A + 0g + p)2+M(1 4 2A + g + wp)

(A + g + @ + (A + 0g + 0p)2+M(1 + 2A + 20, + Zwb)>'

(14)

bla\b] =

With complete isolation (i.e., M = 0), differentiation of these
expressions yields the explicit formula for the numbers of
pairwise differences in the complete isolation model given
by Takahata et al. (1995).

For three genes we have

a\b.d] = :
bla\b, T A+ 14 6Nm+ 0g + wp + 0

x (Aa, b, c] + Pla\bc] + 2Nm(y[o\a, b, c]
+ Wle\a, b] + ¥lb\a,d]))

1
Wo\a b = A N T wp T T o
x (A[a, b, c] + Wlg\a, bc] + Wo\ab, ¢ + b[v\ac, b]

+ 2Nm(pla\b.] + ylb\a.d] + ble\a, b])).

(15)

Although there are only two types of configuration with
three genes, there are three permutations of the first. Thus,



in our symmetric model, we have four coupled linear
equations, which can be written in matrix form,

1!1[(1\1), C] Y1
Vlb\ac] = Aya, b, (] "
¥lc\a, b] Y1
Ylo\a,b, ] V3
y1la\bc|
vid[b\ac]
' le\ab]
v3(W[o\a, be] + ¥[o\b, ac] + [@\c, ab))
0111 y1la\b, ]
 oNm 01 1 v1¥[b\a, ] ,
1 1 01 v1¥lc\a, b]
1 1 10 'YS‘HQ\av bv C]

where y; =1/(A+j+6Nm + o+ w, + o) and j is the
number of pairs that can coalesce given a particular sample
configuration.

This has an explicit solution, which we derive in detail in
File S1 using a simple symbolic algorithm. If the demes were
not equivalent because of asymmetric migration and/or dif-
ferences in effective population size, then we would need to
distinguish configurations such as {;[a\b, c] and s[b, c\a]
and would have eight coupled equations.

With coalescence or population splits alone, the recur-
sions can be solved directly: every event leads back to
a simpler configuration, with either fewer lineages or
fewer demes. However, with migration, we must solve
a set of coupled equations. This is easily done numerically,
for specific w, but beyond the simplest cases leads to
cumbersome algebraic expressions that cannot readily be
differentiated. One way around this problem (which we
employ in File S1) is to condition on the topology. Another
simplification is to expand the GF in M = 4Nm, writing
§ = Y7 M'y;. Then, each migration event leads back to
a lower-order expression, and we can again find the solu-
tion directly. This procedure is equivalent to separating
out the GF into a sum of terms, each corresponding to 0,
1, 2, ... migration events.

In comparison, it is straightforward to obtain results for
summaries of the genealogy from the GF. For instance, the
distribution of the total number of mutations X can be found
by setting all o to be the same and taking the inverse Lap-
lace transform (see File S1). Similarly, the probability of
a particular topology can be found by taking the limit of
the wg corresponding to internal branches that are incompat-
ible with this topology at infinity with all other wg evaluated
at zero. For a triplet with sampling configuration {a\b, c} this
gives

10

0.8 \

061 N {a,{bc}}

04

02 -

T (faby

00 P S S e S R S S S N V
0 1 2 3 4

Figure 1 Topological probabilities (Equation 16) for a sample of three
genes in the IM model, plotted against the scaled migration rate M for
two splitting times, 7 = 0.5 (solid lines) and T = 2 (dashed lines). The
chance of observing an incongruent genealogy with topology {c, {a, b}} or
{b, {a, c}} (bottom) increases with M, as congruent topologies {a, {b, c}}
(top) become less likely.

2M + 3 — 2¢” (14207

Plfa. {b.c}}] = lim_ 4ia\b.dll o = =57 33

Wee — ©

M + e~ (1+2M)T

Plfe.@.b})) =Plb.{a.ch] = lim_vla\b.clo=""5 5

Wpe — ©

(16)

For the case of three genes in the IM model Equation 16
yields Figure 1. Furthermore, for a given topology, {a, {b, c}}
say, one can find the distribution of the number of muta-
tions on the internal branch, P[k;.|{a, {b, c}}1, by differen-
tiating the limit in Equation 16 with respect to wp. and
setting all other wg to zero as before. Plotting these distri-
butions (Figure 2) reveals that genealogies congruent with
the sampling, i.e., with topology {a, {b, c}}, tend to have
a longer internal branch than those with incongruent topol-
ogies {b, {a, c}} or {c, {a, b}} (Figure 2A vs. 2B). This is to
be expected, given that coalescence events between lineages
sampled from the same population, in this case {b, c}, occur
relatively faster, leaving a long time t;, during which muta-
tions can occur on the internal branch. In contrast, coales-
cence events between lineages sampled from different
populations are likely to occur deeper in the past, within
the ancestral population. These new results extend previous
theory on pairwise coalescence times in the IM model
(Wilkinson-Herbots 2008; Wang and Hey 2010) to topolog-
ically informative samples. Likewise, it is straightforward
to use the GF to extend pairwise results for the IM model
beyond the two-deme case. Larger numbers of populations
(d) would be incorporated into Equation 9 by an additional
term (d — 1); e.g., the rate at which pairs of lineages in
different demes are brought together in the same population
becomes M/(d — 1).
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Recombination Between Linked Loci

The GF method readily extends to multiple linked loci. Each
individual is represented as a list, which for each locus gives
the set of genes to which it is ancestral; Figure 3 gives an
example with three loci. Suppose that we have k individuals,
carrying lineages Q = Qq, ..., Qy,

vio) = G ZNguem ) (lsigjgkwmiﬂ LN S r m)

2
a7

where w, = 25, 2_scysi—1 ¥s L.e., we need to sum the
wg leaves over both loci and individuals, R is the set of all
possible recombination events and r, is the rate of a re-
combination of type a € . The first sum on the right in
Eq. (4) is over all (’;) possible coalescences between the k
individuals. At each coalescence, the lists of genes at each
locus are merged. For example, a coalescence between
{a, p, x} and {@, q, 8} gives an ancestral lineage {a, pq,
x}, in which the second locus is now ancestral to genes p
and gq. The second sum on the right is over all possible
recombination events a € R, each resulting in a new set
of lineages Q) ,; these increase the number of lineages to
k + 1. For example, a recombination in the parent of an
individual {b, q, y}, between the first locus and the other
two, gives two ancestral lineages {b, ¢, ¢} and {g, q, y}
(Figure 3). Note that this recursion does capture the non-
Markovian nature of recombination: the distribution of coa-
lescence times at a locus depends on the genealogies at all the
other loci, not just the adjacent locus. The GF gives the joint
distribution of genealogies rather than the full ancestral re-
combination graph (which includes additional information
about which loci were carried by the ancestors).

Consider the simplest case, of two genes at two loci;
when these are in two individuals, the configuration is
denoted {a, x}, {b, y} and o, = w, + wp, + wx + 0y

A

0.02

0.00 L L n N
0 2 4 6 8 10 12

Wl{ax), (b)) = 1o (WHaboo}] + 2Nrul{a.0}. 0.5}, {b.y)

+¥[{a,x}, {b,0},{0.y}))
Wl{a, 0}, {0.x}, {b.y}] = mM{mXL {b.y} +l{a o}, {b,xy}]
+W[{ab,y}, {0.x}] + 2Nry({a,0}. {8,y},{b, 0}, {0.¥}])

Ul{a,0},{9,x},{b,0}.{8.¥}] = & +le (W[{a,x},{b, 0}, {o.y}] + ¥[{a, 0},{0,x}, {b,y}]
+ V[{ab,0},{0,x},{0,y}] + [{0.27}, {a, 0}, {b. 0}]

+Ul{a.y}, {8,x}, {b,0}] + b[{b,x}, {a, 0}, {0.¥}]).
(18)

By symmetry, we need only these three recursions, for the
cases where the four genes are distributed over two, three,
or four individuals. Note that ¢[{ab, xy}] = 1, ¥[{a, o},
{b, xy}] = ¥[{a}, {b}], and so on, connecting these two-
locus recursions to the one-locus GF.

This has the solution

Ul{a,x}, {b,y}]
2(9 4+ R+ 6Rp +R%d) + (9 + R+ 2Rb)wy, + of

" 18+ 26R + 4R2 + (27 + 19R + 2R2) ey, + (10 + 3R)0? + w}

blfa, 0}, {0,x}, {b,y}]

B 6+ (6+13R+2R?)db + (1 + (7 + 3R) ) + bw?

18+ 26R +4R2 + (27 + 19R + 2R%)wy, + (10 + 3R)wf + ]

Ul{a, 0}, {0,x}, {b,0}, {0,y}]

- 4+ (74 13R+ 2R?*) b + (8 + 3R)doy + dwf

18+ 26R +4R2 + (27 + 19R + 2R%)wy, + (10 + 3R)wf + '
19

where é=1/(14+wq+wp)+1/(1+0wr+w), and R =
2Nr. These formulas correspond to those previously
obtained by Simonsen and Churchill (1997), using a Markov
chain method. For example, the covariance of coalescence
times between two loci is

Cov|Tap, Tay| = E[TiyTap] — E[Tap)E[Tay ] (20)

which can be found straightforwardly from the GF by taking
derivatives with respect to o, and o, and evaluating at @ =
0, noting that E[T,] = E[Ty,] = 1:

Figure 2 The distribution of the number of mutations (k) on the internal branches for a sample of three genes {a, {b, c}} in the IM model with
symmetric migration 6 = 5, M = 0.8 plotted for three different splitting times T = 0 (circles, solid line), T = 2 (squares, long-dashed line), and
T = 4 (diamonds, short-dashed line). Congruent genealogies with topology {a, {b, c}} (A) tend have longer internal branches than those
with incongruent topologies {c, {a, b}} or {b, {a, c}} (B). Note that for T = 0 the distributions for the two topologies are identical as expected
in a panmictic population.
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a, p, X b,q,y

Figure 3 An example of coalescence and recombination between three
loci. At the present generation (bottom), there are two individuals: one
carries genes a, p, x and the other carries b, g, y. Lineages ancestral to the
three loci are colored black, red, and blue, respectively. This is denoted as
{{a, p, x}, {b, g, y}}. Tracing back, the most recent event is a recombination
(red dot) giving three individuals {{a, p, x}, {b, @, @}, {8, q, y}}, where @ is
the empty set. There is then another recombination event, preceded by
three coalescence events (black dots); these produce the configurations
{fa. p, 1, b, @, @}, {2, q, 8, {@, @, Y} {la, pg. 4. (b, @, 8}, {8, @, Y1}, Ha, pa, X},
{b, @, y}}; and {{ab, pg, xy}}. Recombination and coalescence events prior to
this single common ancestor do not affect the observed genealogy.

L)

This agrees with Simonsen and Churchill (1997, equation
52).

Including recombination leads to sets of coupled linear
equations, whose solution involves an unwelcome matrix
inversion. As with migration, this problem can be avoided by
expanding in powers of R, which is equivalent to summing
over histories that involve 0, 1, ... recombination events.
Moreover, these recombination events are uniformly distrib-
uted across the genetic map, and so we have a description of
the ancestry of the whole genome and not just of two linked
loci. The recursions give us the probability that there are no
recombination events, that there is one event producing two
blocks with different genealogies, that there are three events
producing three blocks of genome, and so on. This may
allow likelihoods to be calculated for short sequence blocks,
provided that R is small.

Slatkin and Pollack (2006) calculate the probabilities of
alternative topologies for genes at two loci in three com-
pletely isolated species; their recursion is essentially the
same as ours, but tracks just the distribution of topologies
rather than the full distribution of coalescence times. Since
no coalescence can occur until two of the genes are brought
together in the same ancestral population prior to the most
recent speciation event, this reduces to the case of three
linked pairs of genes in two completely isolated species. This

_ 9+R
" 94+ 13R+2R?’

21

d*y({a,x}, {b.y}]

dogdwy

Cov[Tap, Ty] = <

case can be solved by the above method, by including a rate
of population splits, A, which corresponds to the time, T,
between the two speciation events.

Drosophila melanogaster-D. simulans Divergence

To illustrate the feasibility of the GF method for inference in
practice, we applied it to both real and simulated data. We
first reanalyzed the genomic data set of Drosophila mela-
nogaster-D. simulans compiled and analyzed by Wang and
Hey (2010), using a likelihood method for pairwise samples.
The data (kindly provided by Y. Wang) consist of alignments
of 30,247 blocks of intergenic sequence of 500 bp each sam-
pled from two inbred lines of D. simulans and one inbred
line each of D. melanogaster and D. yakuba (the latter used
as an outgroup to account for mutational heterogeneity and,
in the triplet analysis, to polarize mutations). Following
Wang and Hey (2010), low-quality sequences, indels, and
positions next to indels were removed. Rather than using
the divergence to the outgroup to scale the mutation rate at
each locus (Yang 2002; Wang and Hey 2010), each locus
was trimmed after a fixed number of mutational differences
between D. yakuba and D. melanogaster. We chose a cutoff
of 16 divergent sites, which corresponds roughly to a third
of the observed mean divergence across all loci in the full
data set. A total of 2,090 loci that were below this cutoff
were excluded from the analysis. Since our method assumes
infinite-sites mutations, sites with more than two segregat-
ing states (12.9% of all polymorphic sites) were excluded.
We also filtered out shared derived mutations that were
topologically incongruent with the majority class of shared
derived mutations in each block (2.5% of all polymorphic
sites). A total of 2,016 loci, which contained equal numbers
of topologically conflicting shared derived mutations, were
excluded. The final, trimmed data set consisted of 26,141
loci. To convert scaled parameter estimates into absolute
values (N, = 6/4p, t = g2N.T), we followed Wang and Hey
(2010) and assumed that D. yakuba and D. melanogaster split
10 MYA and with a generation time per year of g = 0.1, which
gives a mutation rate per block of 8 x 1078,

Given that Wang and Hey (2010) detected a signal of
gene flow from D. simulans to D. melanogaster but not in
the reverse direction, we fitted an IM model with asymmet-
ric migration. The GF for this case can be obtained using
Equation 4 and, given that each genealogy can be affected
by only one migration event at most, is considerably simpler
than the analogous expression with symmetric migration
given by solving Equation 15 (details are provided in File
S1). To investigate the effect (in terms of bias and power) of
including a third sample and thus topology information on
parameter estimation, we performed analogous likelihood
analyses on pairwise (one sample from each of D. mela-
nogaster and D. simulans) and triplet data. To assess the
effect of removing positions that violate the infinite-sites
mutation model, we also ran a pairwise analysis on the full,
untrimmed data set. Mutational heterogeneity in this
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Table 1 Population parameters estimated for D. melanogaster-D. simulans using 26,141 loci (data from (Wang and Hey 2010)

Data set 0 (Ne) M = 4Nm T () logL

Pair, full data 1.85 (5.52 x 10°) 0.051 2.70 (2.98 x 10°) —93,466
Pair, trimmed? 1.51 (4.72 x 109) 0.093 3.34 (3.15 x 10°) —65,717
Triplet, trimmed? 1.40 (4.37 x 10°9) 0.174 3.34 (2.92 x 10°) —149,556
Pair, simulated 1.53 (4.79 x 10°) 0.098 3.24 (3.10 x 109) —65,619
Triplet, simulated 1.51 (4.72 x 108) 0.092 3.29 (3.11 x 10°) —151,483

Absolute values are in parentheses. MLEs for M and t in the pairwise analysis agree well with the results of Wang and Hey (2010) who estimated t = 3.04 and M = 0.059
(after correction for differences in scaling M). The filtering necessary to satisfy the infinite-sites model leads to a decrease in the estimate of N and an increase in M. The last
two rows show parameters estimated from data simulated using the MLE from the pairwise analysis (boldface type).

