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ABSTRACT Analysis of genomic data requires an efficient way to calculate likelihoods across very large numbers of loci. We describe
a general method for finding the distribution of genealogies: we allow migration between demes, splitting of demes [as in the
isolation-with-migration (IM) model], and recombination between linked loci. These processes are described by a set of linear
recursions for the generating function of branch lengths. Under the infinite-sites model, the probability of any configuration of
mutations can be found by differentiating this generating function. Such calculations are feasible for small numbers of sampled
genomes: as an example, we show how the generating function can be derived explicitly for three genes under the two-deme IM
model. This derivation is done automatically, using Mathematica. Given data from a large number of unlinked and nonrecombining
blocks of sequence, these results can be used to find maximum-likelihood estimates of model parameters by tabulating the proba-
bilities of all relevant mutational configurations and then multiplying across loci. The feasibility of the method is demonstrated by
applying it to simulated data and to a data set previously analyzed by Wang and Hey (2010) consisting of 26,141 loci sampled from
Drosophila simulans and D. melanogaster. Our results suggest that such likelihood calculations are scalable to genomic data as long as
the numbers of sampled individuals and mutations per sequence block are small.

THE coalescent process is highly variable: samples from
even a single well-mixed population rapidly coalesce

down to a few ancestral lineages, so that their deeper an-
cestry is determined by just a few random coalescence
events (Felsenstein 1992). Thus, small samples taken from
a large number of loci give much more information than
large samples from a few loci. For example, the distribution
of coalescence times, and hence the history of effective
population size, has been inferred from single diploid ge-
nomes (Li and Durbin 2011). Although it is now feasible to
sample very large numbers of markers, or indeed whole
genomes, we urgently need methods for analyzing such
data. In principle, we can calculate likelihoods from very
large data sets, if we have loosely linked blocks of sequence
within which recombination is negligible. Provided that
only a few genomes are sampled, we can tabulate the prob-
ability that any particular configuration of mutations will

be seen at each locus and then multiply across large num-
bers of loci to find the likelihood of our model (Takahata
et al. 1995).

Wilkinson-Herbots (2008) and Wang and Hey (2010)
derive the distribution of coalescence times for a pair of
genes sampled from two populations that separated at some
time in the past and subsequently exchanged migrants. This
“isolation-with-migration” (IM) model is of particular inter-
est in evaluating the role of gene flow during speciation.
Hobolth et al. (2011) show how this and similar calculations
can be done more efficiently using matrix exponentials.

Here, we present an alternative method, based on gener-
ating functions, which provides direct information about the
pattern of mutational variation and can be automated using
symbolic algebra packages such as Mathematica. We give the
IM model as an example and show how the method extends
to linked loci.

The Generating Function of a Genealogy

The ancestry of a sample of genes, V, is described by the
lengths of the branches that are ancestral to every possible
subset. For example, suppose that we have three genes at
a locus, labeled V ¼ {a, b, c}. We label lineages by the set
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of genes to which they are ancestral. Thus, if lineages an-
cestral to genes b and c coalesced most recently, then the
branches {b} and {c} have the same length; i.e., t{b} ¼ t{c},
and t{a} ¼ t{b} 1 t{b,c}. With this topology, there are no
lineages ancestral to {a, b} or {a, c} and t{a,b} ¼ t{a,c} ¼ 0.
Thus, both the topology and the branch lengths are encoded
by the vector of all possible branches t, which has elements tS
for S 4 V.

The generating function (GF) for the branch lengths t
depends on a set of corresponding dummy variables, v

and is defined as the expectation c½v� ¼ E½e2v:t�. It is more
convenient to use this form—a Laplace transform—rather
than the alternative E½Q ​

S4V ztSS �. Generating functions are
widely used, primarily because the distribution of the sum
of two independent variables is given by the product of the
corresponding GF. In particular, Latter (1973) used a GF
approach to find the solution for the expected frequency
of heterozygotes under the symmetric IM model and
Griffiths (1981b) used the GF for the numbers of types to
calculate sampling distributions for the infinite-alleles
model. Griffiths (1991) applied this to the two-locus prob-
lem (see also Jenkins 2008). In the context of the coales-
cent, the GF has a concrete interpretation: under the
infinite-sites model, it is the probability of seeing no muta-
tions, given mutation rate vS along branch S.

Information about the branch lengths themselves can
be recovered from the GF. The mean lengths, E[tS], are
found by differentiating with respect to vS and setting v

to zero; higher moments are found by differentiating more
than once. The actual distribution can be found by taking
the inverse Laplace transform, which may be done either
algebraically (if the GF has a certain form) or by numerical
integration.

In practical applications, we wish to know the probability
that there are kS mutations on branch S. Under the infinite-
sites model, with mutation rate m, this is given by taking the
expectation of a Poisson distribution with mean mt over the
distribution of coalescence times,

P½kS� ¼ E

"
e2mtSðmtSÞkS

kS!

#
¼ ð2mÞkS

kS!

 
@kSc

@vkS
S

!
vS¼m

; (1)

which is proportional to the k9Sth differential of the GF with
respect to vS, taken at vS ¼ m, and setting all other v’s to
zero. We see that Equation 1 defines a term in a Taylor
series, so that the probability of a particular configuration
of mutations is given by the coefficient in the expansion of c.
In other words, if we set vS ¼ m2 xS and expand around the
point xS ¼ 0, then the probability of seeing kS mutations on
branch S is the coefficient of xkSS , multiplied by mkS. Similarly,
the joint probability of seeing a configuration of kS1 ; kS2 ; . . .
mutations on branches S1, S2, . . . is the coefficient of
x
kS1
S1 x

kS2
S2 . . . , multiplied by mkS1þkS2 .... In the following, we

scale time relative to twice the effective population size,
2N; i.e., the scaled mutation rate is 2Nm ¼ u/2.

While we assume an infinite-sites mutation model for
simplicity throughout, the GF can also be used to obtain
the probabilities of mutational configurations for more
complex mutation models. For example, under the Jukes-
Cantor (Jukes and Cantor 1969) model mutations to a dif-
ferent state happen at rate (3/4)m and the chance of a back
mutation is (1/4)m. The probabilities that two sequences
differ or are the same at any particular site are 3ð12e2mtÞ=4
and ð1þ 3e2mtÞ=4; respectively. Given a pair of sequences
of length n the probability of seeing j sites in a different
and n 2 j in the same state is given by taking the expectation
of a Binomial distribution over the distribution of coalescence
times:

P½ j� ¼ E
��

3
4

�n�
12e2mt�j�1

3
þ e2mt

�n2j� n
j

��
: (2)

This can be written as a sum of the GFs of pairwise coalescence
times:

P½ j� ¼
�
3
4

�nXj
k¼0

Xn2jþk

a¼k

ð21Þk
�
1
3

�n2j2aþk�n
j

��
j
k

��
n2 j
a2 k

�
c½ma�:

(3)

Thus, in principle, we can obtain results under a finite-sites
mutation model directly from the GF without the need to
take derivatives.

The generating function is a sum of terms, each corre-
sponding to a particular topology. For a given topology,
many branches will have zero length by definition, and so
the GF will be independent of the corresponding vS; some
branches will have the same lengths (e.g., t{b} ¼ t{c}) and so
the corresponding terms will be a function of the sum of the
respective dummy variables (e.g., v{b} 1 v{c}). Under the
infinite-sites model, this brings a substantial simplification if
we see mutations on internal branches, because any terms
that do not depend on the corresponding dummy variables
can be dropped from the GF: they represent topologies in-
consistent with the data. The joint likelihood for a given
mutational configuration can then be calculated by multiple
differentiation of the remaining terms, which involves a sum
over only the possible topologies.

The General Recursion

The recursion for the generating function of genealogical
branch lengths can be derived by tracing back from the
present to the most recent event, which might be a co-
alescence, a recombination, a movement between demes,
a change in population structure, or whatever. Events i occur
at rate li and (tracing back in time) change the configura-
tion of genes from the sampling configuration V to Vi. Con-
figurations include the number of lineages and—depending
on the model—their locations and/or genetic backgrounds.
For example, suppose that we start with three lineages {a},
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{b}, and {c}. A coalescence between lineages {b} and {c}
generates a new configuration {{b, c}, {a}}, in which there
are now two lineages—one ancestral to {b, c} and the other
to {a}. We derive a recursion that expresses the GF c[V] as
a sum over the possible configurations before the previous
event. The time back to that event is exponentially distrib-
uted with rate

P
i li, and so the distribution of the lengths of

the terminal branches is just the convolution of this with
their previous distribution. Taking Laplace transforms, this
corresponds simply to multiplication by the factor
1=ðPi li þ

P
jSj¼1 vSÞ, since a convolution of distributions

transforms to a product of the previous GF and the GF of
an exponential distribution with rate

P
i li. Summing over

all possible events we have

c½V� ¼
P

i lic½Vi��P
i li þ

P
jSj¼1 vS

	: (4)

The denominator gives the total rate of events,
P

i li in the
interval from the present to the first event, plus the sum of
the vS that correspond to terminal branches (the “leaves” of
the tree). The numerator is the sum over all possible generating
functions at the previous event; Vi denotes the configuration
prior to event i. This recursion yields a set of linear equations for
the c[V] that is readily solved; the limit is set by the number of
possible sample configurations of genes that have to be tracked.
To see how this works, we give a series of examples.

A Single Population

In the simplest case of a single well-mixed population, we
need to track only coalescence events. Scaling time relative
to twice the effective population size, 2N, the rate of coales-
cence is given by the number of pairs of lineages in a given
sample configuration

� jVj
2

�
¼jVjðjVj21Þ=2; where there are |V|

lineages. Thus

c½V� ¼ 1�� jVj
2

�
þP jSj¼1 vS

� X
fx;yg4V

c


Vfx;yg

�
; (5)

where the sum is over all the
� jVj

2

�
possible pairwise coales-

cences, between genes x and y. Vfx;yg denotes the sample
configuration after coalescence, i.e., V with lineages {x}, {y}
replaced by the new lineage {x, y}. Since we define the GF
for a single gene as 1, we have for two genes

c½a; b� ¼ 1
ð1þ va þ vbÞ

: (6)

This is equivalent to the probability of identity in state with
va + vb ¼ u. Note that for brevity, we have condensed the
notation so that c[a, b] represents the GF for two lineages
ancestral to genes a and b, respectively; and c[ab, c] repre-
sents two lineages, one ancestral to a and b, and the other

to c. For automated recursions (File S1), the full (and un-
ambiguous) notation c[v, {{a}, {b}}], c[v, {{a, b}, {c}}]
would be used. For three genes

c½a; b; c� ¼ 1
ð3þ va þ vb þ vcÞ
·  
�

1
ð1þ vab þ vcÞ þ

1
ð1þ vac þ vbÞ

þ 1
ð1þ vbc þ vaÞ

�
:

(7)

Each of the three terms corresponds to one of the three
possible topologies. For example, the last term depends on
vbc and corresponds to coalescence between {b} and {c}, so
that the interior branch tbc . 0. To find the probability of
each topology, we set all the vS to zero, and see that each
term contributes 1

3. To find the probability that there are k
mutations ancestral to b and c, we differentiate k times with
respect to vbc, set vbc to equal the scaled mutation rate u/2
and all other vS to zero, and multiply by (2u/2)k/k!
(Equation 1). This gives the geometric distribution
ð1=3Þð2uk=ð2þ uÞkþ1Þ for k . 0, the factor 3 arising because
there is a 1/3 probability that b and c coalesce first, allowing
mutations of this class to exist. Alternatively, we could set all
the vS to 0, except for vbc ¼ u=22xbc, and then expand
around xbc ¼ 0; the coefficients of xkbcbc are proportional to
the chance of seeing kbc mutations that are ancestral to
b and to c. The joint probabilities of other mutational con-
figurations can be found in a similar way.

Migration

Suppose that two populations exchange migrants at a scaled
rate 2Nm. For simplicity, we assume that migration is
symmetric and both demes are of the same size (the gener-
alization to more demes, different population sizes, and
asymmetric migration is obvious) and that a set V1 of genes
is sampled from one deme and V2 from the other. Now,
there can be coalescence, which reduces the size of one or
the other set, or migration, which transfers a lineage x from
one deme to the other creating, for example, new sample
configurations V1,+x and V2,2x. Thus
c½V1;V2�
¼ 1�� jV1j

2

�
þ
� jV2j

2

�
þ 2NmðjV1j þ jV2jÞ þ

P
S4V1 ;jSj¼1 vS þ

P
S4V2 ;jSj¼1 vS

�

·  

 P
fx;yg4V1

c


V1;fx;yg;V2

�þ P
fx;yg4V2

c


V1;V2;fx;yg

�

þ   2Nm
P

fxg4V1

c


V1;2x ;V2;þx

�þ 2Nm
P

fxg4V2

c


V1;þx ;V2;2x

�!
:

(8)

This leads to a set of linear equations that can readily be
solved. We need to distinguish only sample configurations
where the genes are in different demes, c[a\b], or in the
same demes, c[a, b\Ø], say (again, we have condensed the
notation; Ø represents the empty set, and \ the separation
between the two demes). From Equation 8 and using the
symmetry of the model,
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c½anb� ¼ 2Nm
ð4Nmþ va þ vbÞ

ðc½a; bnø� þ c½øna; b�Þ

¼ 4Nm
ð4Nmþ va þ vbÞ

c½a; bnø�

c½a; bnø� ¼ 1
ð1þ 4Nmþ va þ vbÞ

·   ðc½abnø� þ 2Nmðc½anb� þ c½bna�ÞÞ

¼ 1
ð1þ 4Nmþ va þ vbÞ

ð1þ 4Nmc½anb�Þ:

(9)

This has the solution

c½anb� ¼ M
ðM þ va þ vbÞð1þM þ va þ vbÞ2M2

c½a; bnø� ¼ M þ va þ vb

ðM þ va þ vbÞð1þM þ va þ vbÞ2M2;

(10)

where M ¼ 4Nm. Note that the GF is a function only of va 1
vb, given the constraint ta ¼ tb. Equation 10 has been pre-
viously derived as the probability of identity in state with
va 1 vb ¼ u (Griffiths 1981a, equation 10). Taking the in-
verse Laplace transform gives the probability of pairwise
coalescent times,

Pa;bnø½t� ¼
1
2

�
e2l0t

�
12

1
l12 l0

�
þ e2l1t

�
1þ 1

l1 2l0

��

Panb½t� ¼
M
�
e2l0t 2 e2l1t

�
l1 2 l0

;

(11)

where l0 ¼ 1
2ð1þ 2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

p
Þ and l1 ¼ 1

2ð1þ 2Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

p Þ. This result was derived directly by Herbots
(1997), using a partial fraction expansion (see Griffiths
1981a; Wilkinson-Herbots 2008, equation 18), but can also
be found from the discrete time transition matrix (Wakeley
1996). In fact, l0 and l1 are the eigenvalues of the symmet-
ric transition matrix Q given by Hobolth et al. (2011) with
S1 ¼ S2, S11 ¼ S22, and m1 ¼ m2.

Population Splits: The IM Model

Now, suppose that the two populations derive from a single
ancestral population T generations ago. Dealing with finite
times explicitly leads to complicated expressions (Wang and
Hey 2010). However, we can retain the simple form of the GF
by taking the Laplace transform with respect to the divergence
time, with dummy variable L. This has a concrete interpreta-
tion, as the expectation over a model in which the divergence
time is exponentially distributed with rate L, times a normal-
izing factor L. We can either fit this model directly or take the
inverse Laplace transform with respect to L, to find the GF of
the genealogy for a given divergence time T, which we denote
P. (More precisely, we take the inverse Laplace transform of
L21c, since c ¼ E½e2LTP� ¼ RN

0 Le2LTPdT.)

The recursion is now

c½V1;V2�
¼ 1�

Lþ
� jV1j

2

�
þ
� jV2j

2

�
þ 2NmðjV1j þ jV2jÞ þ

P
S4V1 ;jSj¼1 vS þ

P
S4V2 ;jSj¼1 vS

�

·  

 
Lc½V1 [V2� þ

P
fx;yg4V1

c


V1;fx;yg;V2

�þ P
fx;yg4V2

c


V1;V2;fx;yg

�

þ   2Nm
P

fxg4V1

c


V1;2x ;V2;þx

�þ 2Nm
P

fxg4V2

c


V1;þx ;V2;2x

�!
:

(12)

The additional term Lc[V [ V] represents the replacement of
the GF for two separate demes by the GF for a single popula-
tion, which follows the standard coalescent (see Equation 5).
Expression (12) is otherwise identical to Equation 8.

As a simple example, consider two genes,

c½anb� ¼ 1
Lþ 4Nm þ va þ vb

·   ðLc½a; b� þ 2Nmðc½øna; b� þ c½a; bnø�ÞÞ

¼ 1
Lþ 4Nmþ va þ vb

·
�

L

ð1þ va þ vbÞ
þ 4Nmc½a; bnø�

�

c½a; bnø� ¼ 1
Lþ 1þ 4Nmþ va þ vb

·   ðLc½a; b� þ c½abnø� þ 2Nmðc½anb� þ c½bna�ÞÞ
¼ 1

Lþ 1þ 4Nmþ va þ vb

�
L

ð1þ va þ vbÞ
þ 1þ 4Nmc½anb�

�
;

(13)

which have a solution similar to Equation 10:

c½anb� ¼ 1
1þ va þ vb

·  
Lð1þ Lþ va þ vbÞ þMð1þ 2Lþ va þ vbÞ�

Lþ va þ vb þ ðLþ va þ vbÞ2þMð1þ 2Lþ 2va þ 2vbÞ
	

c½øna; b� ¼ 1
1þ va þ vb

·  
Lþ va þ vb þ ðLþ va þ vbÞ2þMð1þ 2Lþ va þ vbÞ�

Lþ va þ vb þ ðLþ va þ vbÞ2þMð1þ 2Lþ 2va þ 2vbÞ
	:

(14)

With complete isolation (i.e.,M ¼ 0), differentiation of these
expressions yields the explicit formula for the numbers of
pairwise differences in the complete isolation model given
by Takahata et al. (1995).

