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ABSTRACT The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the
importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and
analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs
based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families
containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in
complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as
Alzheimer’s disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely
advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio,
sequencing unselected affected individuals may be preferable.

COMMON diseases such as diabetes, cancer, and autism
are likely caused by a complex interaction among many

genes and environmental factors. Both common and rare
genetic variants are expected to play a role. Thus far the
available technology has allowed for the identification of
common disease susceptibility variants, mostly via genome-
wide association studies. However, the common variants de-
tected so far have small effect sizes and overall explain only
a small fraction of the estimated trait heritability (Maher
2008; Manolio et al. 2009). The recent advances in next-
generation sequencing technologies (Metzker et al. 2010;
Tucker et al. 2009) allow for the first time an objective
assessment of the importance of rare variants in complex
diseases. An increasing number of recent studies on hyper-
tension, schizophrenia, epilepsy, type-1 diabetes, autism,
etc. (Ji et al. 2008; Stefansson et al. 2008; Helbig et al.
2009; Nejentsev et al. 2009; Pinto et al. 2010) implicate rare
variants in these disorders.

Ongoing sequencing studies are already generating un-
precedented amounts of genetic data. The large number of
genetic variants in these data sets, most of them with low
frequencies (,1%), creates great challenges for statistical
analysis. Traditional association testing strategies that
have worked well for common variants will have low power
to identify rare disease susceptibility variants (Morris and
Zeggini 2009; Bansal et al. 2010). To extract the rich in-
formation provided by large sequencing data sets, several
novel statistical approaches have been proposed, especially
designed to identify rare variants that influence disease risk
(Li and Leal 2008; Madsen and Browning 2009; Bhatia et al.
2010; Han and Pan 2010; King et al. 2010; Liu and Leal
2010; Price et al. 2010; Ionita-Laza et al. 2011; Neale
et al. 2011). The common idea underlying all these methods
is to group variants in a region of interest, e.g., a gene, and
perform a gene-based test rather than individual tests for
each of the variants in a gene.

An important question that has not yet been addressed is
the relative power of designs based on affected relatives vs.
designs using unselected affected individuals to identify rare
disease variants. Since rare disease variants tend to be
enriched in families containing multiple affected individuals,
family-based designs can play an important role in the
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identification of rare causal variants. The purpose of this
article is to quantify this enrichment and to study its impli-
cations for the optimal design of studies that search for rare
disease variants in complex traits.

Methods

Effective number of variants in related individuals

By analogy to the concepts of “effective population size” in
population genetics (Wright 1931, 1938) and “effective
number of markers” in a linkage disequilibrium block
(Nyholt 2004), we introduce here a new concept for analysis
of rare variants in related individuals: the effective number of
variants at a position, i.e., the number of “independent”
variants at a specific position in a sample of related individ-
uals. More precisely, the effective number of variants is the
number of observed variants corrected for the known familial
correlation among the individuals included in a sample. This
concept is important as it allows a uniform comparison of
designs based on various types of relatives, regardless of the
relationship type.

For simplicity of presentation we define the effective
number of variants at a position for a pair of individuals. If
the individuals are unrelated, then the effective number of
variants is equal to the observed number of variants since the
two individuals are independent (hence no correction is
necessary). However, the effective number of variants in re-
lated individuals is less than the total number of observed
variants if some of the variants are shared among family mem-
bers. For example, for a pair of siblings each of whom carries
a rare variant in heterozygous state at a position, the effective
number of variants will be less than the observed number of
variants, i.e., two, due to the high probability that these two
variants are shared identical-by-descent (IBD) and hence are
not independent. Similarly, for a pair of second cousins that
each carry a rare variant in heterozygous state the effective
number of variants is less than two, although as shown in the
examples below, it is higher than for a pair of siblings due to
the lower likelihood that a variant is shared IBD for second
cousins compared with siblings. Below we define mathemat-
ically the concept of effective number of variants.

For a pair of relatives we define the effective number of
variants, keff, as follows:

keff ¼
8<
:

keffj2 if both relatives carry a rare variant
keffj1 if only one of the two relatives carries a rare variant
keffj0 if neither of the two relatives carries a rare variant:

By definition, keff|1 = 1 and keff|0 = 0. For keff|2, we show in
supporting information, File S1 that

keffj2 ffi log2f
h
4fuþ 4f2

�
12 4uþ 4du2�i; (1)

where f is the frequency of the variant, and u is the kinship
coefficient; d = 0 if the two relatives can share a maximum
of one allele IBD (e.g., first cousins) and 1 if they can share
two alleles IBD (e.g., siblings). The approximation is based

only on the assumption that the variant is rare (i.e., f #
0.01) and is very accurate under this assumption.