? Trimmed refers to shortening each locus to a fixed outgroup divergence and removing back mutations and topologically incongruent mutations.

analysis was incorporated by binning loci according to their
outgroup divergence and specifying mutation rate scalars for
each bin (we used 10 bins).

To speed up calculations in the triplet analysis the GF was
conditioned on the topology (by taking limits as shown in
Equation 16). Probabilities of all observed mutational
configurations were tabulated separately for each topology
class (congruent, incongruent, and topologically uninforma-
tive loci) (see File S1). Using the FindMaximum function in
Mathematica, the joint likelihood of M, T, and 6 can be
maximized very efficiently (a few seconds or minutes for
pairs or triplets, respectively). A Mathematica notebook for
this calculation is provided in File S1; scripts for preprocess-
ing input data are available from the authors on request.

Despite the fact that we are assuming an infinite-sites
mutation model [Wang and Hey (2010) used a Jukes—
Cantor (Jukes and Cantor 1969) model], the results from
the pairwise analysis on the full data (Table 1) agree well
with those obtained by Wang and Hey (2010). As expected,
our maximum-likelihood estimate (MLE) of N, (5.5 x 10°)
falls in between the N, estimates obtained by Wang and Hey
(2010, Table 7) for the ancestral population (3.1 x 106) and
D. simulans (5.9 x 10%) (note that Wang and Hey 2010 fit
a slightly more complex history with separate N, parameters
for each species). Likewise, estimates of M and T agree well
with the results of Wang and Hey (2010). The trimming of
back mutations and topologically incongruent mutations led
to a slight decrease in N, and increased estimates of M in the
pairwise analysis. This effect was more pronounced in the
triplet analysis; in particular, the MLE for M was threefold
higher than the estimate of Wang and Hey (2010) (Table 1).
Furthermore (and perhaps unexpectedly) we found no in-
crease in power in the triplet analysis (Figure 4). To inves-
tigate this further, we repeated these analyses on simulated
data generated using ms (Hudson 2002) under the IM his-
tory estimated for the two Drosophila species, i.e., using the
MLE obtained from the pairwise analysis on the trimmed
data (Table 1). In contrast to the Drosophila analyses, we
found no bias in parameter estimates and higher power to
estimate M and T in triplet compared to pairwise analyses of
these simulated data (Figure 4). This suggests that the dif-
ferences between pairwise and triplet analyses seen in the
Drosophila example result from violations of the infinite-
sites mutation model rather than from an inherent bias of
our method. An obvious interpretation is that the use of
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shared derived mutations to infer the topology at each locus
in the triplet analysis makes our method sensitive to misin-
ference of ancestral states resulting from backmutations on
the outgroup branch. In other words, mispolarized muta-
tions artificially inflate the proportion of loci with incongru-
ent topologies and hence the estimate of M. As a simple
check, we can ask what the expected frequencies of congru-
ent, incongruent, and topologically uninformative loci are
(these can be derived from the GF analogous to Equation
16; see File S1). Given the MLE for trimmed pairwise and
triplet analysis (Table 1), we expect 2.1% incongruent and
15.7% topologically uninformative loci on the basis of the
pairwise results and 2.6% incongruent and 19.3% uninfor-
mative loci on the basis of the triplet results. However, the
observed frequencies in the data set are 6.2% and 18.8% for
topologically incongruent and uninformative loci, respec-
tively. This confirms that there is an apparent (and likely
artificial) excess of incongruent topologies in the data that
explains the bias seen the triplet MLEs. While this illustrates
the problems of assuming infinite-sites mutations when
dealing with old divergence events, it is actually surprising
how little effect ignoring back mutations had in this case,
considering the large distance between in- and outgroup.

We also analyzed triplet data simulated under the re-
verse sampling scheme (two individuals from the species/
population receiving migrants). The GF for this is slightly
more complicated and is derived in File S1. The power to
estimate M in this case increases substantially when analyz-
ing triplets (Figure 4). This is expected given that most
migration events will result in incongruent genealogies with
relatively long internal branches.

Discussion

The GF framework provides a general method to derive
likelihoods under a variety of models that include migration,
changes in population structure, and recombination and
applies to arbitrary sample sizes. Here our aim is to set out
the method and show that it can be implemented for
indefinitely large numbers of loci. So, we have focused on
small samples for simplicity. Assuming that populations are
exchangeable in size and rate of migration reduces both the
number of parameters to be estimated and the number of
configurations to track. In the case of the symmetric IM
model, we do not need to distinguish the two demes, which
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Figure 4 Profile log-likelihood curves for M (left plots) and 6 (right plots) for pairwise (dashed lines) and triplet analyses (thick solid lines) calculated from
26,141 loci for D. melanogaster and D. simulans (Wang and Hey 2010) (top row) and simulated data under an IM model with migration from
D. simulans to D. melanogaster (bottom row). Analysis of the Drosophila data suggests an apparent bias of the triplet MLE of M and no improvement
in power. Comparison with data simulated under the same history (using the MLE obtained in the pairwise analysis, see Table 1) shows no bias and
tighter log-likelihood for the triplet analyses as expected. The improvement in power when adding a third individual is greater if this is sampled from the
species receiving migrants [i.e., the reverse sampling as in the Drosophila example (thin solid lines)].

halves the number of sample configurations. At the opposite
extreme, under a highly asymmetric model with unidirec-
tional migration (as in the Drosophila example above), each
lineage in the receiving population can be affected by only
a single migration event at most, which also greatly simpli-
fies the problem. More generally, although it is possible to
calculate the GF for fairly complex problems (up to six genes
in the IM model, say), it is harder to extract useful informa-
tion from it. Thus, while we can readily find the properties
of chosen summary statistics (for example, the number of
segregating sites), tabulating the probability of all observed
mutational configurations is limited by their sheer number,
rather than by the difficulty of finding the GF itself. These
computational issues are explored in File S1, using auto-
mated recursions for the IM model with three genes.

Our GF approach is more flexible than those of Wang and
Hey (2010) and Hobolth et al. (2011) in two ways. First, the
recursions for a given data set can be simplified by dropping
terms that are incompatible with the observed mutational
pattern. This strategy is closely related to importance sam-
pling schemes (e.g., Griffiths and Tavaré 1994). Thus, instead
of summing over all possible topologies, the calculation is

reduced to histories that are possible, given the data. For
a sample with a fully resolved topology, the total number of
terms is given by the number of configurations due to migra-
tion, so that for n = 4 and 6 there are only 28 and 124
configurations, respectively. Thus, solutions at least for sym-
metric cases are feasible. Second, other processes, such as
recombination or changes in population size, can easily be
incorporated into the GF framework. Since, under the IM
model, genealogies involving migration events tend to be
shorter and thus more likely to be shared between linked loci,
incorporating recombination should improve inference.
Given that species may diverge gradually in space and/or
ecology, it makes sense to model population separation as an
explicit process, rather than an instantaneous event, followed
by constant gene flow. We must distinguish here between our
GF method, which calculates an average over exponentially
distributed split times, and more general models that allow
varying rates of gene flow. We follow the IM model in
assuming that populations split abruptly and that subse-
quently, genes flow at a constant rate. Our initial assumption
of an exponential distribution of separation times (with
rate A) can be viewed either as a technical ruse to allow us
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to recover the distribution at a specific time, T, by taking an
inverse Laplace transform or, in Bayesian terms, as expressing
our prior beliefs about T. In reality, gene flow is likely to
decrease gradually as populations diverge, and we can imag-
ine a variety of models for the way rates of gene flow vary
through time. However, even with large data sets there may
be little power to detect changes in the rate of gene flow
(Becquet and Przeworski 2009); the question of whether
rates of gene flow vary across loci as a result of selection is
yet more challenging, but crucial to identifying genes respon-
sible for reproductive isolation (e.g., Machado 2002).

Yang (2010) recently introduced a model that is related
to both approaches just described. This assumes that popu-
lations separate suddenly, with no subsequent gene flow, but
that the split time varies across loci, following a beta distri-
bution—which can be regarded as an approximation to
a biologically feasible model in which migration causes var-
iation in coalescence time across loci. This is related to, but
different from, our assumption of an exponential rate, A, of
separation times. If, following Yang (2010), we assumed
exponentially distributed split times across loci, we would
fix A to find the probability of mutational configurations.
On the other hand, if we assumed a definite separation time
T, we would take the inverse Laplace transform at T and
calculate the probabilities from that. If we then averaged
the multilocus likelihood over a prior distribution of T, we
would get a quite different result from that yielded by Yang’s
(2010) procedure.

As our application to the Drosophila data demonstrates,
the GF method outlined here provides an efficient way to
calculate and maximize the joint likelihood of divergence
parameters from very many nonrecombining blocks of se-
quence for topologically informative samples. Not only do
triplet samples (as opposed to pairs) give better information
about branch lengths but also, more importantly, the joint
distribution of topologies and branch lengths provides qual-
itatively new information about historical parameters. As
our simulation example demonstrates, dependent on the
sampling scheme, this substantially increases power. Our
analytic solutions have three key advantages over previous
methods. First, the probabilities of mutational configura-
tions need to be tabulated only once, so in contrast to sim-
ulation-based methods computation time does not increase
with the number of loci and an indefinite number of loci can
be analyzed. Second, derivatives can be used to maximize
the joint log-likelihood, which greatly speeds up calcula-
tions. Thus our computation takes a fraction of the time
of, for example, an IMa analysis (Hey and Nielsen 2004)
on a handful of loci and is also more efficient than the
numerical method of Wang and Hey (2010) (Y. Wang, per-
sonal communication). Finally, the GF method allows us to
separate topology and branch length information, which
provides a way to incorporate additional sources of informa-
tion. For example, topology information contained in the
patterns of shared derived indels could be included without
the need to model indel evolution explicitly.
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In practice, however, our method is currently limited to
the infinite-sites mutation model and thus can deal with
only relatively recent divergence events for which close
outgroups are available. However, it is encouraging how
small the bias resulting from assuming infinite-sites muta-
tions is in the Drosophila example, despite the considerable
divergence of the outgroup. Fortunately, researchers are
commonly interested in fitting IM histories to sister taxa or
populations that have diverged much more recently than the
Drosophila species analyzed here (and for which more
closely related outgroups are available). The use of multiple
outgroups to correct for misinferred ancestral states should
also help to overcome this problem. Another limitation is
that the GF can be used to find exact solutions only if the
number of mutations per genealogical branch is relatively
small (e.g., the most diverse locus in the trimmed Drosophila
data set contained 26 mutations). For much larger numbers
of mutations per block, numerical calculations, which in-
volve finding the coefficients in a series expansion, become
unfeasible. Although it may be possible to use a Gaussian
approximation in this case, the assumption of no recombi-
nation within blocks restricts our and related methods
(Hey and Nielsen 2004; Wang and Hey 2010) to short
blocks of sequence anyway, so this may not be relevant in
practice.

Implementing efficient inference schemes for biologically
realistic histories clearly requires further work. For instance,
it would be worthwhile to extend our inference scheme to
the general IM model (i.e., allowing for asymmetric migra-
tion in both directions and different population sizes) and
more realistic mutation models and incorporate recombina-
tion explicitly. In contrast, the catastrophic increase of pos-
sible sample and mutational configurations with the number
of individuals frustrates full results for large numbers of
individuals. Nevertheless, full results for small but topolog-
ically informative samples under a range of models of struc-
ture and history should be of considerable interest for at
least three reasons: first, although thorough investigations
of the trade-offs of various sampling schemes are lacking, it
is clear that in general replication across loci is far more
profitable than analyzing a few loci sampled from a large
number of individuals (Felsenstein 1992; Li and Durbin
2011). Second, minimal sampling in terms of individuals
reflects the practical limitations of current sequencing tech-
nologies. While massively paralleled sequencing has made it
affordable to sequence small numbers of genomes in any
organism, obtaining multilocus sequence data for many indi-
viduals remains challenging in nonmodel organisms. Finally,
under a wide range of models of population structure, large
samples quickly coalesce down to a few lineages that dom-
inate their genealogical history, allowing a separation of
timescales to be applied (Wakeley 2009). Thus, we envisage
that new analytic solutions of simple cases, such as those
derived here for the total number of mutations and topolog-
ical probabilities of triplets under the IM model, will provide
a guide to the development of approximate methods



(involving importance sampling and summary statistics)
with wide applicability.
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Supplementary Information

It is easiest to view thisdocument in Mathematica or MathPlayer (available as a freedownload at http:// www. wolfram.com/ producs/ -
player/).

1. Automation for the IM model: Three genes in two demes

m 1.1 Setup

o Notation
Lineages arelabelled by the set of genes to which they are ancestral. Thus, lineages at thetips are ancestral to a singlegene, and are
labelled{a}, {b}, .... Ademecontaininglineages{b} and{c} isdenoted{{b}, {c}}, and two demes- onecontaining lineage{ a}
andtheother containing{b} and{c} -isdenoted {{{a}}, {{b}, {c}}}.|fpopulationscan split, wealso need to definetheancestry of
thedemesin asimilarway. {{x}, {y}} denotestwodemes, ancestral tothepresent-daydemes x and y. Thesingleancestral demethat

existed before the split is denoted {{x, y}}. Notethat a singlelineage must be ancestral to every gene, and a single deme must be

ancestral to every present-day deme. Thus, thecontent of theliststhat definethe genealogy and the population phylogeny staysthesame
- onlythenesting changes.