For three genes we have

c½anb; c� ¼ 1
Lþ 1þ 6Nmþ va þ vb þ vc

·   ðLc½a; b; c� þ c½anbc� þ 2Nmðc½øna; b; c�
þ   c½cna; b� þ c½bna; c�ÞÞ

c½øna; b; c� ¼ 1
Lþ 3þ 6Nmþ va þ vb þ vc

·   ðLc½a; b; c� þ c½øna; bc� þ c½ønab; c� þ c½ønac; b�
þ   2Nmðc½anb; c� þ c½bna; c� þ c½cna; b�ÞÞ:

(15)

Although there are only two types of configuration with
three genes, there are three permutations of the first. Thus,
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in our symmetric model, we have four coupled linear
equations, which can be written in matrix form,

0
BBBB@

c½anb; c�
c½bna; c�
c½cna; b�
c½øna; b; c�

1
CCCCA¼ Lc½a; b; c�

0
BBBB@

g1

g1

g1

g3

1
CCCCA

þ  

0
BBBB@

g1c½anbc�
g1c½bnac�
g1c½cnab�

g3ðc½øna; bc� þ c½ønb; ac� þ c½ønc; ab�Þ

1
CCCCA

þ   2Nm

0
BBBB@

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1
CCCCA  ·  

0
BBBB@

g1c½anb; c�
g1c½bna; c�
g1c½cna; b�
g3c½øna; b; c�

1
CCCCA;

where gj ¼ 1=ðLþ jþ 6Nmþ va þ vb þ vcÞ and j is the
number of pairs that can coalesce given a particular sample
configuration.

This has an explicit solution, which we derive in detail in
File S1 using a simple symbolic algorithm. If the demes were
not equivalent because of asymmetric migration and/or dif-
ferences in effective population size, then we would need to
distinguish configurations such as c[a\b, c] and c[b, c\a]
and would have eight coupled equations.

With coalescence or population splits alone, the recur-
sions can be solved directly: every event leads back to
a simpler configuration, with either fewer lineages or
fewer demes. However, with migration, we must solve
a set of coupled equations. This is easily done numerically,
for specific v, but beyond the simplest cases leads to
cumbersome algebraic expressions that cannot readily be
differentiated. One way around this problem (which we
employ in File S1) is to condition on the topology. Another
simplification is to expand the GF in M ¼ 4Nm, writing
c ¼PN

i¼0M
ici. Then, each migration event leads back to

a lower-order expression, and we can again find the solu-
tion directly. This procedure is equivalent to separating
out the GF into a sum of terms, each corresponding to 0,
1, 2, . . . migration events.

In comparison, it is straightforward to obtain results for
summaries of the genealogy from the GF. For instance, the
distribution of the total number of mutations X can be found
by setting all v to be the same and taking the inverse Lap-
lace transform (see File S1). Similarly, the probability of
a particular topology can be found by taking the limit of
the vS corresponding to internal branches that are incompat-
ible with this topology at infinity with all other vS evaluated
at zero. For a triplet with sampling configuration {a\b, c} this
gives

P½fa; fb; cgg� ¼ lim
vab/N
vac/N

c½anb; c�jvS¼0 ¼ 2M þ 32 2e2ð1þ2MÞT

3ð1þ 2MÞ

P½fc; fa; bgg� ¼ P½fb; fa; cgg� ¼ lim
vab/N
vbc/N

c½anb; c�jvS¼0 ¼ 2M þ e2ð1þ2MÞT

3ð1þ 2MÞ :

(16)

For the case of three genes in the IM model Equation 16
yields Figure 1. Furthermore, for a given topology, {a, {b, c}}
say, one can find the distribution of the number of muta-
tions on the internal branch, P[kbc|{a, {b, c}}], by differen-
tiating the limit in Equation 16 with respect to vbc and
setting all other vS to zero as before. Plotting these distri-
butions (Figure 2) reveals that genealogies congruent with
the sampling, i.e., with topology {a, {b, c}}, tend to have
a longer internal branch than those with incongruent topol-
ogies {b, {a, c}} or {c, {a, b}} (Figure 2A vs. 2B). This is to
be expected, given that coalescence events between lineages
sampled from the same population, in this case {b, c}, occur
relatively faster, leaving a long time tbc during which muta-
tions can occur on the internal branch. In contrast, coales-
cence events between lineages sampled from different
populations are likely to occur deeper in the past, within
the ancestral population. These new results extend previous
theory on pairwise coalescence times in the IM model
(Wilkinson-Herbots 2008; Wang and Hey 2010) to topolog-
ically informative samples. Likewise, it is straightforward
to use the GF to extend pairwise results for the IM model
beyond the two-deme case. Larger numbers of populations
(d) would be incorporated into Equation 9 by an additional
term (d 2 1); e.g., the rate at which pairs of lineages in
different demes are brought together in the same population
becomes M/(d 2 1).

Figure 1 Topological probabilities (Equation 16) for a sample of three
genes in the IM model, plotted against the scaled migration rate M for
two splitting times, T ¼ 0.5 (solid lines) and T ¼ 2 (dashed lines). The
chance of observing an incongruent genealogy with topology {c, {a, b}} or
{b, {a, c}} (bottom) increases with M, as congruent topologies {a, {b, c}}
(top) become less likely.
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Recombination Between Linked Loci

The GF method readily extends to multiple linked loci. Each
individual is represented as a list, which for each locus gives
the set of genes to which it is ancestral; Figure 3 gives an
example with three loci. Suppose that we have k individuals,
carrying lineages V ¼ V1, . . . ,Vk,

c½V� ¼ 1��
k
2

�
þ 2N

P
a2R ra þ vL

�
 P

1#i,j#k
c½V i;j� ​ þ 2N

P
a2R

rac ½Va�
!
;

(17)

where vL ¼
Pk

i¼1
P

S4Vi ;jSj¼1 vS, i.e., we need to sum the
vS leaves over both loci and individuals, R is the set of all
possible recombination events and ra is the rate of a re-
combination of type a 2 R. The first sum on the right in
Eq. (4) is over all

� k
2

�
possible coalescences between the k

individuals. At each coalescence, the lists of genes at each
locus are merged. For example, a coalescence between
{a, p, x} and {ø, q, ø} gives an ancestral lineage {a, pq,
x}, in which the second locus is now ancestral to genes p
and q. The second sum on the right is over all possible
recombination events a 2 R, each resulting in a new set
of lineages Va; these increase the number of lineages to
k 1 1. For example, a recombination in the parent of an
individual {b, q, y}, between the first locus and the other
two, gives two ancestral lineages {b, ø, ø} and {ø, q, y}
(Figure 3). Note that this recursion does capture the non-
Markovian nature of recombination: the distribution of coa-
lescence times at a locus depends on the genealogies at all the
other loci, not just the adjacent locus. The GF gives the joint
distribution of genealogies rather than the full ancestral re-
combination graph (which includes additional information
about which loci were carried by the ancestors).

Consider the simplest case, of two genes at two loci;
when these are in two individuals, the configuration is
denoted {a, x}, {b, y} and vL ¼ va 1 vb 1 vx 1 vy:

c½fa; xg; fb; yg� ¼ 1
1þ 4Nrþ vL

ðc½fab; xyg� þ 2Nrc½fa; øg; fø; xg; fb; yg�
þ  c½fa; xg; fb; øg; fø; yg�Þ

c½fa; øg; fø; xg; fb; yg� ¼ 1
3þ 2Nrþ vL

ðc½fa; xg; fb; yg� þ c½fa; øg; fb; xyg�

þ  c½fab; yg; fø; xg� þ   2Nrc½fa; øg; fø; yg; fb;øg; fø; yg�Þ

c½fa; øg; fø; xg; fb; øg; fø; yg� ¼ 1
6þ vL

ðc½fa; xg; fb; øg; fø; yg� þ  c½fa; øg; fø; xg; fb; yg�
þ   c½fab; øg; fø; xg; fø; yg� þ  c½fø; xyg; fa; øg; fb; øg�
þ  c½fa; yg; fø; xg; fb; øg� þ c½fb; xg; fa; øg; fø; yg�Þ:

(18)

By symmetry, we need only these three recursions, for the
cases where the four genes are distributed over two, three,
or four individuals. Note that c[{ab, xy}] ¼ 1, c[{a, ø},
{b, xy}] ¼ c[{a}, {b}], and so on, connecting these two-
locus recursions to the one-locus GF.

This has the solution

c½fa; xg; fb; yg�
¼ 2

�
9þ Rþ 6Rfþ R2f

�þ ð9þ Rþ 2RfÞvL þ v2
L

18þ 26Rþ 4R2 þ �27þ 19Rþ 2R2
�
vL þ ð10þ 3RÞv2

L þ v3
L

c½fa; øg; fø; xg; fb; yg�
¼ 6þ �6þ 13Rþ 2R2

�
fþ ð1þ ð7þ 3RÞfÞvL þ fv2

L

18þ 26Rþ 4R2 þ �27þ 19Rþ 2R2
�
vL þ ð10þ 3RÞv2

L þ v3
L

c½fa; øg; fø; xg; fb; øg; fø; yg�
¼ 4þ �7þ 13Rþ 2R2

�
fþ ð8þ 3RÞfvL þ fv2

L

18þ 26Rþ 4R2 þ �27þ 19Rþ 2R2
�
vL þ ð10þ 3RÞv2

L þ v3
L
;

(19)

where f ¼ 1=ð1þ va þ vbÞ þ 1=ð1þ vx þ vyÞ, and R ¼
2Nr. These formulas correspond to those previously
obtained by Simonsen and Churchill (1997), using a Markov
chain method. For example, the covariance of coalescence
times between two loci is

Cov


Tab;Txy

� ¼ E


TxyTab

�
2 E½Tab�E



Txy
�
; (20)

which can be found straightforwardly from the GF by taking
derivatives with respect to va and vx and evaluating at v ¼
0, noting that E[Tab] ¼ E[Txy] ¼ 1:

Figure 2 The distribution of the number of mutations (k) on the internal branches for a sample of three genes {a, {b, c}} in the IM model with
symmetric migration u ¼ 5, M ¼ 0.8 plotted for three different splitting times T ¼ 0 (circles, solid line), T ¼ 2 (squares, long-dashed line), and
T ¼ 4 (diamonds, short-dashed line). Congruent genealogies with topology {a, {b, c}} (A) tend have longer internal branches than those
with incongruent topologies {c, {a, b}} or {b, {a, c}} (B). Note that for T ¼ 0 the distributions for the two topologies are identical as expected
in a panmictic population.
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Cov


Tab; Txy

� ¼
 
d2c½fa; xg; fb; yg�

dvadvx






v¼0

!
21 ¼ 9þ R

9þ 13Rþ 2R2:

(21)

This agrees with Simonsen and Churchill (1997, equation
52).

Including recombination leads to sets of coupled linear
equations, whose solution involves an unwelcome matrix
inversion. As with migration, this problem can be avoided by
expanding in powers of R, which is equivalent to summing
over histories that involve 0, 1, . . . recombination events.
Moreover, these recombination events are uniformly distrib-
uted across the genetic map, and so we have a description of
the ancestry of the whole genome and not just of two linked
loci. The recursions give us the probability that there are no
recombination events, that there is one event producing two
blocks with different genealogies, that there are three events
producing three blocks of genome, and so on. This may
allow likelihoods to be calculated for short sequence blocks,
provided that R is small.

Slatkin and Pollack (2006) calculate the probabilities of
alternative topologies for genes at two loci in three com-
pletely isolated species; their recursion is essentially the
same as ours, but tracks just the distribution of topologies
rather than the full distribution of coalescence times. Since
no coalescence can occur until two of the genes are brought
together in the same ancestral population prior to the most
recent speciation event, this reduces to the case of three
linked pairs of genes in two completely isolated species. This

case can be solved by the above method, by including a rate
of population splits, L, which corresponds to the time, T,
between the two speciation events.

Drosophila melanogaster–D. simulans Divergence

To illustrate the feasibility of the GF method for inference in
practice, we applied it to both real and simulated data. We
first reanalyzed the genomic data set of Drosophila mela-
nogaster–D. simulans compiled and analyzed by Wang and
Hey (2010), using a likelihood method for pairwise samples.
The data (kindly provided by Y. Wang) consist of alignments
of 30,247 blocks of intergenic sequence of 500 bp each sam-
pled from two inbred lines of D. simulans and one inbred
line each of D. melanogaster and D. yakuba (the latter used
as an outgroup to account for mutational heterogeneity and,
in the triplet analysis, to polarize mutations). Following
Wang and Hey (2010), low-quality sequences, indels, and
positions next to indels were removed. Rather than using
the divergence to the outgroup to scale the mutation rate at
each locus (Yang 2002; Wang and Hey 2010), each locus
was trimmed after a fixed number of mutational differences
between D. yakuba and D. melanogaster. We chose a cutoff
of 16 divergent sites, which corresponds roughly to a third
of the observed mean divergence across all loci in the full
data set. A total of 2,090 loci that were below this cutoff
were excluded from the analysis. Since our method assumes
infinite-sites mutations, sites with more than two segregat-
ing states (12.9% of all polymorphic sites) were excluded.
We also filtered out shared derived mutations that were
topologically incongruent with the majority class of shared
derived mutations in each block (2.5% of all polymorphic
sites). A total of 2,016 loci, which contained equal numbers
of topologically conflicting shared derived mutations, were
excluded. The final, trimmed data set consisted of 26,141
loci. To convert scaled parameter estimates into absolute
values (Ne ¼ u/4m, t ¼ g2NeT), we followed Wang and Hey
(2010) and assumed that D. yakuba and D. melanogaster split
10 MYA and with a generation time per year of g ¼ 0.1, which
gives a mutation rate per block of 8 · 1028.

Given that Wang and Hey (2010) detected a signal of
gene flow from D. simulans to D. melanogaster but not in
the reverse direction, we fitted an IM model with asymmet-
ric migration. The GF for this case can be obtained using
Equation 4 and, given that each genealogy can be affected
by only one migration event at most, is considerably simpler
than the analogous expression with symmetric migration
given by solving Equation 15 (details are provided in File
S1). To investigate the effect (in terms of bias and power) of
including a third sample and thus topology information on
parameter estimation, we performed analogous likelihood
analyses on pairwise (one sample from each of D. mela-
nogaster and D. simulans) and triplet data. To assess the
effect of removing positions that violate the infinite-sites
mutation model, we also ran a pairwise analysis on the full,
untrimmed data set. Mutational heterogeneity in this

Figure 3 An example of coalescence and recombination between three
loci. At the present generation (bottom), there are two individuals: one
carries genes a, p, x and the other carries b, q, y. Lineages ancestral to the
three loci are colored black, red, and blue, respectively. This is denoted as
{{a, p, x}, {b, q, y}}. Tracing back, the most recent event is a recombination
(red dot) giving three individuals {{a, p, x}, {b, ø, ø}, {ø, q, y}}, where ø is
the empty set. There is then another recombination event, preceded by
three coalescence events (black dots); these produce the configurations
{{a, p, x}, {b, ø, ø}, {ø, q, ø}, {ø, ø, y}}; {{a, pq, x}, {b, ø, ø}, {ø, ø, y}}; {{a, pq, x},
{b, ø, y}}; and {{ab, pq, xy}}. Recombination and coalescence events prior to
this single common ancestor do not affect the observed genealogy.
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analysis was incorporated by binning loci according to their
outgroup divergence and specifying mutation rate scalars for
each bin (we used 10 bins).

To speed up calculations in the triplet analysis the GF was
conditioned on the topology (by taking limits as shown in
Equation 16). Probabilities of all observed mutational
configurations were tabulated separately for each topology
class (congruent, incongruent, and topologically uninforma-
tive loci) (see File S1). Using the FindMaximum function in
Mathematica, the joint likelihood of M, T, and u can be
maximized very efficiently (a few seconds or minutes for
pairs or triplets, respectively). A Mathematica notebook for
this calculation is provided in File S1; scripts for preprocess-
ing input data are available from the authors on request.