When the two individuals are unrelated and each carries
a rare variant, u = 0 and we obtain the expected result that
keff|2 = 2. For identical twins u = 0.5, d = 1, and keff|2 = 1.
For relatives in between, the effective number of variants is
between 1 and 2. For two sibs, u ¼ 1

4
, d = 1, and hence for

f = 0.01 we obtain keff|2 = 1.17. Similarly for two second
cousins, u ¼ 1

64
, d = 0, and hence keff|2 = 1.76. These and

other examples are summarized in Table 1. Note that the
effective number of variants depends on the frequency f.
Hence, as expected, the lower the frequency is, the lower
the effective number of variants, reflecting the low proba-
bility that these shared variants are independent (and the
greater chance they are identical-by-descent).

To summarize, for a pair of relatives keff is calculated as
follows:

keff ¼

8>>>>>><
>>>>>>:

log2f
h
4fuþ 4f2

�
12 4uþ 4du2

�i

if both relatives carry a rare variant
1

if only one of the two relatives carries a rare variant
0

if neither of the two relatives carries a rare variant:

Under the assumption that the variant is not associated
with disease, we calculate the expected value of keff for a pair
of relatives in File S1 (Equation S7) as

E
�
keff

� ¼ keffj2 � 4fð12 f Þ � �uþ fð12 f Þ�12 4uþ 4du2��
þ   keffj1 � 4fð12fÞ2��ð12 2uÞ2 f

�
12 4uþ 4du2

��
:

(2)

At a rare variant position, for a data set of relative pairs of
the same type in N different families, we define
kTotaleff ¼ PN

i¼1k
i
eff , where kieff is the effective number of var-

iants in family i. Then

E
h
kTotaleff

i
¼ NE

�
keff

�
: (3)

If the variant is not associated with disease, then
the distribution of kTotaleff can be approximated by a Poisson
distribution with mean ¼ E½kTotaleff � (as also shown empiri-
cally in File S1, Figure S1)

Effective number of variants at a disease locus

At a disease locus, the effective number of variants in two
affected relatives is expected to be increased compared to
a nondisease locus. We consider here a two-locus genetic
heterogeneity model (Risch 1990a), where each locus is
an independent cause for disease. We use the two-locus
model for mathematical convenience; without loss of gener-
ality the second locus can be considered to encompass all
the other disease loci that act additively to influence disease
risk, in addition to the primary locus under investigation.
The effective number of variants we expect to observe at
the first disease locus in a pair of affected relatives is
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E
h
kDeff

i
¼ keffj2 � 4f ð12 fÞ
�   �uþ f ð12 f Þ�12 4uþ 4du2

��
bR

þ   keffj1 � 4f ð12f Þ2
�   �ð12 2uÞ2 f

�
12 4uþ 4du2

��
aR;

(4)

where bR, aR $ 1 are derived in File S1 and depend on the
type of relationship R (e.g., sibs, first cousins, etc.), the ge-
notype relative risk (GRR) for the first locus, and the overall
recurrence risk in siblings as measured by lS (Risch 1990a).
The expression in Equation 4 is similar to the expression in
Equation 2 for the effective number of variants expected
at a nondisease locus. We performed simulations accord-
ing to this model and show that the empirical estimates
for E½kDeff � agree very well with the analytical results in (4)
(see File S1).

For a data set of N different families, each consisting of an
affected relative pair of the same type, we have

E
h
kD;Totaleff

i
¼ NE

h
kDeff

i
: (5)

As above, the distribution of kD;Totaleff can be approximated
by a Poisson distribution with mean E½kD;Totaleff � (as also shown
empirically File S1).

Furthermore, using Equation 4 we can also calculate the
effective number of variants we expect at the first disease
locus in an affected individual with an affected relative. This
is important to evaluate the importance of selecting affected
individuals with a positive family history for a disease for
inclusion in a sequencing study. We denote by kD1 the number
of variants at the first locus in an affected individual that is
known to have an affected relative. Then using Equation 4,

E
h
kD1

i
¼ 1 � 4fð12 f Þ � �uþ f ð12 f Þ�12 4uþ 4du2��bR

þ   0:5 � 4f ð12f Þ2
�   �ð12 2uÞ2 f

�
12 4uþ 4du2

��
aR;

where bR, aR $ 1 are derived in File S1. As above,
E½kD;Total1 � ¼ NE½kD1 � for a data set of N affected individuals,
each with an affected relative. Again it is true that
kD;Total1 � PoissonðE½kD;Total1 �Þ.