Thegenerating function hastheform GF[ w, {{{a}}, {{b}, {c}}}, M, {{x}, {y}}, A]. w[{a}] correspondstobranch{a},
whichisancestraltoa; A[{x, y}]isthesplit rateof population{x, y}.M =4 N m isthescaled migration rate

In thetext, thisisdenoted morecompactlyas [ a, b\ c].tidyNotation[y] gives somethinglikethis notation, to maketheoutput more
readable.

o Solving the recursions

This procedureis simple, but not very efficient given that it does not exploit all the symmetries, which can drastically reducethe number of
equations needed. However, this part isextremelyfast relativeto later steps.

makeAllEgns automatestherecursionsfor thelM model. Hereweassumea sampling configuartion {a/ b,c}.

egs = nakeA | Egns [GF[w, {{{a}}, {{b}, {c}}}, M, {{X}, {Yy}}, Al]; vars = GetVars[egs]

f
B

AANAAAAARA R
g

{{{a}, {b, c3}}, M {{x, y}}, A], GFlo, {{{b}, {a c}}}, M {{X, y}}, Al
{{{c}, {a, b}I}, M {{x, y3}}, Al, GFlw, {{{a}, {b}, {c}}}, M {{X, y}} Al
{3, {{a}, {b, 13} M {{x}, {y}}, Al Glo, {{}, {{b}, {a, ¢}}}, M {{x}, {y}}, Al
{3, {{eh {a, b33 M {{x}, {y}}, Al Glo, {{}, {{a}, {b}, {c}}}, M {{x}, {y}} Al
{{{a}}, {{b, c}}}, M {{x}, {y}}, 2], Glu, {{{a}}, {{b}, {C}}}, M {{x}, {y}}, Al
{{{b}}, {{a, ¢33}, M {{x}, {y}}, A}, GFlo, {{{b}}, {{a}, {c}}}, M {{x}, {y}}, Al

c (e} ({a b3y Mo{{X}, {y}) Al Gle, {{{c}}, {{a}, {b}}}, M {{x}, {y}}, Al

] [

]

g EEEE

=

{{{a, b3}, {{c}}}, M {{x}, {y}} Al w, {{{a, ¢}}, {{b}}}, M {{x}, {y}}, Al
{{{b, ¢}}, {{a}}}, M {{X}, {y}}, & [w, {{{a}, {b}}, {{c}}}, M {{x}, {y}}, Al
{{{a}, {c}} {{b}}}, M {{x}, {y}}, Al, Glw, {{{a}, {b, €}}, 3}, M {{x}, {y}}, AL,
{{{b}, {c}}, {{a}}}, M {{x}, {y}}, al, Glw, {{{b}, {a, c}}, 3} M {{x}, {y}}, AL,
{{{c}, {a, b}}, {31 M {{x}, {y}}, Al GFlo, {{{a}, {b}, {c}}, 3} M {{x}, {y}}, A}

Next, we choosethoseequationsthat involve 1 deme, and solvethem. First/ @eqgsl liststhe GF[] that weneed to solvefor:

s egtEE
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egsl = sel ect Egns [egs, {1, Al }1;
solnl = Solve[egsl, First /@ eqsl][[1]]

1

{G:[w, {{{a}, {b, c}}}, M {{X, y}}, A]>- ;
-1-wl{a}]-wl{b, c}]

1
Glw, {{{b}, {a, c}}}h M {{X, y}}, A]> - ,
-1-wl{b}]-w[{a, c}]

1

Glw, {{{c}, {a, b}}}, M {{X, y}}, A] >~ .
-l1-wl{c}]-wl{a, b}]

Glw, {{{a}, {b}, {c}}}, M {{X, y}}, A]~
/((B+wl{a}] +w[{b}]+w[{c}]) A+wl[{c}]+wl[{a, b}]))-
/(Brwl{al] +w[{b}]+wl{c}]) (-1-w[{b}]-w[{a, c}])) -
1/(@B+wl{a}]l+wl{b}]+w[{c}]) (-1-w[{a}]-w[{b, c}])) }
Wethen choosethosethat involve2 genesin 2 demes:
eqs2 = sel ect Egns [egs, {2, 2}1;
sol n2 = Sol ve [egs2, First /@ eqs2][11;

Thisneedsto besimplified, by using the solutionsfor all the 1-demecases (stored in soln1). Thisisthesolution for all configurationswith
two genesin two demes. Notethat thisisinefficient: thereare 12 configurationsin general, but only threekinds for the symmetric model
(whereboth demes haveequal popultaion sizeand migration is symmetric) - thegenes can bein thesamedemeor different demes.

Thesearethesolutions for two geneswith two demes, given in the"tidy notation™. v, [ta), (b, c}] denotesan empty deme, and ademe
containingtwo lineages- oneancestralto{a}, theotherto{b, c}.
soln2Sinp =soln2 /. solnl // Sinplify;
soln2Sinp /. tidyNotation [¢] /. {wix_,y 31> @L = Qouplement [{a. b, c}. tx,y3]+ Aexy, vy > A} /7 Sinplify
{d/(}’{{a}y{byc}}%(M+A+2MA+A2+(1+M+2A) 0.)|_+LUL2)/
((1+w|_) (M+A+2 MA+A2+ (1+2M+2 1) w|_+wL2>>, d/(},{{b},{a,c}}9
<M+A+2 MA+AZ+ (1+M+22) mL+wE)/ ((l+a)|_) (M+A+2 MA+ A2+ 1+2 M+2A) w|_+a)E>>,
w{}'{{c}’{a’b}}a(M+A+2MA+A2+(1+M+2A) w|_+wL2)/
((l+w|_) (M+A+2 MA+AZ+ (1+2 M+2A) wL+w|_2)), W{{a)},{{b,c}}%
<M+A+2 MA + A%+ (M+ A) w._)/ ((1+w|_) (M+A+2 MA+AZ+ (1+2M+2A) w|_+wL2)>,
Lﬁ{{b}}'“avc}}%(M+A+2 MA+A2+(M+A) a)|_>/
((1+w|_) (M+A+2 MA+AZ+ (1+2 M+2A) w|_+a)E>>, W{(c}},{{a,b}}*
<M+A+2 MA+ A2+ (M+A) wL)/ ((l+u)|_) (M+A+2 MA+AZ+ (1+2M+24) w|_+wL2)>,
w{{a,b}},((c}}%(M*'A*'z MA+A2+(M+A) (J)|_>/
<(1+w|_) (M+A+2 MA+AZ+ (1+2M+2 1) w|_+wf>>, d/{{a,c}),{{b}}*
<M+A+2 MA+ A%+ (M+A) wL)/<(1+a)|_) (M+A+2 MA+AZ+ (1+2 M+2 M) wL+wE)>,
W{{byc}}’{{a})%(M+A+2 MA+ A2+ (M+A) a)L)/
((1+w|_) (M+A+2 MA+ A%+ 1+2 M+2A) wL+wE>>, df{{a},{b,c}},{}ﬁ
<M+A+2 MA+A2+ (1+M+22) w|_+wf)/ ((l+w|_) (M+A+2 MA+ A2+ 1+2 M+2A) w|_+wf>>,
w{{b}’{a’c}}’”e<M+A+2MA+A2+(1+M+2A) u)|_+wf)/
<(l+w|_) (M+A+2 MA+AZ+ (1+2 M+2A) wL+wE)), W{{c),{a,b}},(}%
(M+a+2MA+AZ+ (1+M+20) oo +0f)/ (L+w) (MeA+2MA+AZ+ (1+2M+24) w +ol))}

Wehaverewritten thisin termsof w_, which refersto thesum of thew's for thetwo lineagesinvolved.

Now wesolvefor 3 genesin two demes:
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eqs3 = sel ect Egns [egs, {2, 3}1;
sol n3 = Sol ve [eqs3, First /@ eqs3]1[11;
sol n3S np = sol n3 /. sol nl /. sol n2S np;

As a check, if weset w—0, theGFisalways 1, independent of A:
soln3Snp /. {w[_1-0}//Snplify

{Glo, {{}, {{a}, {b}, {c}}}, M {{x}, {y}}, A]l=>1,
Glo, {{{a}}, {{b}, {c}}}y M {{X}, {y1}}, A]l~->1, GFlw, {{{b}}, {{a}, {c}}}, M {{x}, {y}} A]l=1,
Glo, {{{c}}, {{a}, {b}}} M {{X}, {y}}, A]l~-1, GFlo, {{{a}, {b}}, {{c}}}, M {{x}, {y}} A]l=1,
Glo, {{{a}, {€}}, {{b}}}, M {{X}, {¥y}}, A]l~>1, GFlw, {{{b}, {c}}, {{a}}}, M {{x}, {y}} A]-1,
Glw, {{{a}, (b}, {c}}, (3}, M {{x}, {y}}, A]->1}

m 1.2 Sumariesfor exponentially distributed split times

o The total length of the genealogy

Arelatively simpleexpression can beobtained for thedistribution of total length of thegenealogy, T =t 4y +t;, + ...,foragiven A by
setting all thewtobethesame, sothat y = E[ exp( —wT)]
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ss=so0ln3Sinp /. w[_]-w/ tidyNotation[¢]/. Arxy yy>A//Snplify

(Vo ftan b)eyp 2 (%45 2% 142 w) + 22 (7436 w+370?)+6w (146 w+1l 0?+6 0%+
A(3+32w+85w?+60 w3)+ M (3+4A%+9w+6w?+2 A (4+T w))+
M(423+12% (14427 w)+ A (183+56 w+53 w?)+3 (1+7 w+14 w?+8 w?)))/

(l+w) @+2w) M+A+2MA+AZ+20+4Mw+4d A w4 w?)
(3+42+12 w+9w?+A (4+6w)+M(B3+2A+6w))),

Uitayy, ({b}cy) = (M (3+4A0%+90w+Bw?+2n (447 w))+
M<4A3+3(1+w) A+2w?2+A% 14+28w)+A (13+46 w+ 37 a)2>>+
A <A3+A2 (5+8 w) +A (7+26 w+ 21 w2)+3(1+6 w+11 w? +6 w3)))/

(l+w) @+2w) M+A+2MA+A2+20+4 Muw+4d A w+4d w?)
(3+A2+12w+9w?+A (4+6wW)+M(B+21+6w))),

Yiio1}, ccay, ey 2 (M2 (3+4A2+9w+6 w2+2 A (447 w))+
M(423+3 (1+w) 1+2w)?+A% (14+28w)+A (13+46 w+37 w?))+
A(A%+A? (5B+8w)+A (7T+26w+21 w?)+3 (146 w+11 w?+6 w?)))/

(l+w) @+2w) M+A+2MA+A2+20+4 Mu+4d A w+4d w?)
(3+A2+12 W+9w?+A (4+6 W) +M@B+2A+6 w))),

Uiteny, {ran (o]} > (M (3+4 2%+ 90w+6w?+2n (447 w))+
M(42%3+3 L+w) 1+2w)?+n% (14+28w)+n (13+46 w+37 w?))+
A(A%+A% (5B+8w)+n (7T+26 w+21 w?)+3 (146 w+1l w?+6 w?)))/

(Q+w) @+2w) M+A+2MA+AZ+20+4Mw+4d A w4 w?)
(3+42+12 w+9w?+A (4+6w)+M(B3+2A+6w))),

Utay, (o]}, (e = (MP (3442249060220 (447 w))+
M<4A3+3(1+w) A+2w?2+A% 14+28w)+A (13+46 w+ 37 w2>>+
A <A3+A2 (5+8 w) +A (7+26 w+ 21 w2)+3(1+6 w+11 w? +6 w3)))/

(l+w) @+2w) M+A+2MA+A2+20+4 Mu+4d A w+4d w?)
(3+22+12w+9w?+A (4+6w)+M(B+2A+6w))),

w({a},{c}},{{b}}% (M2 (3+4A2+9w+6 w2+ 2 A (4+7 w))+
M(423+3 (1+w) 1+2w)?+A% (14+23w)+1 (13+46 w+37 w?))+
A(A%+A? (5B+8w)+A (7T+26w+21 w?)+3 (146 w+11 w?+6 w?)))/

(l+w) @+2w) M+A+2MA+A2+20+4 Muw+4d A w+4d w?)
(3+A2+12 W+9w?+A (4+6 W)+ M@B+2A+6 w))),

U(b). (c1) ciap = (M (3444249060220 (447 w))+
M(42%3+3 L+w) 1+2w)?+n% (14+28w)+n (13+46 w+37 w?))+
A(A%+A? (5B+8w)+n (T+26 w+21 w?)+3 (146 w+11 w?+6 w?)))/

(Q+w) @+2w) M+A+2MA+AZ+20+4Mw+4d A w4 w?)
(3+A2+12 w+9w?+A (4+6w)+M(B3+2A+6w))),

Uitay (b er = (A7 +5 8% 1+2w)+ 02 (7436 w+37 w?)+6w (146 w+1l w?+60°)+
A (3+32w+85 w? + 60 w3)+M2 (3+4A2+9w+6 w2+ 2 A (447 w)) +
M(4A%+A2% (14427 w)+n (183456 w+53w?)+3 (1+7 w+14 w?+8w?)))/

(l+w) @+2w) M+A+2MA+A2+20+4 Muw+4d A w+4d w?)
(3+A2+12 w+9w?+ A (4+6w)+M(B3+21+6w)))}
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Thesearethevariablesin themorecompact notation:
vars = Get Vars [sol n3Sinp] /. tidyNotation [¢]
(U0, (car (o). (1) Yicary {{b) te)r ¥{{b}]. (qar ey Yiiey), {tay. {b)}r
Uiy, (b)), tteryr Yicar o (b)) ¥((b), (e1] tanys Y(ca, (b}, (c1}. )

Weonly haveto worry about two kinds of configuration. For threegenesin thesamedeme, A makesno difference:

Take [vars, 2] /.ss/. M>0// Snplify

{

Thedistribution does depend on M when A=0:

1 A

J

1+3w+202 (Q+w) A+2w) (A+2w)

Take [vars, 2]/.ss/. A-»0//Snplify

{((M+M+4Mw+20 1+3w))/((1+M+40w+2Mu+30?) (M+4Mw+20 (1+2w))),
M@L+M+2w)/ (1+M+4w+2Muw+30w?) M+4Mu+2w (1+2w))}

However, themean length of the genealogy for threegenesin thesamedemeisindependent of M for A =0- an extension of theresult for
two genes. Thisisthefull expression for mean length asafunction of A and M:

mL = (-D[# /. sS, w] & /@ Take [vars, 2]) /. w-»0// Snplify

{ )

o # of segregating sites

3@A+A) (2M+A) (1+A) (2+6 M+3 A1)

MiA+2MA+AZ M+A+2 MA+ A2

X
Theprobabilitythat thereare X segregatingsitesin total is E[ e ¢ t/ 219—;@ .
Thisgivesthedistribution of # of segregating sites, for M=0.6, 6=1, A=0.7 (threegenesin thesamedeme). Recall that A istherateof splits
in scaledtime: weareassumingthat T isexponentiallydistributed with mean 1/ A.

cc = (oefficientList [Series[vars[1] /. ss/. {A 0.7,

M->06, w->1/2 - x}, {x, 0, 15}1, x1 (1/2)”" (Range [0, 15]);
Bar Chart [cc ]
{cc, Total [cc]}

0.25

0.157

0.107

Hﬂﬁmﬁﬁ

{{0. 28869, 0.253114, 0.176776, 0.11377, 0.0700139, 0.0417864, 0.0243667, 0.0139495, 0. 00786732,
0. 00438275, 0.00241661, 0.00132101, 0.000716804, 0.000386489, 0.000207243, 0.000110592}, 0.999876 }

m 1.3 Sumariesfor specific T
o The total length of the genealogy

Wecan get expressionsdirectlyin termsof thesplit timebytakingthe LT wrt A:
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il T = I nverseLapl aceTransform[A'l Take [vars, 2] /. SS, A, T] // Snplify;

Thisisthemean length of thegenealogyin thelM model with threegenes, with sampling configurations{a/ b,c} and {a,b,c/ ¢}:

m =FullSnplify [-D[ilT, w]l/. w-0, T>0]

2lri2aMen1eaMm | T 1
{[3e2( ) [12M+\/1+4M24ez

1
eV 1+4M T (1+2M+\/1+4 MZ) / [2\/1+4M2 J e
2 MA/1+4 M

2 1+2M+\/1+4M2]T 1 [1+2M+\/1+4M2]T
ez[ [22\/1+4M2+4ez 1+3MA/1+4 M +
3M[1+2M—\/1+4M2 ]-J““MZ T (2 (1+\/1+4 M? )+3M(1+2M+\/1+4 M2 ))

This shows how the expected length depends on M, for two different diveregencetimes T=0.3, 1 (red, blue)

Pot [{mm /. {T->0.3}, m /. {T > 1}}, {M 0, 123},
PotSyle » {Red, Blue}, AxesLabel - {"M', "E[L]"}]

40+
351

T S S E S S V'
2 4 6 8 10 12

o # of segregating sites

This showstheprobability distribution for thetotal number of segrating sitesXfor T = 2, M=0.6and §=1.