Despite the fact that we are assuming an infinite-sites
mutation model [Wang and Hey (2010) used a Jukes–
Cantor (Jukes and Cantor 1969) model], the results from
the pairwise analysis on the full data (Table 1) agree well
with those obtained by Wang and Hey (2010). As expected,
our maximum-likelihood estimate (MLE) of Ne (5.5 · 106)
falls in between the Ne estimates obtained by Wang and Hey
(2010, Table 7) for the ancestral population (3.1 · 106) and
D. simulans (5.9 · 106) (note that Wang and Hey 2010 fit
a slightly more complex history with separate Ne parameters
for each species). Likewise, estimates of M and T agree well
with the results of Wang and Hey (2010). The trimming of
back mutations and topologically incongruent mutations led
to a slight decrease in Ne and increased estimates ofM in the
pairwise analysis. This effect was more pronounced in the
triplet analysis; in particular, the MLE for M was threefold
higher than the estimate of Wang and Hey (2010) (Table 1).
Furthermore (and perhaps unexpectedly) we found no in-
crease in power in the triplet analysis (Figure 4). To inves-
tigate this further, we repeated these analyses on simulated
data generated using ms (Hudson 2002) under the IM his-
tory estimated for the two Drosophila species, i.e., using the
MLE obtained from the pairwise analysis on the trimmed
data (Table 1). In contrast to the Drosophila analyses, we
found no bias in parameter estimates and higher power to
estimate M and T in triplet compared to pairwise analyses of
these simulated data (Figure 4). This suggests that the dif-
ferences between pairwise and triplet analyses seen in the
Drosophila example result from violations of the infinite-
sites mutation model rather than from an inherent bias of
our method. An obvious interpretation is that the use of

shared derived mutations to infer the topology at each locus
in the triplet analysis makes our method sensitive to misin-
ference of ancestral states resulting from backmutations on
the outgroup branch. In other words, mispolarized muta-
tions artificially inflate the proportion of loci with incongru-
ent topologies and hence the estimate of M. As a simple
check, we can ask what the expected frequencies of congru-
ent, incongruent, and topologically uninformative loci are
(these can be derived from the GF analogous to Equation
16; see File S1). Given the MLE for trimmed pairwise and
triplet analysis (Table 1), we expect 2.1% incongruent and
15.7% topologically uninformative loci on the basis of the
pairwise results and 2.6% incongruent and 19.3% uninfor-
mative loci on the basis of the triplet results. However, the
observed frequencies in the data set are 6.2% and 18.8% for
topologically incongruent and uninformative loci, respec-
tively. This confirms that there is an apparent (and likely
artificial) excess of incongruent topologies in the data that
explains the bias seen the triplet MLEs. While this illustrates
the problems of assuming infinite-sites mutations when
dealing with old divergence events, it is actually surprising
how little effect ignoring back mutations had in this case,
considering the large distance between in- and outgroup.

We also analyzed triplet data simulated under the re-
verse sampling scheme (two individuals from the species/
population receiving migrants). The GF for this is slightly
more complicated and is derived in File S1. The power to
estimate M in this case increases substantially when analyz-
ing triplets (Figure 4). This is expected given that most
migration events will result in incongruent genealogies with
relatively long internal branches.

Discussion

The GF framework provides a general method to derive
likelihoods under a variety of models that include migration,
changes in population structure, and recombination and
applies to arbitrary sample sizes. Here our aim is to set out
the method and show that it can be implemented for
indefinitely large numbers of loci. So, we have focused on
small samples for simplicity. Assuming that populations are
exchangeable in size and rate of migration reduces both the
number of parameters to be estimated and the number of
configurations to track. In the case of the symmetric IM
model, we do not need to distinguish the two demes, which

Table 1 Population parameters estimated for D. melanogaster–D. simulans using 26,141 loci (data from (Wang and Hey 2010)

Data set u (Ne) M ¼ 4Nm T (t) logL

Pair, full data 1.85 (5.52 · 106) 0.051 2.70 (2.98 · 106) 293,466
Pair, trimmeda 1.51 (4.72 · 106) 0.093 3.34 (3.15 · 106) 265,717
Triplet, trimmeda 1.40 (4.37 · 106) 0.174 3.34 (2.92 · 106) 2149,556
Pair, simulated 1.53 (4.79 · 106) 0.098 3.24 (3.10 · 106) 265,619
Triplet, simulated 1.51 (4.72 · 106) 0.092 3.29 (3.11 · 106) 2151,483

Absolute values are in parentheses. MLEs for M and t in the pairwise analysis agree well with the results of Wang and Hey (2010) who estimated t ¼ 3.04 and M ¼ 0.059
(after correction for differences in scaling M). The filtering necessary to satisfy the infinite-sites model leads to a decrease in the estimate of Ne and an increase in M. The last
two rows show parameters estimated from data simulated using the MLE from the pairwise analysis (boldface type).
a Trimmed refers to shortening each locus to a fixed outgroup divergence and removing back mutations and topologically incongruent mutations.
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halves the number of sample configurations. At the opposite
extreme, under a highly asymmetric model with unidirec-
tional migration (as in the Drosophila example above), each
lineage in the receiving population can be affected by only
a single migration event at most, which also greatly simpli-
fies the problem. More generally, although it is possible to
calculate the GF for fairly complex problems (up to six genes
in the IM model, say), it is harder to extract useful informa-
tion from it. Thus, while we can readily find the properties
of chosen summary statistics (for example, the number of
segregating sites), tabulating the probability of all observed
mutational configurations is limited by their sheer number,
rather than by the difficulty of finding the GF itself. These
computational issues are explored in File S1, using auto-
mated recursions for the IM model with three genes.

Our GF approach is more flexible than those of Wang and
Hey (2010) and Hobolth et al. (2011) in two ways. First, the
recursions for a given data set can be simplified by dropping
terms that are incompatible with the observed mutational
pattern. This strategy is closely related to importance sam-
pling schemes (e.g., Griffiths and Tavaré 1994). Thus, instead
of summing over all possible topologies, the calculation is

reduced to histories that are possible, given the data. For
a sample with a fully resolved topology, the total number of
terms is given by the number of configurations due to migra-
tion, so that for n ¼ 4 and 6 there are only 28 and 124
configurations, respectively. Thus, solutions at least for sym-
metric cases are feasible. Second, other processes, such as
recombination or changes in population size, can easily be
incorporated into the GF framework. Since, under the IM
model, genealogies involving migration events tend to be
shorter and thus more likely to be shared between linked loci,
incorporating recombination should improve inference.

Given that species may diverge gradually in space and/or
ecology, it makes sense to model population separation as an
explicit process, rather than an instantaneous event, followed
by constant gene flow. We must distinguish here between our
GF method, which calculates an average over exponentially
distributed split times, and more general models that allow
varying rates of gene flow. We follow the IM model in
assuming that populations split abruptly and that subse-
quently, genes flow at a constant rate. Our initial assumption
of an exponential distribution of separation times (with
rate L) can be viewed either as a technical ruse to allow us

Figure 4 Profile log-likelihood curves forM (left plots) and u (right plots) for pairwise (dashed lines) and triplet analyses (thick solid lines) calculated from
26,141 loci for D. melanogaster and D. simulans (Wang and Hey 2010) (top row) and simulated data under an IM model with migration from
D. simulans to D. melanogaster (bottom row). Analysis of the Drosophila data suggests an apparent bias of the triplet MLE of M and no improvement
in power. Comparison with data simulated under the same history (using the MLE obtained in the pairwise analysis, see Table 1) shows no bias and
tighter log-likelihood for the triplet analyses as expected. The improvement in power when adding a third individual is greater if this is sampled from the
species receiving migrants [i.e., the reverse sampling as in the Drosophila example (thin solid lines)].
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to recover the distribution at a specific time, T, by taking an
inverse Laplace transform or, in Bayesian terms, as expressing
our prior beliefs about T. In reality, gene flow is likely to
decrease gradually as populations diverge, and we can imag-
ine a variety of models for the way rates of gene flow vary
through time. However, even with large data sets there may
be little power to detect changes in the rate of gene flow
(Becquet and Przeworski 2009); the question of whether
rates of gene flow vary across loci as a result of selection is
yet more challenging, but crucial to identifying genes respon-
sible for reproductive isolation (e.g., Machado 2002).

Yang (2010) recently introduced a model that is related
to both approaches just described. This assumes that popu-
lations separate suddenly, with no subsequent gene flow, but
that the split time varies across loci, following a beta distri-
bution—which can be regarded as an approximation to
a biologically feasible model in which migration causes var-
iation in coalescence time across loci. This is related to, but
different from, our assumption of an exponential rate, L, of
separation times. If, following Yang (2010), we assumed
exponentially distributed split times across loci, we would
fix L to find the probability of mutational configurations.
On the other hand, if we assumed a definite separation time
T, we would take the inverse Laplace transform at T and
calculate the probabilities from that. If we then averaged
the multilocus likelihood over a prior distribution of T, we
would get a quite different result from that yielded by Yang’s
(2010) procedure.

As our application to the Drosophila data demonstrates,
the GF method outlined here provides an efficient way to
calculate and maximize the joint likelihood of divergence
parameters from very many nonrecombining blocks of se-
quence for topologically informative samples. Not only do
triplet samples (as opposed to pairs) give better information
about branch lengths but also, more importantly, the joint
distribution of topologies and branch lengths provides qual-
itatively new information about historical parameters. As
our simulation example demonstrates, dependent on the
sampling scheme, this substantially increases power. Our
analytic solutions have three key advantages over previous
methods. First, the probabilities of mutational configura-
tions need to be tabulated only once, so in contrast to sim-
ulation-based methods computation time does not increase
with the number of loci and an indefinite number of loci can
be analyzed. Second, derivatives can be used to maximize
the joint log-likelihood, which greatly speeds up calcula-
tions. Thus our computation takes a fraction of the time
of, for example, an IMa analysis (Hey and Nielsen 2004)
on a handful of loci and is also more efficient than the
numerical method of Wang and Hey (2010) (Y. Wang, per-
sonal communication). Finally, the GF method allows us to
separate topology and branch length information, which
provides a way to incorporate additional sources of informa-
tion. For example, topology information contained in the
patterns of shared derived indels could be included without
the need to model indel evolution explicitly.

In practice, however, our method is currently limited to
the infinite-sites mutation model and thus can deal with
only relatively recent divergence events for which close
outgroups are available. However, it is encouraging how
small the bias resulting from assuming infinite-sites muta-
tions is in the Drosophila example, despite the considerable
divergence of the outgroup. Fortunately, researchers are
commonly interested in fitting IM histories to sister taxa or
populations that have diverged much more recently than the
Drosophila species analyzed here (and for which more
closely related outgroups are available). The use of multiple
outgroups to correct for misinferred ancestral states should
also help to overcome this problem. Another limitation is
that the GF can be used to find exact solutions only if the
number of mutations per genealogical branch is relatively
small (e.g., the most diverse locus in the trimmed Drosophila
data set contained 26 mutations). For much larger numbers
of mutations per block, numerical calculations, which in-
volve finding the coefficients in a series expansion, become
unfeasible. Although it may be possible to use a Gaussian
approximation in this case, the assumption of no recombi-
nation within blocks restricts our and related methods
(Hey and Nielsen 2004; Wang and Hey 2010) to short
blocks of sequence anyway, so this may not be relevant in
practice.

Implementing efficient inference schemes for biologically
realistic histories clearly requires further work. For instance,
it would be worthwhile to extend our inference scheme to
the general IM model (i.e., allowing for asymmetric migra-
tion in both directions and different population sizes) and
more realistic mutation models and incorporate recombina-
tion explicitly. In contrast, the catastrophic increase of pos-
sible sample and mutational configurations with the number
of individuals frustrates full results for large numbers of
individuals. Nevertheless, full results for small but topolog-
ically informative samples under a range of models of struc-
ture and history should be of considerable interest for at
least three reasons: first, although thorough investigations
of the trade-offs of various sampling schemes are lacking, it
is clear that in general replication across loci is far more
profitable than analyzing a few loci sampled from a large
number of individuals (Felsenstein 1992; Li and Durbin
2011). Second, minimal sampling in terms of individuals
reflects the practical limitations of current sequencing tech-
nologies. While massively paralleled sequencing has made it
affordable to sequence small numbers of genomes in any
organism, obtaining multilocus sequence data for many indi-
viduals remains challenging in nonmodel organisms. Finally,
under a wide range of models of population structure, large
samples quickly coalesce down to a few lineages that dom-
inate their genealogical history, allowing a separation of
timescales to be applied (Wakeley 2009). Thus, we envisage
that new analytic solutions of simple cases, such as those
derived here for the total number of mutations and topolog-
ical probabilities of triplets under the IM model, will provide
a guide to the development of approximate methods
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(involving importance sampling and summary statistics)
with wide applicability.
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Supplementary Information

It is easiest to view this document in Mathematica or MathPlayer (available as a free download at http://www. wolfram.com/producs/-
player/). 

1. Automation for the IM model: Three genes in two demes

� 1.1 Set up

ã Notation

Lineages are labelled by the set of genes to which they are ancestral. Thus, lineages at the tips are ancestral to a single gene, and are
labelled 8 a < , 8 b < , …. A deme containing lineages 8 b <  and 8 c <  is denoted 88 b < , 8 c << , and two demes - one containing lineage 8 a <
and the other containing 8 b <  and 8 c <  - is denoted 888 a << , 88 b < , 8 c <<< . If populations can split, we also need to define the ancestry of

the demes in a similar way. 88 x < , 8 y <<  denotes two demes, ancestral to the present-day demes x  and y . The single ancestral deme that

existed before the split is denoted 88 x , y << .  Note that a single lineage must be ancestral to every gene, and a single deme must be

ancestral to every present-day deme. Thus, the content of the lists that define the genealogy and the population phylogeny stays the same
- only the nesting changes.

The generating function has the form GF@ Ω , 888 a << , 88 b < , 8 c <<< , M , 88 x < , 8 y << , LD .  Ω @ 8 a <D  corresponds to branch 8 a < ,

which is ancestral to a ; L@ 8 x , y <D  is the split rate of population 8 x , y < . M = 4 N m  is the scaled migration rate 

In the text, this is denoted more compactly as Ψ@ a , b \c D . tidyNotation[Ψ] gives something like this notation, to make the output more

readable.

ã Solving the recursions

This procedure is simple, but not very efficient given that it does not exploit all the symmetries, which can drastically reduce the number of
equations needed. However, this part is extremely fast relative to later steps. 

makeAllEqns automates the recursions for the IM model. Here we assume a sampling configuartion {a/b,c}.

eqs = makeAllEqns@GF@Ω, 888a<<, 88b<, 8c <<<, M , 88x <, 8y <<, L DD; vars = GetVars@eqsD
8GF@Ω, 888a<, 8b, c<<<, M , 88x , y <<, L D, GF@Ω, 888b<, 8a, c<<<, M , 88x , y <<, L D,

GF@Ω, 888c<, 8a, b<<<, M , 88x , y <<, L D, GF@Ω, 888a<, 8b<, 8c<<<, M , 88x , y <<, L D,
GF@Ω, 88<, 88a<, 8b, c<<<, M , 88x <, 8y <<, L D, GF@Ω, 88<, 88b<, 8a, c<<<, M , 88x <, 8y <<, L D,
GF@Ω, 88<, 88c<, 8a, b<<<, M , 88x <, 8y <<, L D, GF@Ω, 88<, 88a<, 8b<, 8c<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888a<<, 88b, c<<<, M , 88x <, 8y <<, L D, GF@Ω, 888a<<, 88b<, 8c<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888b<<, 88a, c<<<, M , 88x <, 8y <<, L D, GF@Ω, 888b<<, 88a<, 8c<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888c<<, 88a, b<<<, M , 88x <, 8y <<, L D, GF@Ω, 888c<<, 88a<, 8b<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888a, b<<, 88c<<<, M , 88x <, 8y <<, L D, GF@Ω, 888a, c<<, 88b<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888b, c<<, 88a<<<, M , 88x <, 8y <<, L D, GF@Ω, 888a<, 8b<<, 88c<<<, M , 88x <, 8y <<, L D,
GF@Ω, 888a<, 8c<<, 88b<<<, M , 88x <, 8y <<, L D, GF@Ω, 888a<, 8b, c<<, 8<<, M , 88x <, 8y <<, L D,
GF@Ω, 888b<, 8c<<, 88a<<<, M , 88x <, 8y <<, L D, GF@Ω, 888b<, 8a, c<<, 8<<, M , 88x <, 8y <<, L D,
GF@Ω, 888c<, 8a, b<<, 8<<, M , 88x <, 8y <<, L D, GF@Ω, 888a<, 8b<, 8c<<, 8<<, M , 88x <, 8y <<, L D<

Next, we choose those equations that involve 1 deme, and solve them. First/@eqs1 lists the GF[] that we need to solve for:



eqs1 = selectEqns@eqs, 81, All<D;

soln1 = Solve @eqs1, First �� eqs1D@@1DD

: GF@Ω, 888a<, 8b, c<<<, M , 88x , y <<, L D ® -
1

-1 - Ω@8a<D - Ω@8b, c<D ,

GF@Ω, 888b<, 8a, c<<<, M , 88x , y <<, L D ® -
1

-1 - Ω@8b<D - Ω@8a, c<D ,

GF@Ω, 888c<, 8a, b<<<, M , 88x , y <<, L D ® -
1

-1 - Ω@8c<D - Ω@8a, b<D ,

GF@Ω, 888a<, 8b<, 8c<<<, M , 88x , y <<, L D ®

1 � HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H1 + Ω@8c<D + Ω@8a, b<DLL -

1 � HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H-1 - Ω@8b<D - Ω@8a, c<DLL -

1 � HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H-1 - Ω@8a<D - Ω@8b, c<DLL>
We then choose those that involve 2 genes in 2 demes:

eqs2 = selectEqns@eqs, 82, 2<D;

soln2 = Solve @eqs2, First �� eqs2DP 1T;

This needs to be simplified, by using the solutions for all the 1-deme cases (stored in soln1). This is the solution for all configurations with
two genes in two demes. Note that this is inefficient: there are 12 configurations in general, but only three kinds for the symmetric model
(where both demes have equal popultaion size and migration is symmetric) - the genes can be in the same deme or different demes. 

These are the solutions for two genes with two demes, given in the "tidy notation". Ψ8<,98 a <,9 b , c ==  denotes an empty deme, and a deme

containing two lineages - one ancestral to 8 a < , the other to 8 b , c < .

soln2Simp = soln2 �. soln1 �� Simplify ;

soln2Simp �. tidyNotation @Ψ D �. 9 Ω8 x_ , y_ < :> ΩL - ΩComplement A9 a , b , c =,8 x , y <E , L8 x <,8 y < ® L = �� Simplify

9Ψ8<,98 a <,9 b , c == ® IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M�

IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM, Ψ8<,99 b =,8 a , c <= ®

IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M� IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM,

Ψ8<,98 c <,9 a , b == ® IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M�

IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM, Ψ88 a <<,99 b , c == ®

IM + L + 2 M L + L
2

+ HM + L L ΩL M� IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM,

Ψ99 b ==,88 a , c << ® IM + L + 2 M L + L
2

+ HM + L L ΩL M�
IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM, Ψ88 c <<,99 a , b == ®

IM + L + 2 M L + L
2

+ HM + L L ΩL M� IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM,

Ψ99 a , b ==,88 c << ® IM + L + 2 M L + L
2

+ HM + L L ΩL M�
IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM, Ψ88 a , c <<,99 b == ®

IM + L + 2 M L + L
2

+ HM + L L ΩL M� IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM,

Ψ99 b , c ==,88 a << ® IM + L + 2 M L + L
2

+ HM + L L ΩL M�
IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM, Ψ98 a <,9 b , c ==,8< ®

IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M� IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM,

Ψ99 b =,8 a , c <=,8< ® IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M�

IH1 + ΩL L IM + L + 2 M L + L
2

+ H1 + 2 M + 2 L L ΩL + ΩL
2MM, Ψ98 c <,9 a , b ==,8< ®

IM + L + 2 M L + L
2

+ H1 + M + 2 L L ΩL + ΩL
2M� IH1 + ΩL L IM + L + 2 M L + L

2
+ H1 + 2 M + 2 L L ΩL + ΩL

2MM=
We have rewritten this in terms of Ω L , which refers to the sum of the Ω's for the two lineages involved.

Now we solve for 3 genes in two demes:
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eqs3 = selectEqns@eqs, 82, 3<D;

soln3 = Solve @eqs3, First �� eqs3DP 1T;

soln3Simp = soln3 �. soln1 �. soln2Simp;

As a check, if we set Ω®0, the GF is always 1, independent of L:

soln3Simp �. 8Ω@ _ D ® 0< �� Simplify

8GF@Ω, 88<, 88a<, 8b<, 8c<<<, M , 88x <, 8y <<, L D ® 1,
GF@Ω, 888a<<, 88b<, 8c<<<, M , 88x <, 8y <<, L D ® 1, GF@Ω, 888b<<, 88a<, 8c<<<, M , 88x <, 8y <<, L D ® 1,
GF@Ω, 888c<<, 88a<, 8b<<<, M , 88x <, 8y <<, L D ® 1, GF@Ω, 888a<, 8b<<, 88c<<<, M , 88x <, 8y <<, L D ® 1,
GF@Ω, 888a<, 8c<<, 88b<<<, M , 88x <, 8y <<, L D ® 1, GF@Ω, 888b<, 8c<<, 88a<<<, M , 88x <, 8y <<, L D ® 1,
GF@Ω, 888a<, 8b<, 8c<<, 8<<, M , 88x <, 8y <<, L D ® 1<

� 1.2 Sumaries for exponentially distributed split times

ã The total length of the genealogy

A relatively simple expression can be obtained for the distribution of total length of the genealogy, T = t8 a < + t8 b < + …, for a given L by

setting all the Ω to be the same, so that Ψ = E @ exp H - Ω T L D
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ss = soln3Simp �. Ω@ _ D ® Ω �. tidyNotation @Ψ D �. L8 x <,8 y < ® L �� Simplify

9Ψ8<,98 a <,9 b =,8 c <= ® IL
4

+ 5 L
3 H1 + 2 ΩL + L

2 I7 + 36 Ω + 37 Ω
2M + 6 Ω I1 + 6 Ω + 11 Ω

2
+ 6 Ω

3M +

L I3 + 32 Ω + 85 Ω
2

+ 60 Ω
3M + M 2 I3 + 4 L

2
+ 9 Ω + 6 Ω

2
+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ L
2 H14 + 27 ΩL + L I13 + 56 Ω + 53 Ω

2M + 3 I1 + 7 Ω + 14 Ω
2

+ 8 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ88 a <<,99 b =,8 c <= ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ99 b ==,88 a <,8 c << ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ88 c <<,98 a <,9 b == ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ98 a <,9 b ==,88 c << ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ88 a <,8 c <<,99 b == ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ99 b =,8 c <=,88 a << ® IM 2 I3 + 4 L
2

+ 9 Ω + 6 Ω
2

+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ 3 H1 + ΩL H1 + 2 ΩL2
+ L

2 H14 + 23 ΩL + L I13 + 46 Ω + 37 Ω
2MM +

L IL
3

+ L
2 H5 + 8 ΩL + L I7 + 26 Ω + 21 Ω

2M + 3 I1 + 6 Ω + 11 Ω
2

+ 6 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM,

Ψ98 a <,9 b =,8 c <=,8< ® IL
4

+ 5 L
3 H1 + 2 ΩL + L

2 I7 + 36 Ω + 37 Ω
2M + 6 Ω I1 + 6 Ω + 11 Ω

2
+ 6 Ω

3M +

L I3 + 32 Ω + 85 Ω
2

+ 60 Ω
3M + M 2 I3 + 4 L

2
+ 9 Ω + 6 Ω

2
+ 2 L H4 + 7 ΩLM +

M I4 L
3

+ L
2 H14 + 27 ΩL + L I13 + 56 Ω + 53 Ω

2M + 3 I1 + 7 Ω + 14 Ω
2

+ 8 Ω
3MMM�

IH1 + ΩL H1 + 2 ΩL IM + L + 2 M L + L
2

+ 2 Ω + 4 M Ω + 4 L Ω + 4 Ω
2M

I3 + L
2

+ 12 Ω + 9 Ω
2

+ L H4 + 6 ΩL + M H3 + 2 L + 6 ΩLMM=
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These are the variables in the more compact notation:

vars = GetVars@soln3SimpD �. tidyNotation @Ψ D
9Ψ8<,98 a <,9 b =,8 c <=, Ψ88 a <<,99 b =,8 c <=, Ψ99 b ==,88 a <,8 c <<, Ψ88 c <<,98 a <,9 b ==,

Ψ98 a <,9 b ==,88 c <<, Ψ88 a <,8 c <<,99 b ==, Ψ99 b =,8 c <=,88 a <<, Ψ98 a <,9 b =,8 c <=,8<=
We only have to worry about two kinds of configuration. For three genes in the same deme, L makes no difference:

Take @vars, 2D �. ss �. M ® 0 �� Simplify

: 1

1 + 3 Ω + 2 Ω 2
,

L

H1 + ΩL H1 + 2 ΩL HL + 2 ΩL >
The distribution does depend on M  when L=0:

Take @vars, 2D �. ss �. L ® 0 �� Simplify

9IM + M 2
+ 4 M Ω + 2 Ω H1 + 3 ΩLM� II1 + M + 4 Ω + 2 M Ω + 3 Ω

2M HM + 4 M Ω + 2 Ω H1 + 2 ΩLLM,

HM H1 + M + 2 ΩLL� II1 + M + 4 Ω + 2 M Ω + 3 Ω
2M HM + 4 M Ω + 2 Ω H1 + 2 ΩLLM=

However, the mean length of the genealogy for three genes in the same deme is independent of M  for L = 0 - an extension of the result for
two genes. This is the full expression for mean length as a function of L and M:

mnL = H- D@ð �. ss, ΩD & �� Take @vars, 2DL �. Ω ® 0 �� Simplify

: 3 H1 + L L H2 M + L L
M + L + 2 M L + L 2

,
H1 + L L H2 + 6 M + 3 L L

M + L + 2 M L + L 2
>

ã # of segregating sites

The probability that there are X segregating sites in total is E A ã - Θ t � 2 I Θ t � 2M X

X !
F. 

This gives the distribution of # of segregating sites, for M=0.6 , Θ=1, L=0.7 (three genes in the same deme). Recall that L is the rate of splits
in scaled time: we are assuming that T is exponentially distributed with mean 1/L.

cc = CoefficientList@Series@varsP 1T �. ss �. 8L ® 0.7,

M ® 0.6, Ω -> 1 � 2 - x <, 8x , 0, 15<D, x D H 1 � 2L ^ H Range @0, 15DL;

BarChart@cc D
8cc , Total@cc D<

0.05

0.10

0.15

0.20

0.25

880.28869, 0.253114, 0.176776, 0.11377, 0.0700139, 0.0417864, 0.0243667, 0.0139495, 0.00786732,
0.00438275, 0.00241661, 0.00132101, 0.000716804, 0.000386489, 0.000207243, 0.000110592<, 0.999876<

� 1.3 Sumaries for specific T

ã The total length of the genealogy

We can get expressions directly in terms of the split time by taking the ILT wrt L:
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ilT = InverseLaplaceTransform B L
- 1 Take @vars, 2D �. ss, L , T F �� Simplify ;

This is the mean length of the genealogy in the IM model with three genes, with sampling configurations {a/b,c} and {a,b,c/Æ}:

mn = FullSimplify @- D@ilT , ΩD �. Ω ® 0, T > 0D

:- 3 ã
-

1

2
1 + 2 M + 1 + 4 M 2 T

-1 - 2 M + 1 + 4 M 2
- 4 ã

1

2
1 + 2 M + 1 + 4 M 2 T

1 + 4 M 2
+

ã
1 + 4 M 2 T 1 + 2 M + 1 + 4 M 2 � 2 1 + 4 M 2 ,

1

2 M 1 + 4 M 2

ã
-

1

2
1 + 2 M + 1 + 4 M 2 T

2 - 2 1 + 4 M 2
+ 4 ã

1

2
1 + 2 M + 1 + 4 M 2 T H1 + 3 M L 1 + 4 M 2

+

3 M 1 + 2 M - 1 + 4 M 2
- ã

1 + 4 M 2 T 2 1 + 1 + 4 M 2
+ 3 M 1 + 2 M + 1 + 4 M 2 >

This shows how the expected length depends on M, for two different diveregence times T=0.3, 1 (red, blue)

Plot@8mn �. 8T -> 0.3<, mn �. 8T ® 1<<, 8M , 0, 12<,

PlotStyle ® 8Red , Blue <, AxesLabel ® 8"M ", "E@L D"<D

2 4 6 8 10 12
M

3.5

4.0

4.5

5.0

E @ L D

ã # of segregating sites 

This shows the probability distribution for the total number of segrating sites X for T = 2, M=0.6 and Θ =1.
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ccT = CoefficientListB SeriesB ilT P 2T �. : T ® 2, M ® 0.6, Ω ®
1

2
- x > , 8x , 0, 20<F, x F 1

2

Range A 0 , 20 E
;

BarChart@ccT D
8ccT , Total@ccT D<

0.05

0.10

0.15

0.20

990.100361, 0.17422, 0.197747, 0.177302, 0.13472, 0.0906167, 0.0557276, 0.0321221, 0.0176861,

0.0094335, 0.00492414, 0.00253334, 0.00129083, 0.000653541, 0.000329491, 0.000165655,

0.0000831307, 0.0000416664, 0.0000208673, 0.0000104435, 5.23015 ´ 10- 6=, 0.999995=
This shows the probability of 0, 1,…,20 mutations as a function of T ; M = 0.6 , Θ = 1.

ccT2 = CoefficientListB SeriesB ilT P 2T �. : M ® 0.6, Ω ®
1

2
- x > , 8x , 0, 20<F, x F 1

2

Range A 0 , 20 E
;

Plot@ccT2, 8T , 0, 4<D

1 2 3 4

0.05

0.10

0.15

0.20

0.25

0.30

ã Topological probabilities

The probability of a particular topology can be found from the LP by taking the limit of the dummy variables corresponding to internal
branches incompatible with that topology. For example, to find the probability of a topology {a/b,c} we take the limit of Ω ab  and Ω ac  at

infinity and set all other Ω to zero.

Supporting_Information_Lohse_Harrison_Barton.nb   7



8probtopab =

H Limit@soln3SimpP 2, 2T �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D �. Ω@ _ D ® 0L ��
Simplify , probtopac =

H Limit@soln3SimpP 2, 2T �. 8Ω@8a, b<D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D �. Ω@ _ D ® 0L ��
Simplify ,

probtopbc = H Limit@soln3SimpP 2, 2T �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, L @ _ D ® L <, z ® ¥D �.

Ω@ _ D ® 0L �� Simplify <

: 2 M + L

3 + 6 M + 3 L

,
2 M + L

3 + 6 M + 3 L

,
3 + 2 M + L

3 + 6 M + 3 L

>
The above sum to one as they should. For a specific time we need to take the ILT of the above and divide by L:

8probab = InverseLaplaceTransform @probtopab � L , L , T D,

probac = InverseLaplaceTransform @probtopac � L , L , T D,

probbc = InverseLaplaceTransform @probtopbc � L , L , T D<

: ã -I 1 + 2 M M T

3 H1 + 2 M L +
2 M

3 H1 + 2 M L ,
ã -I 1 + 2 M M T

3 H1 + 2 M L +
2 M

3 H1 + 2 M L , -
2 ã -I 1 + 2 M M T

3 H1 + 2 M L +
3 + 2 M

3 H1 + 2 M L >
This  plots  topological  probabilities  for  a  triplet  with  sampling  configuration  {a/b,c}  in  the  symmetric  IM  model  against  the  scaled
migration rate M for two splitting time, T=0.5 (solid lines) and T=2 (dashed lines). The chance of observing an incongruent genealogy
{c,{a,b}} or {b{a,c}} (below) increases with M as congruent topologies {a,{b,c}} (above) become less likely.

Plot@88probab, probbc < �. T -> 0.5, 8probab, probbc < �. T -> 2<,

8M , 0, 4<, PlotRange -> 880, 4<, 80, 1<<, AxesLabel ® 8"M ", "P "<,

PlotStyle ® 88AbsoluteThickness@1D, GrayLevel@0D<,

8AbsoluteThickness@1D, GrayLevel@0D, AbsoluteDashing @85, 1, 5<D<<D

1 2 3 4
M0.0

0.2

0.4

0.6

0.8

1.0
P

For samples taken from the same deme, the topologies have the same probability as expected.

8H Limit@soln3SimpP 1, 2T �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D �. Ω@ _ D ® 0L ��
Simplify ,

H Limit@soln3SimpP 1, 2T �. 8Ω@8a, b<D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D �. Ω@ _ D ® 0L ��
Simplify ,

H Limit@soln3SimpP 1, 2T �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, L @ _ D ® L <, z ® ¥D �. Ω@ _ D ® 0L ��
Simplify <

: 1

3
,

1

3
,

1

3
>

ã The # of mutations on the internal branch for a given topology

To find the GF for a particular internal branch conditional on a topology, we take the limit of the Ω  inconsistent with this topology at
infinity and again set Ω corresponding to external branches to zero. For branches {a,b} and {b,c} we have:
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limSolGen2demab = Limit@soln3SimpP 2, 2T �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D;

limSolGen2dem2ab = limSolGen2demab ��. 8Ω@8a, b<D ® ΩAB, Ω@ _ D ® Ω< �� Simplify ;

limSolGen2dembc = Limit@soln3SimpP 2, 2T �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, L @ _ D ® L <, z ® ¥D;

limSolGen2dem2bc = limSolGen2dembc ��. 8Ω@8b, c <D ® ΩBC , Ω@ _ D ® Ω< �� Simplify ;

To condition on particular time, we take the ILT at T.

iltab = InverseLaplaceTransform B L
- 1 limSolGen2dem2ab, L , T F �� Simplify ;

iltbc = InverseLaplaceTransform B L
- 1 limSolGen2dem2bc , L , T F �� Simplify ;

km = 12;

clab =

Table B ListB Table @i, 8i, 0, km <D, CoefficientListB SeriesB iltab �. : Ω ® 0, ΩAB :>
5

2
- yAB, M ® 0.8> ,

8yAB, 0, km <F, yABF Table B 5

2

i

, 8i, 0, km <F �� ChopF �� Thread , 8T , 0, 4, 2<F;

clbc = Table B ListB Table @i, 8i, 0, km <D, CoefficientListB SeriesB iltbc �. : Ω -> 0, ΩBC :>
5

2
- yBC ,

M ® 0.8> , 8yBC , 0, km <F, yBC F Table B 5

2

i

, 8i, 0, km <F �� ChopF �� Thread , 8T , 0, 4, 2<F;

This shows the distribution of the number of mutations on internal the branch {bc} (corresponding to a topology congruent with the
sampling configuration) for Θ=5, M=0.8 for three different splitting times T = 0 (circles), T = 2 (squares), T = 4 (diamonds):

ListPlot@8clbc P 1T, clbc P 2T, clbc P 3T<, PlotRange ® 880, 12.1<, 80, 0.1<<, PlotJoined ® True ,

Mesh ® All, PlotMarkers ® 8Automatic , Medium <, MeshStyle ® 8GrayLevel@0D<, AxesLabel ® 8"S", "P "<,

PlotStyle ® 88AbsoluteThickness@1D, GrayLevel@0D<, 8AbsoluteThickness@1D, GrayLevel@0D,

AbsoluteDashing @87, 2, 7<D<, 8AbsoluteThickness@1D, GrayLevel@0D, AbsoluteDashing @83, 3, 3<D<<D
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This shows the distribution of the number of mutations on internal the branch {a,b} for Θ=5, M=0.8 for three different splitting times T=0
(circles), T= 2 (squares), T=4 (diamonds):
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ListPlot@8clabP 1T, clabP 2T, clabP 3T<, PlotRange ® 880, 12.1<, 80, 0.1<<, PlotJoined ® True ,

Mesh ® All, PlotMarkers ® 8Automatic , Medium <, MeshStyle ® 8GrayLevel@0D<, AxesLabel ® 8"S", "P "<,

PlotStyle ® 88AbsoluteThickness@1D, GrayLevel@0D<, 8AbsoluteThickness@1D, GrayLevel@0D,

AbsoluteDashing @87, 2, 7<D<, 8AbsoluteThickness@1D, GrayLevel@0D, AbsoluteDashing @83, 3, 3<D<<D
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� 1.4 Full results 

ã Probabilities of mutational configurations for a given topology with exponentially distributed split times 

So far, we have derived results for the total number of segregating sites, by replacing all the branch-specific Ω S  by a single Ω. Now, we turn

to the harder problem of finding the joint probabilities of specific configurations of mutations. This can be done by realising that the GF
must be a sum of three terms, each corresponding to a different topology. We obtain the GF for a spcific topology explicitly - both for fixed L
and for a specific split time, T . When we see an informative mutation (i.e. one shared by two of the leaves), we can just use these expres-
sions to calculate likelihoods. If we only see singletons, we must sum over all three topologies.