142 M/ 1+4 M? ) T
A/1+4 M2

J
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1 1 \Range [0, 20]
ccT = Qoeffi ci ent Li st [Series[ilT[[z]] /. {T->2, M-0.6, w-— -x}, {x, 0, 20}], x] (—) :
2 2

Bar Chart [ccT]
{ccT, Total [ccT]}

0.20

o
[
[S)

0.05

i

{{O. 100361, 0.17422, 0.197747, 0.177302, 0.13472, 0.0906167, 0.0557276, 0.0321221, 0.0176861,
0. 0094335, 0.00492414, 0.00253334, 0.00129083, 0.000653541, 0. 000329491, 0. 000165655,
0. 0000831307, 0.0000416664, 0.0000208673, 0.0000104435, 5.23015 x10-° } 0. 999995}

Thisshowstheprobabilityof 0, 1,...,20 mutationsasafunction of T; M = 0.6, 6 = 1.

1 1 \Range [0, 20]
ccT2 = Qoeffi ci ent Li st [Series[iIT[[Z]] /. {M-»O.G, w-> = -x}, {x, 0, 20}], x] (—]
2 2

Aot [ccT2, {T, 0, 4}]

o Topological probabilities

The probability of a particular topology can be found from the LP by taking thelimit of the dummy variables corresponding to internal
branchesincompatiblewith that topology. For example, to find the probability of a topology {a/ b,c} wetakethelimit of w,, and wy at

infinityand set all other wto zero.
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{probt opab =
(Limt [soln3Snp[2, 2] /. {w[{a, c}] > Z a, w[{b, cC}]>2Z, A[_]1>A}, Z>»]/. w[_]1-0)//
Snplify, probtopac =
(Limt [soln3Sinp[2, 2] /. {w[{a, b}]1 >z a, w[{b, c}] >z, A[_]1>A}, Z>w®]/. w[_]-0)//
Snplify,
probtopbc = (Limt [sol n3S np[2, 2] /. {w[{a, b}] > 2z a, w[{a, C}]>2Z, A[_]1> A}, Z > o]/.
w[_1-0)//Snplify}

2 M+ A 2 M+ A 3+2 M+ A

{3+6 M+3A 3+6M+3A 346 M+3A}

Theabovesum to oneasthey should. For a specifictimeweneedto takethel LT of theaboveand divideby A:

{probab = | nver seLapl aceTransform[probtopab / A, A, T],
probac = | nver seLapl aceTransform[probtopac / A, A, T],
probbc = I nverselLapl aceTransf orm[probtopbc / A, A, T]}

“(1+2M) T oM e (1+2M T 2 M 2 e (1+2M T 3+2 M

e
+ , + , - +
{3(1+2M) 3@d+2M) 3@2+2M 3@1+2M 31+2M 3(1+2M)}

This plots topological probabilities for a triplet with sampling configuration {a/b,c} in the symmetric IM model against the scaled
migration rateM for two splitting time, T=0.5 (solid lines) and T=2 (dashed lines). The chance of observing an incongruent genealogy
{c{a,b}} or {b{a,c}} (below) increaseswith M as congruent topologies{a,{b,c}} (above) becomelesslikely.
P ot [{{probab, probbc} /. T -> 0.5, {probab, probbc} /. T -> 2},
{M, 0, 43}, PotRange -> {{0, 4}, {0, 1}}, AxesLabel - {"M', "P"},
M otSyle - {{Absol uteThickness[1], G ayLevel [0]},
{Absol ut eThi ckness [1], GayLevel [0], Absol utebDashing [{5, 1, 5}1}}]

P
10

0.2 .

0.0 S S S S S S U R V'
1 2 3 4

For samplestaken from thesamedeme, thetopologies havethesameprobability as expected.

{(Limt [soln3S np[l, 2] /. {w[{a, C}]1 > 2Z a, w[{b, c}]1>»2Z, A[_]> A}, Z5o]/. w[_1-0)//
Snplify,
(Limt [soln3S np[1, 2] /. {w[{a, b}] > Z a, w[{b, c}]>2, A[_]1>A}, Z>»]/. w[_]1-0)//
Snplify,
(Limt [soln3Snp[l, 2] /. {w[{a, b}1>Z a, w[{a, c}]>2Z, A[_]1>A}, Z>®]/. w[_]1-0)//
Snplify}

{1 1 1}
3 3 3

o The # of mutations on the internal branch for a given topology

To find the GF for a particular internal branch conditional on a topology, wetakethelimit of the winconsistent with this topology at
infinityand again set wcorrespondingto external branchesto zero. For branches{a,b} and {b,c} wehave:
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IinBol Gen2denab = Limt [sol n3Snp[2, 2] /. {w[{a, C}] > Z a, w[{b, C}] > 2, A[_]1- A}, Z - »];
|'i nBol Gen2dengab = | i nSol Gen2denab //. {w[{a, b}] » wAB, w[_]-> w}// Snplify;
IinBol Gen2denbc = Limt [sol n3S np[2, 2] /. {w[{a, b}] >z a, w[{a, C}]>»2, A[_] > A}, Z - ];
| i nBol Gen2den2bc = |i nBol Gen2denbc //. {w[{b, c}] » wBC, w[_]-» w}// Snplify;

Tocondition on particular time, wetakethelLT at T.

iltab = | nver seLapl aceTr ansf orm[A'1 |'i nSol Gen2den®ab, A, T] /7 Snplify;
iltbc = I nverselLapl aceTransform[A'l |'i nSol Gen2dentbc, A, T] /7 Snplify;

km= 12;
clab =

Table[List [Table[i, (i, 0, kmy], CoefficientList [Series[iltab /. {w—»O, wAB:>E - yAB, M—»O.B},
2
5 i
(yAB, 0, km}], yAB] Table[(;) , i, 0, km}] /1 Chop] // Thread, (T, O, 4, 2}];

5
cl bc =Tab|e[Li st [Table[i, {i, 0, km}], QoefficientList [Series[iltbc /. {w—>0, wBC: > — - yBC,
2

5Yi
M->0.8}, {yBC, 0, km}], yBc] Table[(—] 4,0, km}] // Chop] // Thread, (T, 0, 4, 2}];
2
This shows the distribution of the number of mutations on internal the branch {bc} (corresponding to a topology congruent with the
sampling configuration) for 6=5, M=0.8 for threedifferent splittingtimes T =0 (circles), T =2 (squares), T =4 (diamonds):
ListP ot [{clbc[1], clbc[2], clbc[31}, PotRange - {{0, 12.1}, {0, 0.1}}, P otJoined -» True,
Mesh - All, P ot Markers » {Autonati c, Medium}, MeshSyle » {GaylLevel [0]}, AxesLabel - {"S", "P"},
P otStyle » {{Absol uteThi ckness [1], G ayLevel [0]}, {Absol uteThi ckness[1], GaylLevel [0],
Absol uteDashing [{7, 2, 7}]1}, {Absol uteThi ckness[1], GayLevel [0], Absol uteDashing [{3, 3, 3}1}}]

This shows thedistribution of thenumber of mutations on internal the branch {a,b} for 6=5, M=0.8 for three different splitting times T=0
(circles), T=2 (squares), T=4 (diamonds):
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ListPlot [{clab[l], clab[2], clab[3]}, P otRange - {{0, 12.1}, {0, 0.1}}, P otJoined - True,
Mesh -» All, PlotMarkers » {Autonatic, Medium}, MeshSyle -» {GaylLevel [0]}, AxesLabel -» {"S", "P"},
P otStyle » {{Absol uteThi ckness [1], G aylLevel [0]}, {Absol uteThi ckness[1], GaylLevel [0],

Absol utebashing [{7, 2, 7}]1}, {Absol uteThi ckness[1], GayLevel [0], Absol utebDashing [{3, 3, 3}]1}}]

0.04

0.02

0.00

m 1.4 Full results
o Probabilities of mutational configurations for a given topology with exponentially distributed split times

So far, we have derived results for thetotal number of segregating sites, by replacing all the branch-specific wg by a singlew. Now, weturn
to the harder problem of finding thejoint probabilities of specific configurations of mutations. This can be doneby realising that the GF
must bea sum of threeterms, each corresponding to a different topology. We obtain the GFfor a spcific topology explicitly - both for fixed A
and for a specific split time, T. When we seean informativemutation (i.e. one shared by two of theleaves), we can just usethese expres-
sionsto calculatelikelihoods. If weonly seesingletons, wemust sum over all threetopologies.

Supposethat weobserveat least one{a, b} mutation. Then, wecan deleteanytermsthat depend on W p c) OFWa ¢} Thesimplest

waytodothisistoset anytermswiththesein thedenominator to zero. Wejust do this for threegeneswith sampling configuration {a/ b,c}
by taking thesecond row of soln3Simp:

soln3S np[2, 2] /. {A[_1-0.7, M- 0.6} /.
aa aa aa aa

{ 1> 0, 1> 0, 1> 0, — :>0};
bb  -w[{b, c}] bb  -w[{a, c}] bb  +w[{b, Cc}] bb  +w[{a, c}]

This method fails it mistakenly deletes terms that have w[{a, c}] or w[{b, c}] in the numerator as well as the denominator.
Mathematica'sbuilt in Limit][...] function givestheright answer - and without theneed to specify A or M:

linBol Gen = Limt [soln3Snp[2, 2] /. {w[{a, C}] »Z a, w[{b, C}]>»>2, A[_]-> A}, Z - »];
linBol Gn2 =lingol Gen //. {w[{a}] » wS- w[{b}] - w[{C}], w[{a, b}] » wAB-w[{Cc}]}// Snplify;
Necessarily, theremaining terms depend onlyon ws = wja) + W) + Wy ANAON wag = W4 b} + @ ¢}, Which correspond to the

number of mutationsin theintervals before and after the coalescence of the a and b lineages. The table shows their joint probability
distribution obtained by invertingw.r.t. wg (toptobottom) and w, g (l€ft toright). In thisexample, A=0.7, M = 0.6 and 6=1.
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1 1
Qoef fi ci ent Li st [Series[linﬁol @n2 /. {A 0.7, M- 0.6} /. {wS:—>— -yS, wAB» — _yAB}, {yS, 0, kmy,
2 2

1 i+
{yAB, 0, km}], {yS, yAB}] Table[(;) , {i, 0, km}, {j, O, km}] // Chop; cl /7 MatrixForm

0. 0905292

0. 0314364

0. 00831566

0.00198247
0. 000448601
0. 0000985425
0. 0000212579
4,53323x10°6
9.59436 x 107
2.02042 x 107
4.24028 x10-8

0. 0359305
0. 0125158
0. 00331877
0. 000792698
0. 000179639
0. 0000395058
8. 52985 x 106
1.82022 x10-6
3.85443x 107
8. 12006 x 108
1. 70469 x 108

0. 0139067
0. 0048477
0. 00128632
0. 000307428
0. 0000697056
0. 0000153364

3.31257 x10-©
7.07099 x 107
1. 49769 x 107
3.15578 x10-8
6. 62609 x 10-°

0. 00527662
0. 00183919
0. 00048805
0. 00011666
0. 0000264559
5.8218 x10-6
1. 25769 x 10-©
2.68507 x10-7
5. 68794 x 10-8
1.19863 x10-8
2.51695 x10-°

0. 00197083

0. 000686699

0. 000182197
0. 0000435501
9. 87661 x 10-°
2.17358 x10-©
4.69602 x 107
1. 00265 x 10~
2.12413x10-8
4. 47651 x10-°
9. 40055 x 1010

{Total [First /@ cl ], probtopac /. {ao - 0.7, M->0.6}, Total [Total [cl 11}

{0. 132838, 0.218391, 0.218387}

o Probabilities of mutational configurations for a given topology with a specific T

ilt = InverselLapl aceTransform[A‘l |'i nBol Gen2, A, T] // Snplify;

ilt /. {wS-> ws, wWAB - wpap}//.

0. 000726866

0. 000253161
0. 0000671558
0. 0000160508
3. 64009 x 10-©
8.01111 x 10~
1.73089 x 107
3.69582 x 10-8
7. 83007 x10-°
1. 65023 x 109
3. 46558 x 1010

{w/1+4 M+ 16 M > a, 1+8 M+'\/1+64 M2 +2 wpg 2B, \/1+64 M? -w};

0. 00026533
0. 000092376
0. 0000244991
5. 8551 x 10~
1. 32782 x 10~
2.9223 %10
6.31414 <10~
1. 34826 x 10~
2. 85656 x 10~
6. 02058 x 10~*
1.2644 %1071

Notethat thefirst column representstheprobability that thereisno{a, b} mutation - contrarytotheassumption. It should bedeleted. If
itisincluded, then thetotal is equal to theprobability of an ab topology, as expected.