Suppose that we observe at least one 8 a , b <  mutation. Then, we can delete any terms that depend on Ω9 b , c =  or Ω9 a , c = . The simplest

way to do this is to set any terms with these in the denominator to zero. We just do this for three genes with sampling configuration {a/b,c}
by taking the second row of soln3Simp:

soln3SimpP 2, 2T �. 8L @ _ D ® 0.7, M ® 0.6< �.

: aa__

bb__ - Ω@8b, c <D :> 0,
aa__

bb__ - Ω@8a, c <D :> 0,
aa__

bb__ + Ω@8b, c <D :> 0,
aa__

bb__ + Ω@8a, c <D :> 0> ;

This  method  fails:  it  mistakenly  deletes  terms  that  have  Ω @ 8 a , c <D or Ω @ 8 b , c <D  in  the  numerator  as  well  as  the  denominator.

Mathematica's built in Limit[...] function gives the right answer - and without the need to specify L or M:

limSolGen = Limit@soln3SimpP 2, 2T �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D;

limSolGen2 = limSolGen ��. 8Ω@8a<D ® ΩS - Ω@8b<D - Ω@8c <D, Ω@8a, b<D ® ΩAB - Ω@8c <D< �� Simplify ;

Necessarily, the remaining terms depend only on Ω S = Ω8 a < + Ω8 b < + Ω8 c <  and on Ω AB = Ω9 a , b = + Ω8 c < , which correspond to the

number of mutations in the intervals before and after the coalescence of the a and b lineages. The table shows their joint probability
distribution obtained by inverting w.r.t. Ω S  (top to bottom) and Ω A B  (left to right). In this example, L=0.7, M = 0.6 and Θ=1.
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km = 10;

cl =

CoefficientListB SeriesB limSolGen2 �. 8L ® 0.7, M ® 0.6< �. : ΩS ¦
1

2
- yS, ΩAB ¦

1

2
- yAB> , 8yS, 0, km <,

8yAB, 0, km <F, 8yS, yAB<F Table B 1

2

i + j

, 8i, 0, km <, 8j, 0, km <F �� Chop; cl �� MatrixForm

0.0905292 0.0359305 0.0139067 0.00527662 0.00197083 0.000726866 0.00026533

0.0314364 0.0125158 0.0048477 0.00183919 0.000686699 0.000253161 0.0000923767

0.00831566 0.00331877 0.00128632 0.00048805 0.000182197 0.0000671558 0.0000244997

0.00198247 0.000792698 0.000307428 0.00011666 0.0000435501 0.0000160508 5.8551 ´ 10- 6

0.000448601 0.000179639 0.0000697056 0.0000264559 9.87661 ´ 10- 6 3.64009 ´ 10- 6 1.32782 ´ 10- 6

0.0000985425 0.0000395058 0.0000153364 5.8218 ´ 10- 6 2.17358 ´ 10- 6 8.01111 ´ 10- 7 2.9223 ´ 10- 7

0.0000212579 8.52985 ´ 10- 6 3.31257 ´ 10- 6 1.25769 ´ 10- 6 4.69602 ´ 10- 7 1.73089 ´ 10- 7 6.31414 ´ 10- 8

4.53323 ´ 10- 6 1.82022 ´ 10- 6 7.07099 ´ 10- 7 2.68507 ´ 10- 7 1.00265 ´ 10- 7 3.69582 ´ 10- 8 1.34826 ´ 10- 8

9.59436 ´ 10- 7 3.85443 ´ 10- 7 1.49769 ´ 10- 7 5.68794 ´ 10- 8 2.12413 ´ 10- 8 7.83007 ´ 10- 9 2.85656 ´ 10-

2.02042 ´ 10- 7 8.12006 ´ 10- 8 3.15578 ´ 10- 8 1.19863 ´ 10- 8 4.47651 ´ 10- 9 1.65023 ´ 10- 9 6.02058 ´ 10- 10

4.24028 ´ 10- 8 1.70469 ´ 10- 8 6.62609 ´ 10- 9 2.51695 ´ 10- 9 9.40055 ´ 10- 10 3.46558 ´ 10- 10 1.2644 ´ 10- 10

Note that the first column represents the probability that there is no 8 a , b <  mutation - contrary to the assumption. It should be deleted. If

it is included, then the total is equal to the probability of an ab topology, as expected. 

8Total@First �� clD, probtopac �. 8L ® 0.7, M -> 0.6<, Total@Total@clDD<

80.132838, 0.218391, 0.218387<
ã Probabilities of mutational configurations for a given topology with a specific T

Now, we try doing the same for a specific time rather than a specific L. That requires that we keep the expressions as functions of L and
then take the inverse Laplace transform. The expression is ugly, but not too large.  Note that the full GF is obtained just by summing the
two other terms for the two other possible topologies:

ilt = InverseLaplaceTransform B L
- 1 limSolGen2, L , T F �� Simplify ;

ilt �. 8ΩS ® ΩS , ΩAB ® ΩA B < ��.

: 1 + 4 M + 16 M 2
® Α , 1 + 8 M + 1 + 64 M 2

+ 2 ΩA B ® 2 Β, 1 + 64 M 2
® Γ > ;
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km = 10;

cl = CoefficientListB SeriesB ilt �. : ΩS :>
1

2
- yS, ΩAB :>

1

2
- yAB, M ® 0.6, T ® 2> , 8yS, 0, km <,

8yAB, 0, km <F, 8yS, yAB<F Table B 1

2

i + j

, 8i, 0, km <, 8j, 0, km <F �� Chop; cl �� TableForm

0.0577467 0.0305081 0.0134862 0.00524047 0.00188228 0.000648139 0.00021878

0.0284365 0.0134435 0.00544754 0.00200202 0.00069707 0.000236416 0.0000792902

0.0102248 0.00434233 0.00163887 0.000578277 0.000197283 0.0000663165 0.0000221659

0.00302825 0.00118388 0.000425197 0.000146215 0.0000493046 0.0000164978 5.50554 ´ 10- 6

0.000764908 0.000282339 0.0000982776 0.0000333009 0.000011162 3.72691 ´ 10- 6 1.24287 ´ 10- 6

0.000168863 0.000060004 0.0000204992 6.89109 ´ 10- 6 2.30303 ´ 10- 6 7.68233 ´ 10- 7 2.56125 ´ 10- 7

0.0000333213 0.0000115524 3.90397 ´ 10- 6 1.30693 ´ 10- 6 4.36171 ´ 10- 7 1.45435 ´ 10- 7 4.84831 ´ 10- 8

6.0019 ´ 10- 6 2.0484 ´ 10- 6 6.87933 ´ 10- 7 2.29804 ´ 10- 7 7.66445 ´ 10- 8 2.55489 ´ 10- 8 8.52027 ´ 10- 9

1.00605 ´ 10- 6 3.39987 ´ 10- 7 1.13782 ´ 10- 7 3.79666 ´ 10- 8 1.266 ´ 10- 8 4.21899 ´ 10- 9 1.43155 ´ 10- 9

1.59682 ´ 10- 7 5.36385 ´ 10- 8 1.79163 ´ 10- 8 5.97454 ´ 10- 9 1.99449 ´ 10- 9 6.56397 ´ 10- 10 2.41574 ´ 10- 10

2.43645 ´ 10- 8 8.15498 ´ 10- 9 2.72118 ´ 10- 9 9.05399 ´ 10- 10 3.0696 ´ 10- 10 0 1.59591 ´ 10- 10

Again, the first column represents the probability that there is no 8 a , b <  mutation - contrary to the assumption. If it is included, then

the total is the probability of an ab topology as expected.

8Total@Total@clDD, probab �. 8M ® 0.6, T ® 2<<
80.183676, 0.183678<

ã The # of singletons when there are no informative mutations

This shows the distribution of  the # of  singletons for triplets with sampling configurations {a,b,c/Æ}  (i.e.  all  samples from the same
deme)(left plot) and {a/b,c} (right plot). We assume that there are no mutations on internal branches (i.e., ancestral to two genes) by
setting Ω9 _ , _ =  to  the scaled mutation rate Θ/2. We have chosen specific values Θ=1, M=0.6, L=0.7.

singletons = soln3Simp �. tidyNotation @Ψ D �. : Ω8 _ , _ < ®
1

2
, L __ ® 0.7, M ® 0.6> ;

: sing1 =

CoefficientListB SeriesB singletonsP 1, 2T �. Ω9 i_ = :>
1

2
- y , 8y , 0, 20<F, y F 1

2

Range A 0 , 20 E
,

sing2 = CoefficientListB SeriesB singletonsP 2, 2T �. Ω9 i_ = :>
1

2
- y , 8y , 0, 20<F, y F

1

2

Range A 0 , 20 E
> �� TableForm

0.28869 0.176037 0.0852381 0.0383407 0.016761 0.00725279 0.00313281 0.00135589

0.169064 0.163077 0.107474 0.0603337 0.0310932 0.0152276 0.00721991 0.00335067
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Show @GraphicsGrid @88BarChart@sing1D, BarChart@sing2D<<DD
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The probability that there will be no informative mutations, for genes in the same vs in different demes  is the sum of the tables above, but
is obtained more directly by setting Ω to zero:

8singletonsP 1, 2T, singletonsP 2, 2T< �. Ω8 _ < ® 0

80.617854, 0.55963<

2. Test on real and simulated data

� Set up

The above solutions can be used to compute the joint Log likelihood (LogL) of IM model parameters from very large numbers of loci. If we
assume for the moment that loci have the same mutation rate, this requires tabulating the LogL for all observed mutational configura-
tions, multiplying by the number of loci with each configuration. For a triplet sample with sampling configuration {a/b,c} there are three
topology classes; loci may be topologically congruent (those with a bc mutation), incongruent (those with an ab or ac mutation) or
uninformative. Note that we are assuming outgroup rooting such that each locus can be assigned to the three classes unambiguously
(ways of dealing with finite sites mutations are discussed in the last section).

For any rooted topology, there are 3 types of mutations. For example, assuming topology {a/b,c}, we need to distinguish mutations on the
internal branch (k bc ), those on the shorter external branches k ex  (since branches connected to b and c have the same length these can be

lumped)  and  mutations  on  the  longer  external  branch  k a .  However,  as  shown  before,  we  have  the  constraint
t a = t b c + t b = t b c + t c  and thus the GF is a function only of Ω b c - Ω a  and of Ω ex - Ω a  , which correspond to the number of

mutations in the two coalescence intervals. The joint probability of the three types of observable mutations P @ k bc , k ex ,  k a ] can be

found by summing over all possible ways these can be partitioned amongst the two coalescent intervals: 

P @ k bc , k ex , k a D = Ú j = 0
k a K k ex + k a - j

k a - j
O J 1

3
N k a - j J 2

3
N k ex K k bc + j

j
O J 1

2
N k bc + j

P @ k b c + j , k ex + k a - j ]

We need to evaluate the GF for the number of mutations in each coalescence interval for all 3 topology classes. For the IM model with
symmetric migration we have (note that for the topologically uninformative loci, we are only using the distribution of the total number of
singleton rather than their full, joint distribution here) :

limSolGenCON = Limit@soln3SimpP 2, 2T �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, L @ _ D ® L <, z ® ¥D ��.

8Ω@8b<D ® ΘS - Ω@8a<D - Ω@8c <D, Ω@8b, c <D ® ΘBC - Ω@8a<D< �� Simplify ;

limSolGenINCON = Limit@soln3SimpP 2, 2T �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, L @ _ D ® L <, z ® ¥D ��.

8Ω@8a<D ® ΘS - Ω@8b<D - Ω@8c <D, Ω@8a, b<D ® ΘAB - Ω@8c <D< �� Simplify ;

limSolGenNOTOP = soln3SimpP 2, 2T �. : Ω@8a, b<D ®
Θ

2
, Ω@8b, c <D ®

Θ

2
,

Ω@8a, c <D ®
Θ

2
, L @ _ D ® L , Ω@8a<D ® ΩS, Ω@8c <D ® ΩS, Ω@8b<D ® ΩS> �� Simplify ;

ilt2typesCON = InverseLaplaceTransform B L
- 1 limSolGenCON , L , T F �� Simplify ;

ilt2typesINCON = InverseLaplaceTransform B L
- 1 limSolGenINCON , L , T F �� Simplify ;

ilt2typesNOTOP = InverseLaplaceTransform B L
- 1 limSolGenNOTOP , L , T F �� Simplify ;
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� IM with asymmetric migration

Allowing for migration in one direction only greatly simplifies the problem. For a sample of three genes ((a) sampled one and (b) and (c)
from the other), we can write down the GF by hand. Assuming that only lineage (a) can have been affected by migration (for migration in
the reverse direction see section below) we have 6 equations:

asym = : Ψ @8<, 88a<, 8b, c <<D ==
1

1 + Ω@8a<D + Ω@8b, c <D ,

Ψ @8<, 88b<, 8a, c <<D ==
1

1 + Ω@8b<D + Ω@8a, c <D ,

Ψ @8<, 88c <, 8a, b<<D ==
1

1 + Ω@8c <D + Ω@8a, b<D ,

Ψ @8<, 88a<, 8b<, 8c <<D ==
1

3 + Ω@8a<D + Ω@8b<D + Ω@8c <D
H Ψ @8<, 88a<, 8b, c <<D + Ψ @8<, 88b<, 8a, c <<D + Ψ @8<, 88c <, 8a, b<<DL,

Ψ @88a<<, 88b, c <<D ==
1

L + H M � 2L + Ω@8a<D + Ω@8b, c <D H L + H M � 2LL Ψ @8<, 88a<, 8b, c <<D,

Ψ @88a<<, 88b<, 8c <<D ==
1

L + 1 + H M � 2L + Ω@8a<D + Ω@8b<D + Ω@8c <D
HH L + H M � 2LL Ψ @8<, 88a<, 8b<, 8c <<D + Ψ @88a<<, 88b, c <<DL> ;

ã GF conditional on topology

Solving the above gives the GF for a sample (a, (b,c)):

asymGF = H Solve @asym , First �� asym DLP 1, - 1, 2T �� Simplify

HHM + 2 L L
HH2 + Ω@8b<D + Ω@8c<D + Ω@8a, b<D + Ω@8a, c<DL� HH1 + Ω@8c<D + Ω@8a, b<DL H1 + Ω@8b<D + Ω@8a, c<DLL +

H6 + M + 2 L + 4 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<D + 2 Ω@8b, c<DL�
HH1 + Ω@8a<D + Ω@8b, c<DL HM + 2 L + 2 Ω@8a<D + 2 Ω@8b, c<DLLLL�

HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H2 + M + 2 L + 2 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<DLL
In this case we can invert wrt L to find the GF for a discrete splitting time T. The expression is complex but not vast...
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asymGF2 = InverseLaplaceTransform B L
- 1 asymGF, L , T F �� Simplify

KK 2 ã
-

1

2
T I M + 2 Ω @8 a <D + 2 Ω A9 b , c =EM H3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL HΩ@8a<D + Ω@8b, c<DLO�

HH1 + Ω@8b<D + Ω@8c<D - Ω@8b, c<DL HM + 2 Ω@8a<D + 2 Ω@8b, c<DLL +

K 2 ã
-

1

2
T I 2 + M + 2 Ω @8 a <D + 2 Ω A9 b =E + 2 Ω @8 c <DM H1 + Ω@8a<D + Ω@8b<D + Ω@8c<DL

IΩ@8c<D + Ω@8c<D2
- Ω@8a, b<D + Ω@8c<D Ω@8a, b<D - Ω@8a, c<D - Ω@8c<D Ω@8a, c<D - 2 Ω@8a, b<D

Ω@8a, c<D - Ω@8b, c<D + Ω@8c<D Ω@8b, c<D + Ω@8c<D2
Ω@8b, c<D - Ω@8a, b<D Ω@8b, c<D +

Ω@8c<D Ω@8a, b<D Ω@8b, c<D - Ω@8a, c<D Ω@8b, c<D - Ω@8a, b<D Ω@8a, c<D Ω@8b, c<D -

2 Ω@8b, c<D2
- Ω@8c<D Ω@8b, c<D2

- Ω@8a, b<D Ω@8b, c<D2
- Ω@8a, c<D Ω@8b, c<D2

+

Ω@8b<D2 H1 + Ω@8b, c<DL + Ω@8a<D I1 + Ω@8b<D2
+ Ω@8c<D2

- Ω@8a, b<D Ω@8a, c<D +

Ω@8c<D H2 + Ω@8a, b<D - Ω@8b, c<DL + Ω@8b<D H2 + Ω@8c<D + Ω@8a, c<D - Ω@8b, c<DL -

2 Ω@8b, c<D - Ω@8a, b<D Ω@8b, c<D - Ω@8a, c<D Ω@8b, c<DM + Ω@8b<D
I1 - Ω@8a, b<D + Ω@8b, c<D + Ω@8c<D Ω@8b, c<D - Ω@8b, c<D2

+ Ω@8a, c<D H1 + Ω@8b, c<DLMMO�
HH2 + M + 2 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<DL H1 + Ω@8c<D + Ω@8a, b<DL

H1 + Ω@8b<D + Ω@8a, c<DL H1 + Ω@8b<D + Ω@8c<D - Ω@8b, c<DLL +

IM I6 + 3 M + 8 Ω@8c<D + 2 M Ω@8c<D + 2 Ω@8c<D2
+ 6 Ω@8a, b<D + 2 M Ω@8a, b<D +

2 Ω@8c<D Ω@8a, b<D + 2 Ω@8b<D2 H1 + Ω@8c<D + Ω@8a, b<DL + 6 Ω@8a, c<D +

2 M Ω@8a, c<D + 8 Ω@8c<D Ω@8a, c<D + M Ω@8c<D Ω@8a, c<D + 2 Ω@8c<D2
Ω@8a, c<D +

6 Ω@8a, b<D Ω@8a, c<D + M Ω@8a, b<D Ω@8a, c<D + 2 Ω@8c<D Ω@8a, b<D Ω@8a, c<D +

2 Ω@8a<D2 H2 + Ω@8b<D + Ω@8c<D + Ω@8a, b<D + Ω@8a, c<DL + 6 Ω@8b, c<D + 2 M Ω@8b, c<D +

4 Ω@8c<D Ω@8b, c<D + M Ω@8c<D Ω@8b, c<D + 4 Ω@8a, b<D Ω@8b, c<D + M Ω@8a, b<D Ω@8b, c<D +

4 Ω@8a, c<D Ω@8b, c<D + M Ω@8a, c<D Ω@8b, c<D + 2 Ω@8c<D Ω@8a, c<D Ω@8b, c<D +

2 Ω@8a, b<D Ω@8a, c<D Ω@8b, c<D + 4 Ω@8b, c<D2
+ 2 Ω@8c<D Ω@8b, c<D2

+

2 Ω@8a, b<D Ω@8b, c<D2
+ 2 Ω@8a, c<D Ω@8b, c<D2

+ Ω@8b<D I8 + 2 M + 2 Ω@8c<D2
+ 2 Ω@8a, c<D +

4 Ω@8b, c<D + M Ω@8b, c<D + 2 Ω@8b, c<D2
+ Ω@8a, b<D H8 + M + 2 Ω@8a, c<D + 2 Ω@8b, c<DL +

Ω@8c<D H10 + M + 2 Ω@8a, b<D + 2 Ω@8a, c<D + 2 Ω@8b, c<DLM + Ω@8a<D
H8 + 2 M + 6 Ω@8a, b<D + M Ω@8a, b<D + 6 Ω@8a, c<D + M Ω@8a, c<D + 4 Ω@8a, b<D Ω@8a, c<D +

8 Ω@8b, c<D + 4 Ω@8a, b<D Ω@8b, c<D + 4 Ω@8a, c<D Ω@8b, c<D + Ω@8b<D H6 + M + 4 Ω@8c<D +

4 Ω@8a, b<D + 4 Ω@8b, c<DL + Ω@8c<D H6 + M + 4 Ω@8a, c<D + 4 Ω@8b, c<DLLMM�
HH2 + M + 2 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<DL H1 + Ω@8c<D + Ω@8a, b<DL H1 + Ω@8b<D + Ω@8a, c<DL

HM + 2 Ω@8a<D + 2 Ω@8b, c<DLLO�
HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H1 + Ω@8a<D + Ω@8b, c<DLL

The GF conditional on a particular topology (congruent or incongruent) can be found by taking the limits as before. The GF only depends
on the ΘBC and ΘS corresponding to the two coalescence intervals:

limSolGenCON2 = Limit@asymGF �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z<, z ® ¥D ��.

8Ω@8b<D ® ΘS - Ω@8a<D - Ω@8c <D, Ω@8b, c <D ® ΘBC - Ω@8a<D< �� Simplify

HHM + 2 L L HM + 2 H3 + ΘBC + ΘS + L LLL� HH1 + ΘBC L H3 + ΘSL HM + 2 HΘBC + L LL HM + 2 H1 + ΘS + L LLL
limSolGenINCON2 = Limit@asymGF �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z<, z ® ¥D ��.

8Ω@8a<D ® ΘS - Ω@8b<D - Ω@8c <D, Ω@8a, b<D ® ΘAB - Ω@8c <D< �� Simplify

M + 2 L

H1 + ΘABL H3 + ΘSL HM + 2 H1 + ΘS + L LL
Inverting the above wrt L gives:
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ilt2typesCON2 = InverseLaplaceTransform B L
- 1 limSolGenCON2, L , T F �� Simplify

-
2 ã

-
1

2
T I M + 2 ΘBC M

ΘBC H3 + ΘSL
HM + 2 ΘBC L H-1 + ΘBC - ΘSL -

2 ã
-

1

2
T I 2 + M + 2 ΘS M H2 + ΘBC L H1 + ΘSL

H1 - ΘBC + ΘSL H2 + M + 2 ΘSL +
M HM + 2 H3 + ΘBC + ΘSLL

HM + 2 ΘBC L H2 + M + 2 ΘSL �

HH1 + ΘBC L H3 + ΘSLL
ilt2typesINCON2 = InverseLaplaceTransform B L

- 1 limSolGenINCON2, L , T F �� Simplify

M + 2 ã
-

1

2
T I 2 + M + 2 ΘS M H1 + ΘSL

H1 + ΘABL H3 + ΘSL H2 + M + 2 ΘSL
ã Check

Setting all Ω to zero the GF must sum to one:

8asymGF �. 8Ω@ _ D -> 0<, asymGF2 �. 8Ω@ _ D ® 0<< �� Simplify

81, 1<
Topological probabilities sum to one as they should:

8topcon = ilt2typesCON2 �. 8ΘS ® 0, ΘBC ® 0<,

topincon = ilt2typesINCON2 �. 8ΘS ® 0, ΘAB ® 0<< �� Simplify

: 6 - 4 ã
-

1

2
I 2 + M M T

+ M

3 H2 + M L ,
2 ã

-
1

2
I 2 + M M T

+ M

3 H2 + M L >
topcon + 2 topincon �� FullSimplify

1

ã GF for topologically uninformative  blocks

To obtain the GF for topologically uninformative blocks we need to sum over all three possible topologies

limSolGenNOTOPbc = LimitB asymGF �. : Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, Ω@8b, c <D ®
Θ

2
> , z ® ¥F �.

8Ω@8c <D ® Ωsh - Ω@8b<D, Ω@8a<D ® Ωa< �� Simplify ;

limSolGenNOTOPab = LimitB asymGF �. : Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, Ω@8a, b<D ®
Θ

2
> , z ® ¥F �.

8Ω@8a<D ® Ωsh - Ω@8b<D, Ω@8c <D ® Ωc < �� Simplify ;

limSolGenNOTOPac = LimitB asymGF �. : Ω@8a, b<D ® z Α , Ω@8b, c <D ® z, Ω@8a, c <D ®
Θ

2
> , z ® ¥F �.

8Ω@8a<D ® Ωsh - Ω@8c <D, Ω@8b<D ® Ωb< �� Simplify ;

To GF for discrete splitting times are:

ilt2typesNOTOPbc = InverseLaplaceTransform B L
- 1 limSolGenNOTOPbc , L , T F �� Simplify ;

ilt2typesNOTOPab = InverseLaplaceTransform B L
- 1 limSolGenNOTOPab, L , T F �� Simplify ;

ilt2typesNOTOPac = InverseLaplaceTransform B L
- 1 limSolGenNOTOPac , L , T F �� Simplify ;

ã GF for Total S

The GF for the total number of mutations S is found by setting all Ω[_] to be the same:
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GfS = InverseLaplaceTransform B L
- 1 H asymGF �. 8Ω@ _ D ® Ω< �� Simplify L, L , T F �� Simplify

M + 4 ã
-

1

2
T I M + 4 Ω M

Ω

H1 + ΩL H1 + 2 ΩL HM + 4 ΩL
This tabulates the pdfF of S :

test = probSasym @0.127, 4.2, 0.5, 12D
80.0601006, 0.0853815, 0.0888486, 0.08368, 0.075961, 0.0679905,

0.0605291, 0.0537757, 0.0477385, 0.0423665, 0.0375948, 0.0333591, 0.0296002<
0.0635 * 2

0.127

test = probSasym @0.0635, 4.2, 0.5, 12D
80.104485, 0.197259, 0.228484, 0.194915, 0.132674, 0.0759036, 0.0379126,

0.0170273, 0.00704105, 0.00273326, 0.00101202, 0.000362034, 0.000126404<
Which again must sum to one:

test �� Total

0.999991

ã Pairwise GF

The GF for the pairwise coalescence times for the asymmetric case is:

Ψ @ diff D =

1

L + M � 2 + Ω

H M � 2 + LL
1

H 1 + ΩL
;

InverseLaplaceTransform @Ψ @diffD� L , L , T D
M

M + 2 Ω
+

2 ã
-

1

2
T H M + 2 Ω L

Ω

M + 2 Ω

1 + Ω

InverseLaplaceTransform @Ψ @diffD� L , L , T D �. 8M ® 0<
ã - T Ω

1 + Ω

PDFcoal = InverseLaplaceTransform @InverseLaplaceTransform @Ψ @diffD� L , L , T D, Ω, tD
1

- 2 + M
ã

-
1

2
I 2 + M M t KK- ã

t
+ ã

M t

2 O M + K- 2 ã

1

2
M H t - T L + T

+ ã
t M O HeavisideTheta@t - TDO
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Plot@PDFcoal �. 8M ® 0, T ® 2<, 8t, 0, 4<D �� N

� Graphics �

ã Migration in the reverse direction...

With migration in the reverse direction we have 10 equations:

asymREV = : Ψ @88a<, 8b, c <<, 8<D ==
1

1 + Ω@8a<D + Ω@8b, c <D ,

Ψ @88b<, 8a, c <<, 8<D ==
1

1 + Ω@8b<D + Ω@8a, c <D ,

Ψ @88c <, 8a, b<<, 8<D ==
1

1 + Ω@8c <D + Ω@8a, b<D ,

Ψ @88a, b<<, 88c <<D ==
1

L + M � 2 + Ω@8a, b<D + Ω@8c <D H L + M � 2L Ψ @88c <, 8a, b<<, 8<D,

Ψ @88a, c <<, 88b<<D ==
1

L + M � 2 + Ω@8a, c <D + Ω@8b<D H L + M � 2L Ψ @88b<, 8a, c <<, 8<D,

Ψ @88a<, 8b<<, 88c <<D ==

1

L + 1 + M � 2 + Ω@8c <D + Ω@8b<D + Ω@8a<D HH L + M � 2L Ψ @88a<, 8b<, 8c <<, 8<D + Ψ @88a, b<<, 88c <<DL,

Ψ @88a<, 8c <<, 88b<<D ==
1

L + 1 + M � 2 + Ω@8c <D + Ω@8b<D + Ω@8a<D
HH L + M � 2L Ψ @88a<, 8b<, 8c <<, 8<D + Ψ @88a, c <<, 88b<<DL,

Ψ @88a<, 8b<, 8c <<, 8<D ==
1

3 + Ω@8a<D + Ω@8b<D + Ω@8c <D
H Ψ @88a<, 8b, c <<, 8<D + Ψ @88b<, 8a, c <<, 8<D + Ψ @88c <, 8a, b<<, 8<DL,

Ψ @88a<<, 88b, c <<D ==
1

L + H M � 2L + Ω@8a<D + Ω@8b, c <D H L + H M � 2LL Ψ @88a<, 8b, c <<, 8<D,

Ψ @88a<<, 88b<, 8c <<D ==
1

L + 1 + M + Ω@8a<D + Ω@8b<D + Ω@8c <D H L Ψ @88a<, 8b<, 8c <<, 8<D +

Ψ @88a<<, 88b, c <<D + M � 2 Ψ @88a<, 8b<<, 88c <<D + M � 2 Ψ @88a<, 8c <<, 88b<<DL> ;

The GF is:
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asymGFREV = H Solve @asymREV , First �� asymREV DL P 1, - 1, 2T �� Simplify

L +

M I M

2
+ L M

1 +
M

2
+ L + Ω@8a<D + Ω@8b<D + Ω@8c<D

� HH3 + Ω@8a<D + Ω@8b<D + Ω@8c<DL H1 + Ω@8c<D + Ω@8a, b<DLL +

HM HM + 2 L LL� HH2 + M + 2 L + 2 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<DL
H1 + Ω@8c<D + Ω@8a, b<DL HM + 2 L + 2 Ω@8c<D + 2 Ω@8a, b<DLL +

L +
M J M

2
+ L N

1 +
M

2
+ L + Ω @8 a <D + Ω A9 b =E + Ω @8 c <D

3 + Ω@8a<D + Ω@8b<D + Ω@8c<D + HM HM + 2 L LL� HH2 + M + 2 L + 2 Ω@8a<D + 2 Ω@8b<D + 2 Ω@8c<DL

HM + 2 L + 2 Ω@8b<D + 2 Ω@8a, c<DLL � H1 + Ω@8b<D + Ω@8a, c<DL +

L +
M J M

2
+ L N

1 +
M

2
+ L + Ω @8 a <D + Ω A9 b =E + Ω @8 c <D

3 + Ω@8a<D + Ω@8b<D + Ω@8c<D +
M + 2 L

M + 2 L + 2 Ω@8a<D + 2 Ω@8b, c<D � H1 + Ω@8a<D + Ω@8b, c<DL �

H1 + M + L + Ω@8a<D + Ω@8b<D + Ω@8c<DL
There are higher order terms in M which are not present with the reverse simpler sampling scheme (a single individual from the receiving
population).

limSolGenCON2REV = Limit@asymGFREV �. 8Ω@8a, b<D ® z Α , Ω@8a, c <D ® z<, z ® ¥D ��.

8Ω@8b<D ® ΘS - Ω@8a<D - Ω@8c <D, Ω@8b, c <D ® ΘBC - Ω@8a<D< �� Simplify

IM 3
+ 4 L H1 + ΘS + L L H3 + ΘBC + ΘS + L L +

M 2 H3 + 2 ΘBC + ΘS + 5 L L + 2 M I3 + ΘS2
+ 7 L + 3 ΘBC L + 4 L

2
+ ΘS H4 + 3 L LMM�

HH1 + ΘBC L H3 + ΘSL H1 + M + ΘS + L L HM + 2 HΘBC + L LL HM + 2 H1 + ΘS + L LLL
limSolGenINCON2REV = Limit@asymGFREV �. 8Ω@8a, c <D ® z Α , Ω@8b, c <D ® z<, z ® ¥D ��.