Now, wetry doing the samefor a specific timerather than a specific A. That requires that we keep the expressions as functions of A and
then taketheinverse Laplacetransform. Theexpression is ugly, but not too large. Notethat thefull GFis obtained just by summingthe

two other termsfor thetwo other possibletopologies:
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km= 10;

1 1
cl = QoefficientlList [Series[ilt /. {wS:>— -VyS, wAB:>— -yAB, M- 0.6, T->2}, {yS, 0, kmj},
2 2
1 i+
{yAB, 0, km}], {yS, yAB}] Table[ - , {i, 0, km}, {j, O, km}] // Chop; cl // Tabl eForm
2

. 0577467 0305081 0. 0134862

. 0284365 0134435 0. 00544754

0. 0. 00524047 0. 00188228 0. 000648139 0. 00021878

0. 0. 00200202 0. 00069707 0. 000236416 0. 0000792902

. 0102248 0. 00434233 0. 00163887 0. 000578277 0. 000197283 0. 0000663165 0. 0000221659

. 00302825 0. 00118388 0. 000425197 0. 000146215 0. 0000493046  0.0000164978  5.50554 x10-6
. 000764908 0. 000282339 0. 0000982776 0. 0000333009 0. 000011162 3.72691 x10-®  1.24287 x 1076
. 000168863 0. 000060004 0.0000204992 6.89109x10-¢ 2.30303x10-% 7.68233x10°7 2.56125 x10-7
. 0000333213 0.0000115524  3.90397 x10°6 1.30693x10°® 4.36171x10 7 1.45435x10° 7 4.84831 x10°8
.0019x10°6  2.0484 x10°6 6.87933x10°7 2.29804 x10~7 7.66445x10°8 2.55489x10-8 8.52027 x10-°
. 00605 x10-® 3.39987 x10-7 1.13782x10°7 3.79666 x10°8 1.266 x10-8 4.21899x10°° 1.43155x10°°
1.59682 x10-7 5.36385 x10°8 1.79163x10°8 5.97454 x10°° 1.99449x10-° 6.56397 x10-10 2.41574 x10-1°
2.43645 x10-8 8.15498 x10-° 2.72118 x10-° 9.05399x10-1° 3.0696 x10-1° 0 1. 59591 x10-10

P O O O O O O O o

Again, thefirst column representsthe probability that thereisno {a, b} mutation - contrarytotheassumption. Ifit isincluded, then
thetotal istheprobability of an ab topology as expected.

{Total [Total [cl 1], probab /. {(M-0.6, T - 2}}
{0. 183676, 0.183678}

o The # of singletons when there are no informative mutations

This shows the distribution of the # of singletons for triplets with sampling configurations {a,b,c/ @} (i.e. all samples from the same
deme)(left plot) and {a/ b,c} (right plot). We assumethat thereareno mutations on internal branches (i.e., ancestral to two genes) by
setting w; _  to thescaled mutation rate6/ 2. Wehavechosen specific values §=1, M=0.6, A=0.7.

1
(si ngl etons = sol n3S np /. tidyNotation [¢] /. {w{ . 32—, A 507, M-»0.6});
o S =

{si ngl =
1 1 \Renge [0, 20]
Qoef fi ci ent Li st [Series[si ngletons[1, 27 /. wi_}i>T -y 1Y 0, 20}], y] [—) ,
B 2 2

1
sing2 = efficientList [Series[si ngletons[2, 2] /. wi_yi>T =Y 1Y o, 20}], y]
- 2

1 \Range [0, 20]
- } // Tabl eForm
2

0. 28869 0. 176037 0. 0852381 0. 0383407 0. 016761 0. 00725279 0. 00313281 0. 00135589
0. 169064 0. 163077 0. 107474 0. 0603337 0. 0310932 0. 0152276 0. 00721991 0. 00335067
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Show [@ aphi csGid [{{BarChart [singl], BarChart [sing2]}}1]

0.25] 0.15
0.201
0.10
0.15f
0.101
0.05
0.05 H H
ﬂ’_‘r—\ Hr—\ﬁ

Theprobability that therewill beno informativemutations, for genesin thesamevsin different demes isthe sum of thetables above, but
isobtained moredirectly by setting wto zero:

{singletons[1, 2], singletons[2, 2]} /. w; ;>0
{0. 617854, 0. 55963}

2. Test on real and simulated data

m Setup

Theabove solutions can beused to computethejoint Log likelihood (LogL) of IM model parameters from very largenumbers of loci. If we
assumefor themoment that loci have the same mutation rate, this requirestabulating the LogL for all observed mutational configura-
tions, multiplying by the number of loci with each configuration. For a triplet samplewith sampling configuration {a/b,c} therearethree
topology classes; loci may be topologically congruent (those with a bc mutation), incongruent (thosewith an ab or ac mutation) or
uninformative. Note that we are assuming outgroup rooting such that each locus can be assigned to the three classes unambiguously
(ways of dealing with finitesitesmutations arediscussed in thelast section).

For any rooted topology, thereare 3 types of mutations. For example, assuming topology{a/ b,c}, weneed to distinguish mutationson the
internal branch (k. ), thoseon theshorter external branches ke (sincebranches connectedto b and chavethesamelength thesecan be

lumped) and mutations on the longer external branch k,. However, as shown before, we have the constraint

ta =ty +t, =1ty + tcandthustheGFisafunction onlyof wy, . — wa and of we — w, , Which correspond to the number of
mutationsin the two coalescenceintervals. Thejoint probability of the three types of observable mutations P[ Ky, , Kex, Ka] can be
found by summing over all possibleways thesecan bepartitioned amongst thetwo coalescent intervals:

Kex + Ka — Ka = ke [ Kpe + ] Kpe + ] . .
e e (5 RT E  Retl [E T S AR
a

We need to evaluate the GF for the number of mutationsin each coalescenceinterval for all 3 topology classes. For the IM model with
symmetric migration we have (notethat for thetopologically uninformativeloci, weareonly using thedistribution of thetotal number of
singleton rather than their full, joint distribution here) :

linBol GNOON = Limt [soln3S np[2, 2] /. {w[{a, b}] > Z a, w[{a, C}]»>Z, A[_]1->A}, Z-> x]//.
{w[{b}] » 6S-w[{a}] - w[{c}], w[{b, c}]>e6BC-w[{a}]}// Snplify;

linBol GenINOON = Linmit [soln3S np[2, 2] /. {w[{a, C}] > Z a, w[{b, c}] >z, A[_]-> A}, Z> o] //.
{w[{a}] » 6S- w[{b}] - w[{C}], w[{a, b}l »>6MB-wl[{c}1}//Snplify;

e e
i nBol GenNOTCP = sol n3Si np[2, 2] /. {w[{a, b}] » —, w[{b, c}] ~» —,
2 2
[C]
w[{a, C}]-»>—, A[_]-4, w[{a}] » S, w[{C}] > wS, w[{b}]—»wS} /7 Snplify;
2

ilt2typesQN = | nver seLapl aceTransform[A‘l I'i nBol GenQON, A, T] /7 Snplify;
ilt2typesl NOON = | nver seLapl aceTransform[A‘1 I'i nBol Genl NOON, A, T] /7 Snplify;

i1t2typesNOTCP = | nver seLapl aceTr ansf orm[A‘1 |'i nBol GenNOTCP, A, T] /7 Snplify;
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= |M with asymmetric migration

Allowing for migration in onedirection only greatly simplifies the problem. For a sample of three genes ((a) sampled oneand (b) and (c)
from the other), we can writedown the GF by hand. Assuming that only lineage (a) can have been affected by migration (for migration in
thereversedirection seesection below) wehave6 equations:

1

asym={¥{}, {{a}, {b, c}}]== :
1+w[{a}] + w[{b, c}]

1

YI{}, {{b}, {a, c}}]== :
1+w[{b}]+w[{a, c}]

1

¥I{}, {{c}, {a, b}}]== ,
1+w[{c}]+w[{a, b}]

1

¥I{}, {{a}, {b}, {C}}]==
3+wl{a}] +w[{b}] +w[{c}]
(¢ [{}, {{a}, {b, c}}I+¥[{}, {{b}, {a c}}+¥I[{} {{c}, {a, b}}]),
1

vi{{ar}, {{b, c}}1== (a+ (M/72)) ¥[{}, {{a}, {b, c}}],
A+ (M/2)+w[{a}] +w[{b, c}]

1

y{{a}}, {{b}, {c}}]==
A+1+ (M/2)+w[{a}] +w[{b}]+w[{C}]

((a+(M/2)) ¥ [{}, {{a}, {b}, {c}}]+¥[{{a}}, {{b, C}}])};
o GF conditional on topology
Solving theabove gives the GFfor a sample(a, (b,c)):
asyntF = (Solve[asym, Frst /@ asym])[l, -1, 2] // Snplify

((M+2 A)
((2+w[{b}]+w[{c}]+w[{a, b}l+w[{a, c}])/ ((1+w[{c}]+w[{a, b}]) A+w[{b}]+w[{a, c}]))+
6+M+2A+4dw[{al]+2 w[{b}]+2w[{c}]+2w[{b, c}])/
(l+wl{ai]+wi{b, c}]) (M+2A+2w[{a}]+2w[{b, €}1))))/
(B+wl{a}]+w[{b}] +w[{c}]) (2+M+2A+2w[{a}]+2 w[{b}]+2w[{c}]))

In thiscasewecan invert wrt A tofind the GFfor a discretesplittingtimeT. Theexpression iscomplexbut not vast...
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asyntF2 = | nver seLapl aceTr ansf orm[A‘l asynctF, A, T] /7 Snplify

|

2 e i T (M:2wi{a}]+2w[{b,c}])

(3+w[{a}] +w[{b}] +w[{c}]) (w[{a}]+w[{b, cm)/
(L+wl{b})+w[{c}] -wl{b, ¢}]) (M+2 w[{a}]+2 w[{b, C}])) +
(2 e i T (2+M+2 w[{a}]+2 w[{b}]+2 w({c}]) (1+w[{a}] +w[{b}]+w[{c}])
(wi{c}l+wl{c}]?-w[{a, b}l +w[{c}] w[{a, b}]-w[{a c}]-w[{c}] w[{a, C}]-2w[{a, b}]
wl{a, ¢}]-w[{b, c}]+wl[{c}] w[{b, c}]+w[{c}]? w[{b, c}]-w[{a, b}] w[{b, c}]+
w[{c}] w[{a, b}] w[{b, cn—w[{a, c}] w[{b, C}]—w[{a. b}l wl{a, ¢}] w [{b, c}] -
2 w[{b, c}1?2-wl{c}] w[{b, ¢}]?-w[{a, b}] w({b, c}]?-w[{a, ¢}] w[{b, c}]?
wl{b}1? 1+wl{b, c}])+wl{a}] (1+w[{b}]?+w[{c}]®-w[{a, b}] w[{a, C}]+
wl{c}] (2+wl{a, b}l -wl{b, c}])+wl{b}] (2+w[{c}]+wl{a, c}]-wl{b, c}]) -
2 w[{b, c}]-wl[{a, b}] w[{b, c}]-w[{a, c}] w[{b, c}])+w[{b}]

(1-w[{a, b}]+w[{b, c}]+w[{c}] w[{b, c}]-w[{b, c}]?+w[{a, c}] (1+w[{b, cm)))/

((2+M+2w[{a}] +2 w[{b}] +2 w[{c}]) L+ w[{c}]+w[{a, b}])
(L+w[{b}]+wl{a, c}]) L+w[{b}]+w[{c}]-wl{b, €}]))+

(M(6+3M+8 w[{c}]+2Muwl[{c}]+2 w[{c}]?+6 w[{a, b}]+2 Mw[{a, b}]+

2 wl{c}] w[{a, b}]+2 w[{b}]® L1+wl[{c}]+w[{a, b}])+6 w[{a, c}]+

2 Mw[{a, c}]+8 wl{c}] w[{a, c}]+Mw[{c}] wl{a, c}]+2 w[{c}]?® w[{a, C}]+
wl{a, b}l w[{a, c}]+Muw[{a, b}] w[{a, c}]+2w[{c}] w[{a, b}] w[{a, c}]+
[{a}]? 2+ w[{b}]+wl{c}]+wl{a, b}l +w[{a, c}])+6 w[{b, c}]+2 Muw[{b, c}]+
[{c}] wl{b, c}]+Mw[{c}] w[{b, c}]+4 w[{a, b}] w[{b, c}]+Mw[{a, b}] w[{b, c}]+
[{a, c}] wl{b, c}]+Muw[{a, c}] w[{b, c}]+2w[{c}] w[{a, c}] w[{b, c}]+
[{a, b}] w[{a, ¢}
[{a, b}] w[

] wiib, c}]+4 w[{b, c}]?+2 wl{c}] wl{b, c}]?
{b, ¢}1?+2 w({a, c}] w({b, c}]?+w[{b}] (B+2M+2 w[{c}]®+2w[{a, C}]+
4 w[{b, c}]+Muw[{b, c}]+2 w[{b, c}]?+w[{a, b}] B+M+2w[{a, c}]+2 w[{b, c}]) +

wi{c}] 10+ M+2 w[{a, b} +2 w[{a, c}]+2 w[{b, c}]))+a)[{a}]

8+2M+6 w[{a, b}]+Muw[{a, b}]+6 w[{a, c}]+Mw[{a, c}]+4 w({a, b}] w[{a, c}]+
8 w({b, c}]+4 w[{a, b}] w[{b, c}]+4 w[{a, ¢}] w[{b, c}]+w[{b}] 6+M+4 w[{c}]~+
4 wl{a, b}]+4 w({b, c}])+wl{c}] (6+M+4wl{a, c}]+4w[{b, c}]))))/

((2+M+2w[{a}]+2 w[{b}]+2 w[{c}]) A+w[{c}]+wl[{a, b}]) Q1+w[{b}]+w[{a, c}])

(M+2 wi{a)]+2 wl(b, C}m)/
(3+wl{a)]+wl(b}]+wl(c}]) d+wl(a}]+wl(b c}]))

w
4w
4w
20
2w

The GF conditional on a particular topology (congruent or incongruent) can befound by taking thelimits as before. The GF only depends
on thedBCand #Scorresponding to thetwo coalescenceintervals:

linBol GnQON2 = Limt [asynG- /. {w[{a, b}] >z a, w[{a, C}] > 2}, Z > ] //.
{w[{b}] » 6S-w[{a}] - w[{c}], w[{b, c}]»6BC-w[{a}]}// Snplify
((M+2A) (M+2 (3+6BC+6S+A)))/ ((L+6BC) (3+6S) (M+2 (6BC+A)) (M+2 (1+6S+A)))
linBol Genl NOON2 = Linmt [asynG- /. {w[{a, C}] > Z a, w[{b, c}] > 2}, Z > o] //.
{w[{a}] » 6S- w[{b}] - w[{C}], w[{a, b}]>6MB-w[{c}1}//Snplify
M+ 2 A