8Ω@8a<D ® ΘS - Ω@8b<D - Ω@8c <D, Ω@8a, b<D ® ΘAB - Ω@8c <D< �� Simplify

IM 3
+ 4 L HΘAB + L L H1 + ΘS + L L + 2 M L H4 + 3 ΘAB + 2 ΘS + 4 L L + M 2 H3 + 2 ΘAB + ΘS + 5 L LM�

HH1 + ΘABL H3 + ΘSL H1 + M + ΘS + L L HM + 2 HΘAB + L LL HM + 2 H1 + ΘS + L LLL
Inverting the above wrt L gives:

ilt2typesCON2REV = InverseLaplaceTransform B L
- 1 limSolGenCON2REV , L , T F �� Simplify

4 ã
-

1

2
T I 2 + M + 2 ΘS M H1 + ΘSL
2 + M + 2 ΘS

+
4 ã

-
1

2
T I M + 2 ΘBC M

ΘBC H3 + ΘSL
HM + 2 ΘBC L H2 + M - 2 ΘBC + 2 ΘSL -

I2 ã
- T I 1 + M + ΘS M HM H2 + ΘSL + H1 + ΘSL H4 - ΘBC + 2 ΘSLLM� HH1 + M + ΘSL H2 + M - 2 ΘBC + 2 ΘSLL +

IM IM 2
+ M H3 + 2 ΘBC + ΘSL + 2 I3 + 4 ΘS + ΘS2MMM�

HHM + 2 ΘBC L H1 + M + ΘSL H2 + M + 2 ΘSLL � HH1 + ΘBC L H3 + ΘSLL
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ilt2typesINCON2REV = InverseLaplaceTransform B L
- 1 limSolGenINCON2REV , L , T F �� Simplify

2 ã
-

1

2
T I 2 + M + 2 ΘS M H1 + ΘSL H-1 - 2 ΘAB + ΘSL

H1 - ΘAB + ΘSL H2 + M + 2 ΘSL +
M 2 H3 + M + 2 ΘAB + ΘSL

HM + 2 ΘABL H1 + M + ΘSL H2 + M + 2 ΘSL -

K 2 ã
-

1

2
T I M + 2 ΘAB M

M ΘAB H3 + ΘSLO� HHM + 2 ΘABL H-1 + ΘAB - ΘSL H2 + M - 2 ΘAB + 2 ΘSLL +

2 ã - T I 1 + M + ΘS M HM + H2 + ΘABL H1 + ΘSLL
H1 + M + ΘSL H2 + M - 2 ΘAB + 2 ΘSL � HH1 + ΘABL H3 + ΘSLL

To obtain the GF for topologically uninformative blocks we need to sum over all three possible topologies

limSolGenNOTOPbcREV = LimitB asymGFREV �. : Ω@8a, b<D ® z Α , Ω@8a, c <D ® z, Ω@8b, c <D ®
Θ

2
> , z ® ¥F �.

8Ω@8c <D ® Ωsh - Ω@8b<D, Ω@8a<D ® Ωa< �� Simplify ;

limSolGenNOTOPabREV = LimitB asymGFREV �. : Ω@8a, c <D ® z Α , Ω@8b, c <D ® z, Ω@8a, b<D ®
Θ

2
> , z ® ¥F �.

8Ω@8a<D ® Ωsh - Ω@8b<D, Ω@8c <D ® Ωc < �� Simplify ;

limSolGenNOTOPacREV = LimitB asymGFREV �. : Ω@8a, b<D ® z Α , Ω@8b, c <D ® z, Ω@8a, c <D ®
Θ

2
> , z ® ¥F �.

8Ω@8a<D ® Ωsh - Ω@8c <D, Ω@8b<D ® Ωb< �� Simplify ;

To GF for discrete splitting times are:

ilt2typesNOTOPbcREV = InverseLaplaceTransform B L
- 1 limSolGenNOTOPbcREV , L , T F �� Simplify ;

ilt2typesNOTOPabREV = InverseLaplaceTransform B L
- 1 limSolGenNOTOPabREV , L , T F �� Simplify ;

ilt2typesNOTOPacREV = InverseLaplaceTransform B L
- 1 limSolGenNOTOPacREV , L , T F �� Simplify ;

Setting all Ω to zero the GF has to sum to one:

asymGFREV �. 8Ω@ _ D -> 0< �� Simplify

1

Topological probabilities sum to one as they should:

8topconREV = ilt2typesCON2REV �. 8ΘS ® 0, ΘBC ® 0<,

topinconREV = ilt2typesINCON2REV �. 8ΘS ® 0, ΘAB ® 0<< �� Simplify

:
4 ã

-
1

2
I 2 + M M T

-
4 ã

- H 1 + M L T I 2 + M M
1 + M

+
6 + 3 M + M 2

1 + M

3 H2 + M L ,
1

3

2 ã -I 1 + M M T

1 + M
-

2 ã
-

1

2
I 2 + M M T

2 + M
+

M H3 + M L
H1 + M L H2 + M L >

topconREV + 2 topinconREV �� FullSimplify

1

� Wang & Hey reanalysis

� Importing the data

This imports the Wang & Hey alignments (30,247 loci). The Dsim1/Dsim2/Dmel triplets have been filtered as described in W&H and
polarized relative to Dyak. Divergent sites that are invariant in the ingroup are denoted as {1,1,1}, sites with more than two states (either
due to backmutation or recombination) are denoted as {1,2,2}, {1,2,3} etc. Sites that are monomorphic in in and outgroup have been
stripped, i.e. the order of mutation is retained, the sequence length information is lost. The file is still large (10 Mb): 

WangHeyRaw = Partition @Import@"� home � konrad � Downloads� ALLstripped2", "Table "D, 3D;
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WangHeyRaw �� Length

30 247

This turns alignment into lists of site types. The first locus is:

WangHeyRaw2 = sitetyp@WangHeyRaw D; WangHeyRaw2P 1T
881, 1, 1<, 80, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 0, 0<,

80, 0, 1<, 81, 0, 0<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 2, 2<, 81, 1, 1<, 81, 1, 1<,
81, 1, 1<, 81, 1, 1<, 80, 1, 0<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 0, 0<, 81, 1, 1<,
81, 1, 1<, 81, 1, 1<, 80, 1, 0<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<,
81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 0, 0<, 81, 1, 1<, 81, 1, 1<,
81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<,
81, 1, 1<, 81, 1, 1<, 81, 0, 0<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 1, 1<, 81, 0, 0<<

E.g.the first locus has 55 variable sites in total, 10 of which are divergent between in and outgroup:

8WangHeyRaw2P 1T �� Length , Count@WangHeyRaw2P 1T, 81, 1, 1<D<
855, 44<

� Trimming 

To keep the number of mutations per block manageable, account for mutational heterogeneity and to minimize the effect of intralocus
recombination we will trim each locus to the same outgroup distance. Cutting after 16 divergent (between Dmel and Dyak) sites corre-
sponds to roughly one third of the mean number of divergent sites in the full dataset.  There are 2090 loci  that fall below this cut-off, i.e. are
not informative enough will be ignored: 

WangHeyTrimRaw = DeleteCases@divcutter @16, ð D & �� WangHeyRaw2, 8<D;

We  can  the  simply  count  the  6  different  mutational  types  at  each  locus  (in  the  following  order
{{1,0,1},{0,1,0},{1,1,0},{0,0,1},{0,1,1},{1,0,0},{1,1,1}}. Sites with multiple segregating states are ignored.  Below the counts for  the first
locus, which only contains one internal mutations on the branch between Dmel and the two Dsim samples:

WangHeyTrimCounts = counttyp@ð D & �� WangHeyTrimRaw ; WangHeyTrimCountsP 1T
80, 1, 0, 1, 1, 2, 13<

As expected by symmetry, the mean number of mutations on internal branches corresponding to the two different incongruent genealo-
gies (1st and 3th value below) is the same:

Table @Mean @ð P iT & �� WangHeyTrimCountsD �� N , 8i, 1, 7<D
80.126327, 0.662215, 0.122811, 0.628689, 1.81937, 3.03601, 11.8461<

17% of loci have no topologically informative mutations:

Count@H Plus �� 8ð P 1T, ð P 3T, ð P 5T<L & �� WangHeyTrimCounts, 0D� H WangHeyTrimCounts �� Length L �� N

0.174663

For the triplet analysis conflicting (in terms of  the topology) shared derived mutations (i.e. on internal branches) in the same locus are
not possible. However, in the W&H data this is the case for 14% of loci:

Mean @If@Count@ð P81, 3, 5<T, 0D < 2, 1, 0D & �� WangHeyTrimCountsD �� N

0.139823

First,  we  will  remove  blocks  that  have  more  than  2  topologically  conflicting mutations  (2.2%)  .  This  filters  out  dubious  alignments
without biasing against the tails of the coalescence time distribution:

WangHeyTrimCounts2 =

DeleteCases@H If@H Plus �� Delete @Sort@ð P81, 3, 5<TD, - 1DL < 2, ð , r DL & �� WangHeyTrimCounts, r D;

H Length @WangHeyTrimCountsD - Length @WangHeyTrimCounts2DL� Length @WangHeyTrimCountsD �� N

0.0226231

Second, we will  assume that single incongruent site are backmutations and remove those from each alignment. For 5% of  loci,  the
incongruent, i.e. less frequent topological site cannot be determined (because there are exactly two conflicting shared derived mutations),
these loci will be removed:

Supporting_Information_Lohse_Harrison_Barton.nb   21



Second, we will  assume that single incongruent site are backmutations and remove those from each alignment. For 5% of  loci,  the
incongruent, i.e. less frequent topological site cannot be determined (because there are exactly two conflicting shared derived mutations),
these loci will be removed:

Count@H Delete @Sort@ð P81, 3, 5<TD, 1DL & �� WangHeyTrimCounts2, 81, 1<D�
Length @WangHeyTrimCounts2D �� N

0.050109

8Count@ð P81, 3, 5<T & �� WangHeyTrimCounts2, 81, 1, 0<D,

Count@ð P81, 3, 5<T & �� WangHeyTrimCounts2, 81, 0, 1<D,

Count@ð P81, 3, 5<T & �� WangHeyTrimCounts2, 80, 1, 1<D<
8112, 659, 608<
WangHeyTrimCounts3 = DeleteCases@H incontrim3@ð DL & �� WangHeyTrimCounts2, r D;

The mean number of mutations is reduced by more then half due to these trimming steps:

8Table @Mean @ð P iT & �� WangHeyTrimCounts2D �� N , 8i, 1, 7<D,

Table @Mean @ð P iT & �� WangHeyTrimCounts3D �� N , 8i, 1, 7<D<
880.101272, 0.64335, 0.096439, 0.609012, 1.81192, 3.04895, 11.8968<,

80.0436479, 0.622279, 0.0403963, 0.588271, 1.85261, 3.0674, 11.9347<<
The number of loci removed in the various trimming steps is comparatively  small. The only drastic reduction occurs when trimming to a
fixed outgroup distance.

Length @WangHeyTrimCountsD - Length @WangHeyTrimCounts3D
2016

8Length @WangHeyRaw D, Length @WangHeyTrimCountsD,

Length @WangHeyTrimCounts2D, Length @WangHeyTrimCounts3D<
830 247, 28 157, 27 520, 26 141<

� Tests on pairwise data

It is quickest to run pairwise analyses (one Dmel , one Dsim individual) to compare the effect of  the various trimming steps on parameter
estimation and check against the W&H estimates. 

ã Full dataset

This throws out one of the Dsim individuals and condenses the data into counts of pairwise differences within the ingroup (S_in) and
between ingroup and outgroup (S_out). Sites with more than two states (backmutations) are counted both in S_in and S_out, so the only
difference to the W&H analysis is that we are fitting simpler IM models (with only one migration rate) and are assuming infinite sites
mutations. 

WangHeyPairs = topair @ð D & �� WangHeyRaw2; WangHeyPairsP 1T
810, 51<

We need to tabulate LogL of M and T for all observed values of S_in and S_out. There are 79*260= potential combinations.

8Table @Max @ð P iT & �� WangHeyPairsD, 8i, 1, 2<D,

Table @Min @ð P iT & �� WangHeyPairsD, 8i, 1, 2<D, Table @Mean @ð P iT & �� WangHeyPairsD �� N , 8i, 1, 2<D<
8879, 260<, 80, 0<, 818.0691, 46.5621<<

Scaling locus specific mutation rates based on the number of observed S_out values and tabulating all LogL exactly would take very long,;
a much faster alternative is to bin contigs according to their outgroup divergence, 10 bins should be enough:

tabu = Table @Select@ WangHeyPairs, ð P 2T > H 260 � 10L * i && ð P 2T < H 260 � 10L * H i + 1L &D, 8i, 0, 9<D;

bincounts = Table @Table @Count@ð P 1T & �� tabu P iT, k D, 8k , 0, 79<D, 8i, 1, 10<D;

The mutation rate scalars (relative to the mean divergence across all blocks) for the bins are:

meanmut = Mean @WangHeyPairsD �� N ;

meanbin = Table @Mean @ð P 2T & �� tabu P iTD �� N , 8i, 1, 10<D� meanmutP 2T
80.385613, 0.816086, 1.35804, 1.90756, 2.46236, 3.0201, 3.60045, 4.12813, 4.69419, 5.16514<
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The joint MLE for Τ and Θ under a simple split model without migration are:

splitMLEFull = FindMaximum @
Plus �� Table @Total@Table @Log @Psplit@Τ, Θ , 8meanbin P iT, k <DD, 8k , 0, 79<D * bincountsP iTD,

8i, 1, 10<D, 8Τ, 0.5, 0.1, 4<, 8Θ , 8, 4, 16<D
8- 94 119.3, 8Τ ® 2.18337, Θ ® 5.82369<<

The joint MLE for M, Τ and Θ for IM model with symmetric and asymmetric migration are:

imMLEFull = FindMaximum @Plus ��

Table @Total@Table @Log @WilkHeSim2s@M , Τ, Θ , 8meanbin P iT, k <DD, 8k , 0, 79<D * bincountsP iTD,

8i, 1, 10<D, 8M , 0.05, 0, 0.5<, 8Τ, 0.5, 0.1, 3<, 8Θ , 8, 4, 16<D
8- 93 467.4, 8M ® 0.0256439, Τ ® 2.69317, Θ ® 5.14413<<
imMLEFullasym = FindMaximum @

Plus �� Table @Total@Table @Log @asym2s@M , Τ, Θ , 8meanbin P iT, k <DD, 8k , 0, 79<D * bincountsP iTD,

8i, 1, 10<D, 8M , 0.05, 0, 0.5<, 8Τ, 0.5, 0.1, 3<, 8Θ , 8, 4, 16<D
8- 93 466.3, 8M ® 0.0510174, Τ ® 2.69555, Θ ® 5.14185<<

Note that the MLE for M under the symmetric model is half that inferred for the asymmetric migration model as expected.

ã Trimmed to fixed divergence 

Repeating the above for the data (without trimming out backmutations and topologically conflicting mutations):

WangHeyTrimPairs2 = topair @ð D & �� WangHeyTrimRaw ;

8Mean @WangHeyTrimPairs2D �� N , Max @H ð P 1T & �� WangHeyTrimPairs2LD<
886.45857, 15.9826<, 31<
tabPairs = Table @Count@H ð P 1T & �� WangHeyTrimPairs2L, iD, 8i, 0, 31<D;

splitMLE = FindMaximum @
Total@Table @Log @Psplit@Τ, Θ , 81, i<DD, 8i, 0, 31<D * tabPairsD, 88Τ, 0.2, 0, 4<, 8Θ , 2, 1, 4<<D

8-70 303.4, 8Τ ® 3.07509, Θ ® 1.58489<<
There is still a clear signal of migration (M is slightly lower than in the analysis on the full data):

imMLEasym = FindMaximum @Total@Table @Log @asym2s@M , Τ, Θ , 81, i<DD, 8i, 0, 31<D * tabPairsD,

8M , 0.02, 0, 0.5<, 8Τ, 3.5, 0.5, 4<, 8Θ , 2, 0.9, 4<D
8-70 180., 8M ® 0.041833, Τ ® 3.84235, Θ ® 1.37638<<

ã Trimmed to fixed divergence, no backmuts and incongruent sites

What effect does ignoring detectable backmutations and conflicting shared derived mutations have?

WangHeyTrimPairs3 = H Plus �� Drop@Drop@ð , 1D, - 1DL & �� WangHeyTrimCounts3;

tabPairs3 = Table @Count@WangHeyTrimPairs3, iD, 8i, 0, Max @WangHeyTrimPairs3D<D;

imMLE3asym =

FindMaximum @Total@Table @Log @asym2s@M , Τ, Θ , 81, i<DD, 8i, 0, Max @WangHeyTrimPairs3D<D * tabPairs3D,

8M , 0.1, 0.001, 0.6<, 8Τ, 3, 0.5, 6<, 8Θ , 2, 0.9, 3<D
8-65 717.1, 8M ® 0.0933362, Τ ® 3.33526, Θ ® 1.50898<<

� Triplet analysis

Given the symmetry in the model there are only 3 types of loci, congruent, incongruent and those without parsimony informative sites.
Within each class there are 3 types of mutations, those on the shorter external branches, those on the internal branch and those on longer
external branch (the counts are listed in this order). The function sitecount sorts loci according to topology. The mutational information
at each locus is summarized by counting the number of mutations on each branch. The first  locus with a congruent topology has 2
mutations on the shorter external branches, one on the internal branch and one on the longer external branch.
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WangHeyTrimCounts3 �� Length

26 141

WHcount = sitecount3s@WangHeyTrimCounts3D; WHcountP 1, 1T
82, 2, 1<

To make the GF calculation feasible we need to exclude 6 extreme loci with very large numbers of mutations (>16) on any one branch. This
should have very little effect on parameter estimates but avoids catastrophic rounding error. We can then summarize the data as counts of
distinct mutational configurations in each topology class:

WHCount2 = 8Select@WHcountP 1T, H Max @ð DL < 17 &D, Select@WHcountP 2T, H Max @ð DL < 15 &D,

Select@WHcountP 3T, H Max @ð DL < 14 &D<; max2 = maxcount3s@WHCount2D
8816, 12, 16<, 812, 13, 8<, 88, 13, 11<<

Note that the most diverse locus still has 26 mutations. 

Table @Max @Total@ð D & �� H WHCount2P iTLD, 8i, 1, 3<D
826, 19, 18<
resWH2 = Table @Table @Count@WHCount2@@r DD, 8i, j, k <D,

8i, 0, max2@@r , 1DD<, 8j, 0, max2@@r , 2DD<, 8k , 0, max2@@r , 3DD<D, 8r , 1, 3<D;

resWH2 �� Flatten �� Total

26 135

How to best tabulate the probabilities of the observed configurations? The simplest approach is to tabulate the probabilities for all possible
configurations (given the maximum number of mutations observed on each branch). 