(1+6MB) (3+6S) (M+2 (1L +6S+A))

Invertingtheabovewrt A gives:
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ilt2typesQON2 = | nver seLapl aceTr ansf orm[A'1 |'i nBol GenQON2, A, T] /7 Snplify

1 1
262 M268C) oo 3,08) 262 (2*M25] 5 cpey (14+6S) M (M+2 (3+6BC+ 6S)) /

+

(M+ 2 6BC) (-1 + eBC - 6S) (1 -6BC+6S) (2+ M+ 2 6S) (M+2 eBC) (2 + M+ 2 6S)

((1+6BC) (3+6S))
ilt2typesl NOO\2 = | nver seLapl aceTransform[A‘l | nBol Genl NOON\2, A, T] /7 Snplify

T <2+M+2 QS>

1
M+ 2 e 2 1+ 6S)

(1+6AB) (3+6S) (2+M+2 6S)
o Check
Setting all wto zerothe GFmust sum toone:
{asynG /. {w[_]1 -> 0}, asyn@2 /. {w[_1-0}}// Snplify
{1, 13
Topological probabilities sum to oneasthey should:

{topcon =ilt2typesQON2 /. {6S >0, 6BC - 0},
topincon =ilt2typesINOON2 /. {6S -0, 6AB-0}}// Snplify

{6—4 ef_; (2+M) TeM 2 ef_: (2+M) T M}
3(2+M) ’ 3(2+M)

topcon + 2 topincon // Full S nplify

1

o GF for topologically uninformative blocks

To obtain the GF for topologically uninformative blocks we need to sum over all three possible topologies
| i nSol GenNOTCPbe = Li mi't [asynCF /. {w[{a, b}1 >z a, w[{a, c}]~2z, w[{b, c}]~ ;:} z oo] /.
{w[{C}] » wsh - w[{b}], w[{a}]-»wa}// Snplify;
| i nSol GenNNOTCPab = Li it [asynGF /. {w[{a, c}l1=za, wi{b, c}]~z, w[{a b}]~ ;:} z- oo] /.
{w[{a}] » wsh - w[{b}], w[{C}]->wc}//Snplify;
| i nSol GenNOTCPac = Limit [asynGF /. {w[{a, b}1 >z a, w[{b, c}] -2z, w[{a, c}]- ;:} z oo] /.
{w[{a}] » wsh - w[{C}], w[{b}] > &b} // Snplify;
To GFfor discretesplittingtimesare:

I nver seLapl aceTransform[A‘l |'i nBol GenNOTCPbc, A, T] // Snplify;
I nver seLapl aceTransform[A‘l |'i nBol GenNOTCPab, A, T] // Snplify;

ilt2typesNOrCPhc

ilt2typesNOTCPab
ilt2typesNOTCPac = | nver seLapl aceTransform[./x‘1 |'i nBol GenNOTCPac, A, T] // Snplify;

o GF for Total S
The GFfor thetotal number of mutations Sisfound by settingall «[_] to bethesame:
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& S = I nver seLapl aceTransform[A‘l (asyn@F /. {w[_1->w}// Snplify), A, T] // Snplify

1

M+ 4 e—*z T (M+4 Lu) w

Ql+w) 1+2w) (M+4 w)
ThistabulatesthepdfFof S:
test = probSasym[0. 127, 4.2, 0.5, 12]

{0. 0601006, 0.0853815, 0.0888486, 0.08368, 0.075961, 0.0679905,
0. 0605291, 0.0537757, 0.0477385, 0.0423665, 0. 0375948, 0.0333591, 0.0296002 }

0. 0635 * 2
0. 127

test = probSasym[0. 0635, 4.2, 0.5, 12]

{0. 104485, 0.197259, 0.228484, 0.194915, 0. 132674, 0.0759036, 0.0379126,
0.0170273, 0.00704105, 0.00273326, 0.00101202, 0. 000362034, 0.000126404 }

Which again must sumtoone:
test // Total
0. 999991

o Pairwise GF

The GFfor the pairwise coalescencetimes for theasymmetric caseis:

1 1
Yldiffl=——————— (M /2+A) ;
A+M/2+w (1+ w)

I nverseLapl aceTransform[y [diff1/A, A, T]

1
ST (M2 )
M 2e 2 )

n
M+2 w M+2 w

l+w
I nver seLapl aceTransform[y [diff1/4a, A, T1/. {(M>0}

efT w

l+w
PDFcoal = | nver seLapl aceTransf orm[| nver seLapl aceTransform[y [diff ]/ A, A, T], w, t]

M t

—e‘+e2)M+

1 -2 (2+M) t

1
e 22 MTET et M| Heavi sideThetaft - T)
-2+ M
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P ot [PDFcoal /. {(M>0, T > 2}, {t, 0, 4}1// N

- Gaphics -
o Migration in the reverse direction...
Withmigration in thereversedirection we have 10 equations:

1

asynfEV = { [{{a}, {b, c}}, (}]== :
1+w[{a}] +w[{b, c}]

1

¥[{{b}. {a, c}}, {}]== ,
1+w[{b}]+w[{a, C}]

1

¥I{{c} {a b}} {}]== ,
1+w[{C}] +w[{a, b}]

1
v{{a, b}}, {{c}}]== (A+M/2) y[{{c} {a, b}} {11,
A+M/2+w[{a, b}l+w[{Cc}]
1
¥[{{a, c}} {{b}}]1== (A +M/2) §[{{b}, {a c}} {}],

A+M/2+w[{a, c}]+w[{b}]

¥[{{a}, {b}} {{c}}]==
1

((a+M72) y[{{a}, {b}, {c}}, {}1+¥I[{{a, b}}, {{c}}]),
A+1+M/2+w[{c}]+w[{b}]+w[{a}]

1

y{{a}, {c}}, {{b}}]==
A+1+M/2+w[{c}]+w[{b}]+w[{a}]

((a+M/2) y[{{a}, {b}, {c}}, (}]1+¥[{{a, c}} {{b}}]),
1

¥[{{a}, {b}, {c}} {}]==
3+wl{a}] +w[{b}] +w[{c}]
(¢[{{a}, {b, c}}, {}1+¥[{{b} {a, c}}, {}1+¥I[{{c} {a b}} {}D),
1
¥[{{a}}, {{b, c}}]1== (A + (M/2)) ¢[{{a}, {b, c}}, {}].
A+ (M/2)+w[{a}] +w[{b, C}]
1

¥{{a}}, {{b}, {c}}]== (A ¥[{{a}, {b}, {c}}, {}1+
A+1l+M+w[{a}] +w[{b}]+w[{C}]

v{{a}}, {{b, c}}1+M/2 y¢[{{a}, {b}}, {{c}}]+M/2¢[{{a}, {c}}, {{b}}])}§

TheGFis:
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asynFREV = (Sol ve [asynREV, First /@ asyniREV]) [1, -1, 2] // Snplify

M(%’IJrA)

At y / (B+w[{a})+w[{b}]+w[{c}]) A+wl{c}]+wl[{a, b}]))+
1+2 +n+wl{al]+w[{b}]+wl{c}]

MM+27A)/ ((2+M+2A+2w[{a}]+2 w[{b}]+2 w[{c}])
A+w[{c}]+w[{a, b}]) M+2A+2 w[{c}]+2 w[{a, b}])) +

(3]

A+ v
1+ +hrwi{ay]+o[{b}]+wl{c}]

+ (M (M+2 1))/ ((2+M+2Aa+2wl{a}]+2w[{b}]+2 w[{c}])
3+wl{a}] + w[{b}] +w[{c}]

M+2 A+2wl{b}]+2w[{a, C}]))/ (1+wl{b}]+w[{a, c}])+

A+ v
1+7 +aswl(a)l+o[{b}]+wl{c}] M+ 2 A

+ / (1+wl{a}] +wl{b, CH)/
3+wl{a}l] +w[{b}] +w[{c}] M+2A+2wl[{a}]+2w[{b, c}]

A+M+A+w[{a}]+w[{b}]+w[{Cc}])
Therearehigher order termsin M which arenot present with thereversesimpler sampling scheme (a singleindividual from thereceiving
population).
i nBol GenCON2REV = Limit [asynG-REV /. {w[{a, b}] >z a, w[{a, C}] > 2}, Z » o] //.
{w[{b}] » 6S-w[{a}] - w[{c}], w[{b, c}]»>e6BC-w[{a}]}// Snplify
(M3+4 A (l+6S+A) (3+6BC+6S+A)+
M? (3+26BC+6S+5A)+2M(3+68+7A+36BCA+4A%+6S (4+31)))/
((L+6BC) (3+6S) 1+M+6S+A) (M+2 (6BC+A)) (M+2 (1 +6S+A)))
i nBol Genl NOONRREV = Limit [asynTFREV /. {w[{a, C}]1 > Z a, w[{b, C}] > 2}, Z» o] //.
{w[{a}] » 6S-w[{b}] - w[{c}], w[{a, b}]>eAB-w[{c}]}// Snplify
(M+4 A (6AB+A) (1+65S+A)+2MA (4+36MB+26S+4A)+M (3+26MB+65+51))/
(1+6MAB) (3+6S) 1+M+6S+A) (M+2 (6AB+A)) (M+2 (1+6S+A)))

Invertingtheabovewrt A gives:

ilt2typesGON2REV = | nver seLapl aceTr ansf orm[A‘1 I'i nBol GenCONCREV, A, T] // Snplify

1 1
4o T(2im26s) 1+ 68) 4 o2 T (M26C) o (3+ 69)

+ —

2+M+26S (M+2 eBC) (2+ M-2 eBC+ 2 6S)

(2 e T(1MoS) (M(2+6S)+ (1+06S) (4-6BC+268)))/ ((1+M+6S) (2+M-26BC+2068)) +
(M (M?+M (3+26BC+68)+2 (3+4065+65)))/

((M+2 6BC) (1+ M+ 6S) <2+|v|+2es>>/ ((1+6BC) (3+6S))
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ilt2typesl NOO\N2REV = | nver seLapl aceTr ansf orm[A'1 |'i nBol Genl NOON2REV, A, T] // Snplify

1
262 T (2M288) g o8y (L1-2 eAB+ 6S) M2 (3+ M+ 2 €AB + €S)

+ —

(1-6MAB+6S) (2+M+ 2 6S) (M+2 6AB) (1 + M+ 6S) (2+ M+ 2 6S)

2 e T (M2em) g (3+98>)/ ((M+2 6AB) (-1+ 6MB-6S) (2+M-2 6AB+2 6S)) +

2 e T (1+M+0S) (M4 (2 + 6AB) (1 + 6S))

/((1+9AB) (3+6S))
(L+M+6S) (2+M-2 6AB+ 2 6S)

To obtain the GF for topologically uninformative blocks we need to sum over all three possible topologies

| i nSol GenNOTCPbcREV = Li mi't [asynC-FFEV /. {w[{a, b}] >z a, w[{a, C}] » z, w[{b, C}] - Z} z5 oo] /.
{w[{c}] > wsh - w[{b}], w[{a}]->wa}// Snplify;
| i nSol GenNOTCPabREV = Li mi't [asynC-FFEV /. {w[{a, c} >z a, wi{b, c}] >z, wi{a, b}] - Z} z 5 oo] /.
{w[{a}] » wsh - w[{b}], w[{C}]>wc}// Snplify;
| i nSol GenNOTCPacREV = Li mi't [asynC-FFEV /. {w[{a, b}] >z a, w[{b, c}] >z, w[{a, C}] - Z} z5 oo] /.
{w[{a}] » wsh - w[{C}], w[{b}]->wb}// Snplify;
To GFfor discretesplittingtimesare:
ilt2typesNOTCPbcREV = | nver seLapl aceTr ansf orm[A‘l |'i nBol GenNOTCPbcREV, A, T] /7 Snplify;
i1t 2t ypesNOTGPabREV = | nver seLapl aceTr ansf orm[A‘l |'i nBol GenNOTCPabREV, A, T] /7 Snplify;
i1t2typesNOTGPacREV = | nver seLapl aceTr ansf orm[A‘l |'i nBol GenNOTCPacREV, A, T] /7 Snplify;
Settingall wto zerothe GFhastosumtoone:
asyn@GREV /. {w[_]1->0}// Snplify
1
Topological probabilities sum to oneasthey should:

{topconREV =il t2typesCON2REV /. {6S -» 0, 6BC - 0},
topi nconREV =i |t 2t ypesI NOON2REV /. {6S >0, ©6AB - 0}}// Snplify

Aaam T 4e MT (24M) 5.3 MeM? 1
{4e e 1+M Y 1 [2e(TMT 2 (2MT M (3+ M) }
, — - +
3(2+M) 3 1+M 2+ M L+M) (2+M

topconREV + 2 topi nconREV // Ful | S nplify
1

m Wang & Hey reanalysis

= [mportingthe data

Thisimportsthe Wang & Hey alignments (30,247 loci). The Dsim1/Dsim2/ Dmd triplets have been filtered as described in W&H and
polarized relativeto Dyak. Divergent sitesthat areinvariant in theingroup aredenoted as{1,1,1}, siteswith morethan two states (either
dueto backmutation or recombination) are denoted as {1,2,2}, {1,2,3} etc. Sites that aremonomorphicin in and outgroup have been
stripped, i.e. theorder of mutation isretained, thesequencelengthinformation islost. Thefileis still large (10 Mb):

WangHeyRaw = Partition [I nport ["/hone /konrad / Downl oads / ALLst ri pped2", "Table"], 31;
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VéngHeyRaw // Lengt h
30247
Thisturnsalignment intolists of sitetypes. Thefirst locusis:
VéngHeyRaw2 = sit et yp [VngHeyRaw]; VéngHeyRaw2 [ 1]
({1, 1, 13, {0, 1, 13, {1, 1, 1}, {1, 1, 13, {1, 1, 1}, {1, 1, 1}, {1, O, O},

{0, 0, 13, {1, 0, O}, {1, 1, 13, {1, 1, 13, {1, 1, 1}, {1, 2, 2}, {1, 1, 1}, {1, 1, 1},
{1, 1, 13, {1, 1, 13, {0, 1, O}, {1, 1, 13, {1, 1, 1}, {1, 1, 1}, {1, O, O3}, {1, 1, 13,
{1, 1, 13, {1, 1, 13, {0, 1, O}, {1, 1, 13, {1, 1, 13}, {1, 1, 1}, {1, 1, 13}, {1, 1, 13,
{1, 1, 13, {1, 1, 13, {1, 1, 13, {1, 1, 13}, {1, 1, 13}, {1, O, O}, {1, 1, 1}, {1, 1, 13},
{1, 1, 13, {1, 1, 13, {1, 1, 13, {1, 1, 13, {1, 1, 13}, {1, 1, 1}, {1, 1, 13, {1, 1, 13,
{1, 1, 13, {1, 1, 13, {1, O, O3, {1, 1, 13}, (1, 1, 1}, {1, 1, 1}, {1, 1, 13, {1, O, O}}