The function tripletL computes LogL under the IM model with asymmetric migration. For a single point in parameter space this takes
about 1.5 seconds:

Timing @tripletL @0.16, 3.3, 1.5, resWH2, max2DD
81.45609, -149 746.<

FindMaximum uses derivatives and finds the MLE estimate in a few minutes:

Timing @triplMax =

FindMaximum @tripletL @M , Τ, Θ , resWH2, max2D, 8M , 0.1, 0.001, 0.6<, 8Τ, 2, 1, 6<, 8Θ , 1, 1, 3<DD
8439.859, 8-149 556., 8M ® 0.173665, Τ ® 3.34091, Θ ® 1.39874<<<

ã Comparison between sampling schemes and with Wang and Hey

How do the above MLEs compare to the estimates of W&H.  Given that there are various differences in the scaling of parameters (W&H
scale both divergence and migration relative to the mutation rate), we need to convert these into absolute values. W&H  assume that
Dmel and Dyak diverged 10 MYA with 10 generations per year.The Μ per locus and generation for the full data and the fixed divergence are:

88imMLEFull@@2, 3, 2DD, imMLEFull@@2, 2, 2DD, imMLEFull@@2, 1, 2DD<,

8imMLEFullasym @@2, 3, 2DD, imMLEFullasym @@2, 2, 2DD, imMLEFullasym @@2, 1, 2DD<,

8imMLEasym @@2, 3, 2DD, imMLEasym @@2, 2, 2DD, imMLEasym @@2, 1, 2DD<,

8imMLE3asym @@2, 3, 2DD, imMLE3asym @@2, 2, 2DD, imMLE3asym @@2, 1, 2DD< ,

8triplMax @@2, 3, 2DD, triplMax @@2, 2, 2DD, triplMax @@2, 1, 2DD<< �� TableForm

5.14413 2.69317 0.0256439

5.14185 2.69555 0.0510174

1.37638 3.84235 0.041833

1.50898 3.33526 0.0933362

1.39874 3.34091 0.173665

mufull = 0.1 * H meanmutP 2T � 2L� 10 000 000 �� N ; mu1 = 0.1 * H 16 � 2L� 10 000 000 �� N ;

Converting into absolute values is straightforward for T and Ne. Below the MLE estimates for model parameters for the full data( 2nd
column), the length trimmed data (3rd column), length trimmed data without backmutations and incongruent sites (4th column) and
the same data:
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Converting into absolute values is straightforward for T and Ne. Below the MLE estimates for model parameters for the full data( 2nd
column), the length trimmed data (3rd column), length trimmed data without backmutations and incongruent sites (4th column) and
the same data:

Nefs = imMLEFullP 2, 3, 2T � H 4 * mufullL;

Tfs = 0.1 * imMLEFullP 2, 2, 2T * 2 * Nefs;

mfs = imMLEFullP 2, 1, 2T * H 2.44 * 10 ^ 6L� Nefs;

Nef = imMLEFullasym P 2, 3, 2T � H 4 * mufullL;

Tf = 0.1 * imMLEFullasym P 2, 2, 2T * 2 * Nef;

mf = imMLEFullasym P 2, 1, 2T * H 2.44 * 10 ^ 6L� H 2 NefL;

Ne1 = imMLEasym P 2, 3, 2T � H 4 * mu1L;

T1 = 0.1 * imMLEasym P 2, 2, 2T * 2 Ne1;

m1 = imMLEasym P 2, 1, 2T * H 2.44 * H0.00513 � 0.0055L * 10 ^ 6L� H 2 Ne1L;

Ne3 = imMLE3asym @@2, 3, 2DD� H 4 * mu1L;

T3 = 0.1 * imMLE3asym @@2, 2, 2DD * 2 Ne3;

m3 = imMLE3asym @@2, 1, 2DD H 2.44 * H0.00513 � 0.0055L * 10 ^ 6L� H 2 Ne3L;

Netr = triplMax P 2, 3, 2T � H 4 * mu1L;

Ttr = 0.1 * triplMax P 2, 2, 2T * 2 Netr ;

mtr = triplMax P 2, 1, 2T H 2.44 * H0.00513 � 0.0055L * 10 ^ 6L� H 2 Netr L;

88Nefs, Nef, Ne1, Ne3, Netr <, 8Tfs, Tf, T1, T3, Ttr <, 8mfs, mf, m1, m3, mtr << �� TableForm

5.52395 ´ 106 5.5215 ´ 106 4.30119 ´ 106 4.71556 ´ 106 4.37105 ´ 106

2.97538 ´ 106 2.9767 ´ 106 3.30533 ´ 106 3.14553 ´ 106 2.92065 ´ 106

0.0113272 0.0112725 0.0110674 0.0225232 0.0452107

The effective population size and divergence time estimates in the pairwise analysis on the full data agree very well with those of W&H. The
effective pop. size is slightly larger than the ancestral Ne  estimated by W&H but smaller than their estimate of the Dsim effective popula-
tion size. Given that our simpler model only contains one Ne  parameter, one would expect the MLE for this parameter to be inbetween that
of the ancestral population and Dsim. 

Note that W&H scale migration as M=2Ndmel  m, we are scaling M=4Nanc m. If we taking the larger effective pop. size of the ancestral
population compared to Dmel (2.44 Mio) into account, M matches the W&H estimate (0.013) quite well. However, ignoring backmuta-
tions and incongruent mutations within blocks results in a marked increase in M and a decrease in Ne  , which makes sense given that we
are removing polymorphic sites.  Strikingly, in the triplet analysis, the estimate of M is further increased compared to the pairwise analysis
on the same dataset.

� Comparing pairwise and triplet results

To visualize the difference between pairwise and triplet estimates, we evaluate a profile through the maximum of the likelihood surface for
each parameter (fixing the other two parameters at their MLE):

The DLogL (relative to the maximum) for M, T and Θ for pairwise (dashed line) and triplet (solid line) reveal not only that the MLE differ
between the two sampling schemes (M is higher, Θ lower in the triplet analysis), but also that the curvature is the same, i.e. there is no
improvement in power by adding a 3rd sample which is unexpected.
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What  explains  the  difference  between  the  pairwise  and  the  triplet  estimates  (in  terms  of  bias  and  power)?  The  triplet  estimates  (in
particular M) should be sensitive to any model violation (both the model of  sequence evolution and history) that affects the inferred
frequencies of incongruent topologies. For relatively old divergence (as here) most incongruent genealogies are expected to be due to
migration  rather  than  incomplete  lineage  sorting.  We  can  use  the  GF  to  find  the  expected  frequencies  of  the  three  topology  classes
(congruent, incongruent and uninformative, see Table below) given the MLE for the two sampling schemes and compare these against
the observed frequencies. The expected frequency of observable blocks with a congruent topologies is given by the frequency of the congru-
ent genealogies (minus the proportion of those in that have no shared derived mutations).

0.821639 0.0211294 0.157232

0.772016 0.0286075 0.199377

0.750067 0.0617563 0.188177

There is an excess of incongruent topologies in the data (6.1%), which cannot be explained by the inferred histories. However, the observed
frequencies (last row above) match the expectations from triplet MLEs (middle row) much better than those corresponding to the pairwise
analysis (1st row). 

Given the frequency of sites with more than 2 segregating sites, backmutations in the outgroup branch (which lead to mispolarized sites)
are the most likely explanation. To check this we can look at the average number of mutations on each branch in the 3 topology classes.
While congruent loci have on average fewer mutations on the two shorter external branches (i.e. those leading to the common ancestor of
the two Dsim individuals) (1st row, 1st column) than on the longer external branch (2nd column); this is not the case at all for incongru-
ent loci (2nd row). Thus most loci inferred to have an incongruent topology are due to mispolarized mutations. Given the magnitude of
the excess of incongruent loci, it is actually surprising how well the triplet scheme still works!

Table @WHCount2P iT �� Mean �� N , 8i, 1, 3<D �� TableForm

1.15411 3.19507 2.46722

3.39715 1.15551 1.35812

0.562627 0.563847 2.76759

� Comparison  with simulated  data

This imports 26141 loci simulated for triplet sampled {{b,c},a} simulated under the IM model with asymmetric migration using Hudson’s
ms. The values used for simulation were those inferred in the pairwise analysis (T= 3.33, M=0.0933, Θ=1.5). The key question is how much
statistical power can be gained from analyzing triplet samples compared to pairs ?

sim = ReadList@"� home � konrad � Downloads� WangHeyTest3rd "DP 1T; Mean @sim D �� N

80.0178647, 0.719559, 0.020619, 0.727095, 2.33863, 3.03925<
Around 84% of the loci are topologically informative:
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Total@If@ð P 1T > 0 ÈÈ ð P 3T > 0 ÈÈ ð P 5T > 0, 1, 0D & �� sim D� Length @sim D �� N

0.841322

res = sitecount3s@sim D; max = maxcount3s@resD
8814, 15, 16<, 816, 8, 8<, 89, 10, 11<<

This summarizes loci in each topological class as counts of distinct mutational configurations:

res2 = configcount3s@sim D;

In contrast to the real data, both the pairwise and triplet results closely match the true values used for simulations:

simpair = H Flatten @Delete @ð , 881<, 84<<DD �� TotalL & �� sim ;

simcount = Table @Count@simpair , iD, 8i, 0, Max @simpair D<D;

pairsim = FindMaximum @Total@Table @Log @asym2s@M , Τ, Θ , 81, i<DD, 8i, 0, Max @simpair D<D * simcountD,

8M , 0.1, 0.001, 2<, 8Τ, 4, 1, 12<, 8Θ , 1, 0.1, 2<D
8-65 619.2, 8M ® 0.0984103, Τ ® 3.23947, Θ ® 1.53159<<
Timing @triplsim =

FindMaximum @tripletL @M , Τ, Θ , res2, max D, 8M , 0.1, 0.01, 0.5<, 8Τ, 3.3, 1, 6<, 8Θ , 1.5, 1, 4<DD
8376.844, 8-151 483., 8M ® 0.0922354, Τ ® 3.28638, Θ ® 1.51179<<<

This plots the difference in LogL from its maximum (DLogL) against T (left)  and Θ  (right) for triplet (solid,  thick lines) and pairwise
(dashed lines) samples. As expected and in contrast to the inference on the real data, the triplet estimates are narrower. If one uses the
reverse triplet sampling scheme i.e. sampling two individuals from the receiving population (see analysis of data simulated for this case
with the same parameter values below), the power to infer M increases substantially (thin solid lines):
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This imports data simulated under the reverse sampling scheme:

simREV = ReadList@"� home � konrad � Downloads� WangHeyTestREV "D@@1DD; Mean @simREV D �� N

{{1, 0, 1}, {0, 1, 0}, {1, 1, 0}, {0, 0, 1}, {0, 1, 1}, {1, 0, 0}}

80.0881757, 0.826556, 0.0827053, 0.819555, 2.2545, 3.01067<
resREV = sitecount3s@simREV D; max = maxcount3s@resREV D
8814, 15, 15<, 817, 10, 11<, 810, 10, 11<<
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resREV = configcount3s@simREV D;

Timing @tripletLREV @0.0933, 3.3, 1.5, resREV , max DD
81.48409, -158 940.<

Finding the Maximum takes 15 mins....

Timing @triplsimREV = FindMaximum @tripletLREV @M , Τ, Θ , resREV , max D,

8M , 0.1, 0.01, 0.5<, 8Τ, 3.3, 1, 6<, 8Θ , 1.5, 1, 4<DD
8830.436, 8-158 920., 8M ® 0.0868254, Τ ® 3.26594, Θ ® 1.51019<<<

Neps = pairsim P 2, 3, 2T � H 4 * mu1L;

Tps = 0.1 * pairsim P 2, 2, 2T * 2 * Neps;

mps = pairsim P 2, 1, 2T * H 2.44 * 10 ^ 6L� H 2 NepsL;

Netrs = triplsim P 2, 3, 2T � H 4 * mu1L;

Ttrs = 0.1 * triplsim P 2, 2, 2T * 2 * Netrs;

mtrs = triplsim P 2, 1, 2T * H 2.44 * 10 ^ 6L� H 2 NetrsL;

8triplsim @@2, 1, 2DD, pairsim P 2, 1, 2T<
80.0922354, 0.0984103<
88Neps, Netrs <, 8Tps, Ttrs<, 8mps, mtrs<< �� TableForm

4.78623 ´ 106 4.72436 ´ 106

3.10097 ´ 106 3.10521 ´ 106

0.0250846 0.0238185

3. Numbers of configurations

The feasibility of finding a solution for the GF depends on the number of configurations that need to be tracked. In a two-deme migration
model, the number of configurations that are possible is determined by the number of ways that j  lineages present between successive

coalescent events can be distributed across the two populations, and the number of ways that the ancestry of n  sampled individuals can
be distributed amongst the j  lineages present in each successive coalescence event. Specifically, the total number of configurations is:

(1)â
j = 2

n

2 HSj, 2 + 1L Sn , j

where S n , j  is the Stirling number of the second kind, which gives the number of ways that n  lineages can be distributed over j  non-empty

sets. The sum is over all the intervals during which there were j  extant lineages. This number grows dramatically with the number of

lineages.  For  example,  there  are  92  and  2428  configurations  for  n = 4  and  6  respectively.  In  the  IM  model  there  are  an  additional
Ú j = 2

n S n , j  configurations possible in the ancestral population. 

However, if we can find algebraic expressions for the GF with j genes , we do not need to track all these configurations: for example,

if we know ΨA a , b , c \ÆE , we can immediately find ΨA a b , c , d \ÆE , for example. Therefore, the number of types of configuration

that we need to calculate is only:

(2)â
j = 2

n

2 HSj, 2 + 1L = 2 n + 1
- 4

For example, this is 28 and 124 for n = 4 and 6, respectively.

Although the numbers of configurations with (say) 6 genes would be manageable for numerical calculations, extracting probabilities of
mutational configurations requires that we differentiate an algebraic expression, which is given by inverting a large matrix. However, as
discussed above the GF can be found directly if it is written as an expansion in M  or R , each term corresponding to histories with 0, 1, …
migration or recombination events. The question is now, how many different histories do we need to track, if we allow k  mutation or
recombination events? Consider migration between two demes. A migration event can occur in j  ways during the interval when there are

j  lineages, and so a single event can occur in n + H n - 1L + … + 2 = H n + 2 L H n - 1L � 2  ways. Multiple events occur independently,

and so there are H H n + 2 L H n - 1L � 2 L k  ways that k  migration events can occur in the history of n  genes. For example, with 4 genes
there are 9, 81, 729 ways that 1, 2, 3 migration events can occur, and with 6 genes there are 20, 400, 8000 terms, respectively. With this
method, we need to track many more configurations, but each is given by a much more direct calculation. 
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j  lineages, and so a single event can occur in n + H n - 1L + … + 2 = H n + 2 L H n - 1L � 2  ways. Multiple events occur independently,

and so there are H H n + 2 L H n - 1L � 2 L k  ways that k  migration events can occur in the history of n  genes. For example, with 4 genes
there are 9, 81, 729 ways that 1, 2, 3 migration events can occur, and with 6 genes there are 20, 400, 8000 terms, respectively. With this
method, we need to track many more configurations, but each is given by a much more direct calculation. 

If we observe a very large number of loci, then we wish to tabulate the probability of every possible configuration of mutations. With n

genes, there are 2 n - 2  branches, and so we have H 2 n - 2 L k  ways to throw down k mutations onto the branches. For example, even

with 3 genes there are 6 possible branches, and 6 10  ~ 6 * 10 6  ways to distribute 10 mutations over the branches. However, the number of
possibilities that we need to tabulate is much smaller than this,  because the probability is determined by a much smaller number of
sufficient statistics. With three genes, if  we observe no mutations on the internal branches, then the probability depends only on the
numbers of singletons, 8 k a , k b , k c < , whilst if we see (say) at least one mutation ancestral to 8 a , b < , then we know the topology:

then, the probability is determined by 8 k a + k b , k a b , k c < .  In both cases, there are 14 distinct ways to divide 10 mutations over 3

classes of mutation.  With more genes, more classes must be tabulated, but their number does not increase catastrophically. For example,
with 6 genes and no internal mutations, there are 35 ways to distribute 10 mutations across 6 singleton classes. At the other extreme, if
we know the topology, then the probability is  determined by 5 independent coalescence times, and so we expect that tabulating the
probability of getting i 1 , …i 5  mutations in each of the five time intervals will allow us to calculate the chance of seeing a particular set of

mutations  k .  All  except  the  singleton  class  must  contain  mutations,  and  so  there  are  roughly  Ú k = 1
10 Ú j = 1

k Ú i = 1
j Ú l = 0

i 1 = 935

configurations. 

Definitions

� Automating the recursions

ã makeEqns

ã makeAllEqns

ã TotalRate

ã Mergers

ã reduceEqns

ã tidyNotation

ã numberOfDemes

ã numberOfGenes

ã GetVars

ã configs

ã selectEqns

� Data analysis

ã sitecount3s

ã configcount3s

ã maxcount3s

ã pr3s

ã tripletL

ã WilkHeSim2s

ã asym2s
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ã divcutter

ã sitetyp

ã topair

ã counttyp

ã incontrim3

ã Psplit

ã probSasym
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