Eg.thefirst locus has 55 variablesitesin total, 10 of which aredivergent between in and outgroup:
{VéngHeyRaw2 [ 1] // Length, Count [VangHeyRaw2[17], {1, 1, 131}
{55, 44}
= Trimming

To keep the number of mutations per block manageable, account for mutational heterogeneity and to minimizethe effect of intralocus
recombination wewill trim each locus to the same outgroup distance. Cutting after 16 divergent (between Dmel and Dyak) sites corre-
spondsto roughly onethird of themean number of divergent sitesin thefull dataset. Thereare2090 loci that fall below this cut-off, i.e. are
not informativeenough will beignored:

VéingHey Tri niRaw = Del et eCases [di vcutter [16, #] & /@ VéngHeyRaw2, {}1;
We can the simply count the 6 different mutational types at each locus (in the following order

{{1,0,1},{0,1,0},{1,1,0},{0,0,1},{0,1,1},{1,0,0},{1,1,1}}. Stes with multiple segregating states are ignored. Below the counts for the first
locus, which only containsoneinternal mutationson thebranch between Dmel and thetwo Dsim samples:

VéngHey Tri nCount s = counttyp [#] & /@ VngHey Tri nRaw; VéngHeyTri nCounts[[1]
{0, 1, 0, 1, 1, 2, 13}

As expected by symmetry, themean number of mutationson internal branches corresponding to thetwo different incongruent genealo-
gies (1st and 3th valuebelow) isthesame:

Tabl e [Mean [#[i ] & /@ VéngHeyTri nounts] // N, {i, 1, 7}]
{0. 126327, 0.662215, 0.122811, 0.628689, 1.81937, 3.03601, 11.8461}
17%of loci havenotopologicallyinformativemutations:
Gount [(Plus ee {#[1], &#[3], #[51}) & /@ VéngHeyTri nCounts, 0]/ (VWangHeyTri mCounts // Length) // N
0. 174663
For thetriplet analysis conflicting (in terms of thetopology) shared derived mutations (i.e. on internal branches) in thesamelocus are
not possible. However, in theW&H datathisisthecasefor 14%of loci:
Mean [If [Gount [#[{1, 3, 5}], 0] <2, 1, 0] & /@ VéngHeyTri nCounts] // N
0. 139823
First, we will remove blocks that have more than 2 topologically conflicting mutations (2.2%) . This filters out dubious alignments
without biasing against thetails of the coalescencetimedistribution:

VéngHey Tri nCount s2 =
Del eteCases[(If [(Plus @e Delete[Sort [#[{1, 3, 5}1]1, -11) <2, #, r]) &/@ WngHeyTri nCounts, r 1;
(Lengt h [VéngHeyTri nCount s] - Lengt h [VngHey Tri mCount s2]) / Lengt h [VngHeyTri nCounts] // N

0. 0226231

Second, we will assumethat singleincongruent site are backmutations and remove those from each alignment. For 5% of loci, the
incongruent, i.e. lessfrequent topological sitecannot be determined (becausethereare exactly two conflicting shared derived mutations),
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th&elbci will beremoved:

Qount [(Delete [Sort [#[{1, 3, 53011, 1]) & /@ WngHeyTri nCounts2, {1, 13}]1/
Lengt h [VéangHeyTri mCount s21 // N

0. 050109
{Gount [#[{1, 3, 5} & /@ WangHeyTri nCounts2, {1, 1, 0}],

Qount [#[{1, 3, 5}] &/@ VéngHeyTri nCounts2, {1, 0, 1}],
Gount [#[{1, 3, 5}] & /@ VéngHeyTri nCounts2, {0, 1, 1}]}

{112, 659, 608}
VéngHey Tri nCount s3 = Del et eCases [ (i ncontrin8[#]) & /@ WangHeyTri mCount s2, r 1;
Themean number of mutationsisreduced by morethen half dueto thesetrimming steps:
{Tabl e [Mean [#[i ] & /@ VéngHeyTri nCounts2] // N, {i, 1, 73],
Tabl e [Mean [#[i ] & /@ VéngHeyTri nCounts3] // N, {i, 1, 7}1}

{{0. 101272, 0.64335, 0.096439, 0.609012, 1.81192, 3.04895, 11.8968},
{0. 0436479, 0.622279, 0.0403963, 0.588271, 1.85261, 3.0674, 11.9347}}

Thenumber of loci removed in thevarioustrimming stepsis comparatively small. Theonly drastic reduction occurs when trimmingtoa
fixed outgroup distance.

Lengt h [VéngHey Tri nCount s ] - Lengt h [VéngHey Tri nCount s3]
2016
{Lengt h [VngHeyRaw], Lengt h [VéngHeyTri nCounts],

Lengt h [VéngHeyTri mCount s21, Lengt h [WangHeyTri nCount s37}
{30247, 28157, 27520, 26141}

m Testson pairwise data

It isquickest to run pairwiseanalyses (oneDmel , oneDsim individual) to comparetheeffect of thevarioustrimming stepson parameter
estimation and check against theW&H estimates.

o Full dataset

This throws out one of the Dsim individuals and condenses the data into counts of pairwise differences within theingroup (S_in) and
between ingroup and outgroup (S out). Siteswith morethan two states (backmutations) arecounted bothin S in and S out, so theonly
differenceto the W&H analysisis that we arefitting simpler IM models (with only one migration rate) and areassuming infinitesites
mutations.

VngHeyPairs =topai r [#] & /@ VéngHeyRaw2; WngHeyPai rs 1]
{10, 51}
WeneedtotabulateLogL of M and T for all observed valuesof S in and S out. Thereare 79*260=potential combinations.
{Tabl e [Max [#[i ] & /@ WngHeyPairs], {i, 1, 2}1,
Table [Mn[#[i] & /@ VéngHeyPairs], {i, 1, 2}], Table [Mean [#[i ] & /@ VéngHeyPairs] // N, {i, 1, 2}1}
({79, 260}, {0, 0}, {18.0691, 46.5621}}
Scaling locus specific mutation rates based on the number of observed S out values and tabulating all LogL exactly would takeverylong,;
amuchfaster alternativeisto bin contigsaccordingto their outgroup divergence, 10 bins should beenough:
tabu = Tabl e [Sel ect [ VéngHeyPai rs, #[2] > (260/10) =i & #[2] < (260/10) = (i + 1) &], {i, 0, 9}1;
bi ncounts = Tabl e [Tabl e [Gount [#[1] & /@ tabu[i ], k1, {k, 0, 7931, {i, 1, 10}];
Themutation ratescalars (relativeto themean divergenceacross all blocks) for thebinsare:
neannut = Mean [WangHeyPairs] // N;
neanbi n = Tabl e [Mean [#[2] &/@tabu[i ] // N, {i, 1, 10}]/ meanmut [2]
{0. 385613, 0.816086, 1.35804, 1.90756, 2.46236, 3.0201, 3.60045, 4.12813, 4.69419, 5.16514}
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Thejoint MLEfor rand # under a simplesplit model without migration are:

splitMBERuUl | = F ndMaxi mum(
M us ee Tabl e [Total [Tabl e [Log [Psplit [z, &, {meanbin[i ], k}1], {k, O, 79}] *bincounts[i J1,
{i, 1, 10}], {z, 0.5, 0.1, 4}, {e, 8, 4, 16}]

{-94119. 3, {t —» 2.18337, © - 5.82369}}
Thejoint MLEfor M, rand 6 for IM modé with symmetricand asymmetricmigration are:

iMMLEFul | = F ndvaxi mum[Pl us ee
Tabl e [Total [Tabl e [Log [WI kHeS n2s [M, =, e, {neanbin[iQ, k}]11, {k, 0, 79}] = bincounts[i 11,
{i, 1, 10}1, {M, 0.05, 0, 0.5}, {t, 0.5, 0.1, 3}, {e, 8, 4, 16}]

{-93467.4, {M- 0.0256439, t - 2.69317, © - 5.14413}}
i MM_EFul | asym = Fi ndMaxi num[

M us ee Tabl e [Total [Tabl e [Log [asyn?s [M, £, &, {nmeanbin[i J, k}11, {k, O, 79}] = bi ncounts[i I1,
{i, 1, 10}1, {M, 0.05, 0, 0.5}, {t, 0.5, 0.1, 3}, {e, 8, 4, 16}]

{-93466. 3, {M- 0.0510174, t - 2.69555, © —» 5.14185}}
Notethat the MLEfor M under thesymmetricmodel is half that inferred for theasymmetricmigration model as expected.

o Trimmed to fixed divergence
Repeating theabovefor thedata (without trimming out backmutationsand topologically conflicting mutations):
VéngHeyTrinPai rs2 =topai r [#] & /@ VngHeyTri niRaw;
{Mean [VngHeyTri nPai rs2] // N, Max [(#[1] & /@ VéngHeyTri nPairs2)1}
({6. 45857, 15.98261, 31}
tabPairs = Tabl e [Count [ (#[1] & /@ VéngHeyTrinPairs2), i1, {i, 0, 31}];

spl it ME = F ndMaxi mum[
Total [Tabl e [Log [Psplit [T, &, {1, i}1], {i, 0, 31}]*tabPairs], {{z, 0.2, 0, 4}, {e, 2, 1, 4}}]

{-70303.4, {t - 3.07509, © - 1.58489}}
Thereisstill aclear signal of migration (M isslightly lower than in theanalysis on thefull data):
i MLEasym = FH ndMaxi num[Tot al [Tabl e [Log [asyn®s [M, =, 6, {1, i}1], {i, O, 31}] xtabPairs],
{M, 0.02, 0, 0.5}, {tr, 3.5, 0.5, 4}, {6, 2, 0.9, 4}]
(-70180., {M- 0.041833, t - 3.84235, 0 - 1.37638)}}

o Trimmed to fixed divergence, no backmuts and incongruent sites
What effect doesignoring detectablebackmutationsand conflicting shared derived mutations have?

VéngHeyTrinPairs3 = (Pus ee Drop[Drop [#, 1], -1]) & /@ VéngHeyTri nCount s3;
tabPai rs3 = Tabl e [Count [VéngHeyTrinPairs3, i1, {i, 0, Max [VéngHeyTrinPai rs313}1;

i MMLE3asym =
Fi ndMaxi num[Tot al [Tabl e [Log [asyn®s [M, ¢, &, {1, i}]]1, {i, O, Max [VéngHeyTri nPai rs3]1}] =t abPairs3],
{M 0.1, 0.001, 0.6}, {z, 3, 0.5, 6}, {6, 2, 0.9, 3}]

{-65717.1, {M- 0.0933362, t - 3.33526, © —» 1.50898}}

m Triplet analysis

Given thesymmetry in themodel thereare only 3 types of loci, congruent, incongruent and those without parsimony informative sites.
Within each classthereare 3 types of mutations, thoseon theshorter external branches, thoseon theinternal branch and thoseon longer
external branch (thecountsarelisted in this order). Thefunction sitecount sortsloci according to topology. Themutational information
at each locus is summarized by counting the number of mutations on each branch. Thefirst locus with a congruent topology has 2
mutationson theshorter external branches, oneon theinternal branch and oneon thelonger external branch.
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VéingHey Tri nCount s3 // Lengt h

26141

Wount = sitecount 3s [VAngHeyTri mCount s3]; Wcount [1, 1]

{2, 2, 1}
Tomakethe GF calculation feasiblewe need to exclude 6 extremeloci with very largenumbers of mutations (>16) on any onebranch. This
should have very littleeffect on parameter estimates but avoids catastrophicrounding error. We can then summarizethedata as counts of
distinct mutational configurationsin each topology class:

WHOount 2 = {Sel ect [WHcount [1], (Max [#]) < 17 &], Sel ect [WHount [2], (M [#]) < 15 &],

Sel ect [Wount [3], (Mix [#]) < 14 &]}; nax2 = maxcount 3s [WHCount 2]

{{16, 12, 16}, {12, 13, 8}, {8, 13, 11}}
Notethat themost diverselocus still has 26 mutations.

Tabl e [Max [Total [#] & /@ (WHount2[i 1)1, {i, 1, 3}]

{26, 19, 18}

resWwR = Tabl e [Tabl e [Count [WHOount 2 [[r 11, {i, j, Kk}1,
{i, 0, max2[[r, 111}, {j, O, mx2[[r, 211}, {k, O, max2[[r, 311}, {r, 1, 3}L;

reswk // Hatten // Total

26135
How to best tabulatethe probabilities of the observed configurations?Thesimplest approachisto tabulatethe probabilities for all possible
configurations (given themaximum number of mutations observed on each branch).
Thefunction tripletL computes LogL under the IM model with asymmetric migration. For a single point in parameter spacethis takes

about 1.5 seconds:
Timng [tripletL[0.16, 3.3, 1.5, resWR, nax2]]

(1. 45609, -149746. }

FindMaximum uses derivativesandfindsthe MLEestimatein afew minutes:

Timng [tripl Mx =
FH ndvaxi numftripletL [M, z, 6, resWwR, nmax2], {M, 0.1, 0.001, 0.6}, {z, 2, 1, 6}, {e, 1, 1, 3}1]

{439. 859, {-149556., {M- 0.173665, t —» 3.34091, 6 - 1.39874}}}

o Comparison between sampling schemes and with Wang and Hey

How do the above MLEs compareto the estimates of W&H. Given that there arevarious differencesin the scaling of parameters (W&H
scale both divergence and migration relative to the mutation rate), we need to convert theseinto absolute values. W&H assumethat
Dmel and Dyak diverged 10 MYAwith 10 generations per year. Theu per locus and generation for thefull data and thefixed divergenceare:

{{imMERull [[2, 3, 2]1, inMBERull [[2, 2, 2]], inMERUll [[2, 1, 211},
{iMM.EFul l asym[[2, 3, 2]], inMBErullasym[[2, 2, 2]], inMBRUllasym[[2, 1, 211},
{iMLEasym[[2, 3, 2]], inMEasym[[2, 2, 2]], inMEasym[[2, 1, 211},
{iMLE3asym[[2, 3, 2]], inME3asym[[2, 2, 2]], inMEBE3asym[[2, 1, 2]1},
{triplMax [[2, 3, 2], triplMx[[2, 2, 2]], triplMx[[2, 1, 2]1}}// Tabl eForm

5. 14413 2.69317 0. 0256439
5. 14185 2. 69555 0. 0510174
1. 37638 3. 84235 0. 041833
1. 50898 3. 33526 0. 0933362
1. 39874 3. 34091 0. 173665

mufull =0.1 % (meannut [2] /2) /10000000 // N; nul =0.1 % (16/2) /10000000 // N;

Converting into absolute values is straightforward for T and Ne. Below the MLE estimates for model parameters for the full data( 2nd
column), thelength trimmed data (3rd column), length trimmed data without backmutations and incongruent sites (4th column) and
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thesamredata:
Nefs = imMBERUl | [2, 3, 2]/ (4 »muful | );

Tfs=0.1xinMEFuUll [2, 2, 2] »2 % Nefs;

nis = inMERuUl | [2, 1, 2] = (2.44 %*10" 6) / Nef s;

Nef = inM.EFul l asym[2, 3, 2]/ (4 »nuful | );

Tf =0.1%inMBrull asym[2, 2, 2] %2 % Nef;

nf = inMBFul l asym[2, 1, 2] %= (2.44 %107 6) / (2 Nef);

Nel = i nfMEasym[2, 3, 2]/ (4 = mul);
T1=0.1x%inMEasym[2, 2, 2] »2 Nel;
m = i ntMEasym[2, 1, 2] * (2.44 » (0. 00513 /0.0055) * 10" 6) / (2 Nel);

Ne3 = inME3asym[[2, 3, 211/ (4 %ml);
T3 = 0.1«inMB3asym[[2, 2, 2]]*2 Ne3;
n8 = inMB3asym[[2, 1, 2]] (2.44 % (0.00513/0.0055) » 10~ 6) / (2 Ne3);

Netr =triplMx[2, 3, 2]/ (4 »ml);
Ttr =0. 1 »tripl Mx[2, 2, 2] *2 Netr;
mr =triplMx[2, 1, 2] (2. 44 % (0.00513 /0.0055) » 10" 6) / (2 Netr );

{{Nefs, Nef, Nel, Ne3, Netr }, (Tfs, Tf, T1, T3, Ttr}, {nfs, nf, mi, n8, nir }} // Tabl eForm

5. 52395 x 106 5.5215 x 108 4, 30119 x 108 4, 71556 x 106 4, 37105 x 108

2.97538 x 108 2.9767 x 108 3.30533 x 108 3. 14553 x 108 2.92065 x 108
0. 0113272 0. 0112725 0. 0110674 0. 0225232 0. 0452107

Theeffective population sizeand divergencetimeestimatesin thepairwiseanalysis on thefull data agreevery well with those of W&H. The
effective pop. sizeis slightly larger than theancestral Ne estimated by W&H but smaller than their estimate of the Dsim effective popula-
tion size. Given that our simpler model only contains oneNe parameter, onewould expect the MLEfor this parameter to beinbetween that
oftheancestral population and Dsim.

Notethat W&H scale migration as M=2Ndme m, we are scaling M=4Nanc m. If wetaking thelarger effective pop. size of the ancestral
population compared to Dmel (2.44 Mio) into account, M matches the W&H estimate (0.013) quite well. However, ignoring backmuta-
tionsandincongruent mutationswithin blocksresultsin amarkedincreasein M and a decreasein Ne , which makes sensegiven that we
areremoving polymorphicsites. Srikingly, in thetriplet analysis, theestimate of M is further increased compared to the pairwiseanalysis
on thesamedataset.

m Comparing pairwise and triplet results

To visualizethedifferencebetween pairwiseand triplet estimates, weevaluatea profilethrough the maximum of thelikelihood surface for
each parameter (fixing theother two parametersat their MLE):

TheALogL (relativeto the maximum) for M, T and @ for pairwise (dashed line) and triplet (solid line) reveal not only that the MLE differ
between thetwo sampling schemes (M is higher, 6 lower in thetriplet analysis), but also that the curvatureisthe same, i.e. thereisno
improvement in power by adding a 3rd samplewhichis unexpected.
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What explains the difference between the pairwise and the triplet estimates (in terms of bias and power)?The triplet estimates (in
particular M) should be sensitive to any model violation (both the model of sequence evolution and history) that affects the inferred
frequencies of incongruent topologies. For relatively old divergence (as here) most incongruent genealogies are expected to be dueto
migration rather than incomplete lineage sorting. We can use the GF to find the expected frequencies of the three topology classes
(congruent, incongruent and uninformative, see Table below) given the MLEfor thetwo sampling schemes and compare these against
theobserved frequencies. The expected frequency of observable blocks with a congruent topologiesis given by thefrequency of the congru-
ent genealogies (minustheproportion of thosein that haveno shared derived mutations).

0. 821639 0. 0211294 0. 157232
0. 772016 0. 0286075 0. 199377
0. 750067 0. 0617563 0. 188177

Thereisan excess of incongruent topologiesin thedata (6.1%), which cannot beexplained by theinferred histories. However, theobserved
frequencies (last row above) match theexpectations from triplet MLEs (middlerow) much better than those correspondingto the pairwise
analysis (1st row).

Given thefrequency of siteswith morethan 2 segregating sites, backmutationsin the outgroup branch (which lead to mispolarized sites)
arethemost likely explanation. To check this we can look at the average number of mutations on each branch in the 3 topology classes.
While congruent loci haveon averagefewer mutations on thetwo shorter external branches (i.e. thoseleading to thecommon ancestor of
thetwo Dsim individuals) (1st row, 1st column) than on thelonger external branch (2nd column); thisis not thecaseat all for incongru-
ent loci (2nd row). Thus most loci inferred to have an incongruent topology are due to mispolarized mutations. Given the magnitude of
theexcess of incongruent loci, it isactually surprising how well thetriplet schemestill works!

Tabl e [WHCount 2[[i ] // Mean // N, {i, 1, 3}]// Tabl eForm

1. 15411 3. 19507 2. 46722
3.39715 1. 15551 1.35812
0. 562627 0. 563847 2. 76759

m Comparison with simulated data

Thisimports 26141 |loci simulated for triplet sampled {{b,c},a} simulated under thelM model with asymmetric migration using Hudson’s
ms. Thevalues used for simulation werethoseinferred in the pairwiseanalysis (T=3.33, M=0.0933, 6=1.5). Thekey question is how much
statistical power can begained from analyzing triplet samples compared to pairs ?

si m= ReadLi st [" /hone / konr ad / Downl oads / VéngHeyTest 3rd" 1[1]; Mean [sim] // N
{0. 0178647, 0.719559, 0.020619, 0.727095, 2.33863, 3.03925}

Around 84%of theloci aretopologicallyinformative:
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Total [If [#01] >0 || #[31>0 ]| #[51>0, 1, 0] &/@ sim]/Length[sim]// N
0. 841322
res = sitecount3s[sim]; max = naxcount 3s [res]
{{14, 15, 16}, {16, 8, 8}, {9, 10, 11}}
Thissummarizesloci in each topological class as countsof distinct mutational configurations:
res2 = confi gcount 3s [si m];
In contrast tothereal data, boththe pairwiseandtriplet results closely match thetruevalues used for simulations:

sinpair = (Hatten[Delete [#, {{1}, {4}}]1]1// Total ) & /@ sim

si ntount = Tabl e [Count [sinpair, i1, {i, 0, Max [sinpair ]}];

pai rsi m= F ndvaxi num[Total [Tabl e [Log [asyn®s [M, , &, {1, i}]], {i, O, M [sinpair ]1}] * si ntount ],
{M 0.1, 0.001, 2}, {z, 4, 1, 12}, {e, 1, 0.1, 2}]

{-65619.2, {M- 0.0984103, t© —» 3.23947, 6 - 1.53159}}
Timng[triplsim =

Fi ndVaxi rum[tripletL[M, z, o, res2, max], {M 0.1, 0.01, 0.5}, {z, 3.3, 1, 6}, {e, 1.5, 1, 4}]]
{376.844, {-151483., {M- 0.0922354, t —» 3.28638, 6 » 1.51179}}}

This plots the differencein LogL from its maximum (ALogL) against T (left) and 6 (right) for triplet (solid, thick lines) and pairwise
(dashed lines) samples. As expected and in contrast to theinference on thereal data, thetriplet estimates are narrower. If one uses the
reversetriplet sampling schemei.e. sampling two individuals from thereceiving population (seeanalysis of data simulated for this case
with thesameparameter values below), thepower to infer M increases substantially (thin solid lines):

AlLogL AlogL

- 200}
; - 2000
~ 400}

—600f 4000

—800f
I —~ 6000
~1000

L L L B s B B By B B

I — 8000
~1200(

- 10000

- 1400

Thisimportsdata simulated under thereversesampling scheme:

sinREV = ReadLi st ["/hone / konr ad / Downl oads / VéngHeyTest REV" 1[[1]]; Mean [sinREV] // N
{{1,0,1},{0,1,0}{1,1,0},{0,0,1},{0, 1, 1},{1, 0, 0}}

{0. 0881757, 0.826556, 0.0827053, 0.819555, 2.2545, 3.01067}

resREV = sitecount3s [si MREV]; nax = naxcount 3s [resREV]

({14, 15, 15}, (17, 10, 11}, {10, 10, 11}}
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resREV = conf i gcount 3s [si nREV];
Timing[tripletLREV[0.0933, 3.3, 1.5, resREV, nax]]
{1. 48409, -158940. }

FindingtheMaximum takes 15 mins....

Timng [triplsinREV = F ndMaxi mum[tripl etLREVIM, t, o, resREV, nax],
{M, 0.1, 0.01, 0.5}, {z, 3.3, 1, 6}, {6, 1.5, 1, 4}]]

(830.436, (-158920., {M- 0.0868254, © - 3.26594, © - 1.51019}}}

Neps = pai rsim[2, 3, 2]/ (4 »ml);
Tps = 0.1 xpairsimp2, 2, 27 * 2 % Neps;
nps = pairsimf2, 1, 2] * (2.44 «10"6) / (2 Neps);

Netrs =triplsim[2, 3, 2]/ (4 *nml);
Ttrs =0.1 xtriplsim[2, 2, 2] =2 = Netrs;
mrs=triplsimp2, 1, 2] = (2.44%10"6)/ (2 Netrs);

{triplsim[[2, 1, 2]], pairsim[2, 1, 2]}
{0. 0922354, 0.0984103}
{{Neps, Netrs }, {Tps, Ttrs}, {nps, nirs}} // Tabl eForm

4. 78623 x 10° 4. 72436 x 108

3. 10097 x 10 3. 10521 x 108
0. 0250846 0. 0238185

3. Numbers of configurations

Thefeasibility of finding a solution for the GF depends on thenumber of configurationsthat need to betracked. In atwo-dememigration
model, the number of configurations that are possibleis determined by the number of waysthat j lineages present between successive

coalescent events can bedistributed across thetwo populations, and the number of ways that theancestry of n sampled individuals can
bedistributed amongst the j lineages present in each successive coalescenceevent. Specifically, thetotal number of configurationsis:

n
D248 2+1) Sy (1)
j=2

where S, ; istheStirling number of thesecond kind, which givesthenumber of waysthat n lineages can bedistributed over j non-empty

sets. Thesum is over all theintervals during which therewere j extant lineages. This number grows dramatically with the number of

lineages. For example, there are 92 and 2428 configurations for n = 4 and 6 respectively. In the IM model there are an additional
> ?=2 S, ,j configurations possiblein theancestral population.

However, if wecan find algebraic expressions for the GFwith j genes, we do not need to track all these configurations: for example,
if we know w[a, b, c\@],wecan immediately find (//[ ab, c, d\(Z)],for example. Therefore, the number of types of configuration
that weneed to calculateisonly:

n
22(51,2”):2”*1*4 2
j=2

For example, thisis28and 124 forn = 4 and 6, respectively.

Although the numbers of configurations with (say) 6 genes would be manageable for numerical calculations, extracting probabilities of
mutational configurations requiresthat we differentiate an algebraic expression, which is given by inverting alarge matrix. However, as
discussed above the GF can befound directlyifit iswritten asan expansion in M or R, each term correspondingto historieswith 0, 1, ...
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migration or recombination events. Thequétion is now, how mahy different histories do we need totfack, ifweallow k mutation or
recombination events?Consider migration between two demes. Amigration event can occur in j waysduring theinterval when thereare

j lineages, andsoasingleevent canoccurinn +(n - 1) + ...+ 2 = (n + 2) (n — 1)/ 2 ways. Multipleevents occur independently,
andsothereare((n + 2) (n - 1)/ 2)* waysthat k migration eventscan occur in the history of n genes. For example, with 4 genes
thereare9, 81, 729 waysthat 1, 2, 3 migration events can occur, and with 6 genes thereare 20, 400, 8000 terms, respectively. With this
method, weneed totrack many moreconfigurations, but eachis given by amuch moredirect calculation.

If we observe a very large number of loci, then we wish to tabulate the probability of every possible configuration of mutations. With n
genes, thereare2" — 2 branches, andsowehave(2" - 2)% waystothrow down k mutationsonto thebranches. For example, even
with 3 genesthereare6 possiblebranches, and 6 1° ~ 6 » 108 ways to distribute 10 mutations over thebranches. However, the number of
possibilities that we need to tabulate is much smaller than this, because the probability is determined by a much smaller number of
sufficient statistics. With three genes, if we observe no mutations on theinternal branches, then the probability depends only on the
numbers of singletons, {k,, Ky, K¢}, whilst if wesee(say) at least onemutation ancestralto{a, b}, then weknow thetopology:
then, the probability is determined by { ka + k,, Kap, Kc}.In both cases, thereare 14 distinct ways to divide 10 mutations over 3
classes of mutation. With moregenes, moreclasses must betabulated, but their number does not increase catastrophically. For example,
with 6 genesand no internal mutations, thereare 35 ways to distribute 10 mutations across 6 singleton classes. At theother extreme, if
we know the topology, then the probability is determined by 5 independent coalescencetimes, and so we expect that tabulating the
probability of gettingi,, ...i5 mutationsin each of thefivetimeintervalswill allow usto calculatethe chanceof seeing a particular set of

mutations k. All except the singleton class must contain mutations, and so there are roughly 3, 1% , > T=l 3 I' 12 ,1=935

configurations.

Definitions

= Automatingtherecursions
o makeEgns

o makeAllEqns

o TotalRate

o Mergers

o reduceEqgns

o tidyNotation

o numberOfDemes
o numberOfGenes
o GetVars

o configs

o selectEqns

m Data analysis
o sitecount3s

o configcount3s
o maxcount3s

o pr3s

o tripletL

o WilkHeSim2s

o asym2s
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divcutter
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sitetyp
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topair

o counttyp

o

incontrim3
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Psplit

o
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