Note that the description above pertains to a disease
locus with only one disease variant position. However,
a disease locus may have multiple disease variant positions
(i.e., allelic heterogeneity). The extension to this scenario is
straightforward by summing the effective number of var-
iants at each position and using the fact that a sum of in-
dependent Poisson random variables is also a Poisson
random variable (we assume independence among the dif-
ferent variant positions within a locus, a reasonable approx-
imation given the low frequency of the variants).

Expected P-value at a disease locus

To compare the power of designs on the basis of biologically
related cases vs. unrelated cases, we calculate an expected P-
value (EPV) (Dempster and Schatzoff 1965; Sackrowitz and
Samuel-Cahn 1999). The expected P-value, or expected sig-
nificance level as originally defined in the pioneering article
of Dempster and Schatzoff (1965), has been proposed as
a measure of the performance of a test. Unlike the power
of a test, the EPV does not depend on any prespecified sig-
nificance level and is in close connection with the common
practice of reporting P-values in applied research. The EPV is
a single number that can be used to judge the performance
of a test; the smaller the EPV is, the better the test.

For our situation, the effective number of variants under
the null hypothesis that neither of the two loci is associated
with disease, kTotaleff , follows approximately a Poisson distri-
bution with mean l1 ¼ E½kTotaleff � as derived in Equation 3.
Similarly, the effective number of variants at the first disease
locus in a two-locus disease model, kD;Totaleff , follows approx-
imately a Poisson distribution with l2 ¼ E½kD;Totaleff � as derived
in Equation 5. Then by definition the expected P-value for
the first disease locus is

EPV ¼ PðT1 $T2Þ ¼ PðT1 2T2 $ 0Þ;

where T1 � Poisson(l1) and T2 � Poisson(l2). Since the
difference between two independent Poisson random varia-
bles follows a Skellam distribution (Skellam 1946), we can
calculate the EPV under a disease model only on the basis of
the values of l1 and l2.

For comparison we also report results based on power, and,
as shown below, they are highly correlated with those based
on the EPV. Since we assume that the variant frequency in
controls is known, the resulting power levels can be consid-
ered as achievable as the number of controls grows very large.

Results

Performance of affected relatives vs. unrelated
affected individuals

For identifying rare disease variants, it is of great interest
to study the circumstances where study designs involving

Table 1 The effective number of variants, keff|2, at a rare variant
position in two related individuals that each carry a variant, as
defined in Equation 1

keff|2

Relationship u f = 0.001 f = 0.01

Identical twins 1
2

1.00 1.00

Parent–child 1
4

1.11 1.17

Sibs 1
4

1.11 1.17

Half-sibs 1
8

1.22 1.34

Uncle–nephew 1
8

1.22 1.34

First cousins 1
16

1.33 1.50

First cousins-1 (once removed) 1
32

1.44 1.64

Second cousins 1
64

1.55 1.76

Unrelateds 0 2.00 2.00

u is the kinship coefficient. Results for two values of the frequency parameter f,
0.001 and 0.01, are shown.
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affected individuals from families containing multiple af-
fected individuals are advantageous compared with those
involving unselected affected individuals.

Under the assumption of a complex polygenic model,
with many possible disease loci each with a small population
attributable risk (Risch and Merikangas 1996), the two-
locus disease model can be viewed as consisting of a locus of
interest and a second locus accounting for the residual
effect. We assume five study designs, each with the same
number of affected individuals (i.e., 2000): affected sib-
pairs, affected first-cousin pairs, affected second-cousin
pairs, unrelated affected individuals, and unrelated affected
individuals known to have an affected sibling. We consider
a complex trait with prevalence 0.03 and a sibling recur-
rence risk ratio (lS) between 2 and 10, as observed for many
complex traits (Merikangas and Risch 2003). We assume
that the variant frequency at the first disease locus is low,
between 0.0001 and 0.01, and several possible values for
the genotype relative risk with higher GRRs are assumed for
lower frequency at the disease locus. In Figure 1 we show
expected P-values associated with the first locus as a function
of the sibling recurrence risk ratio, for each of the five study
designs.

For complex diseases with low values for lS (e.g., 2–4),
affected individuals known to have an affected sibling are

extremely advantageous to identify rare disease variants of
moderate to large effect (e.g., GRR � 5–10, Figure 1). The
difference between using affected individuals with an af-
fected sibling vs. unselected affected individuals can be sub-
stantial in this case. For example, for a disease with lS = 2,
for a locus with frequency 0.001 and a GRR of 5.5 the
expected P-value is 1027.65 for a study with 2000 unrelated
affected individuals known to have an affected sibling and
only 1023.77 for a study with 2000 unselected affected indi-
viduals. Similarly, for a locus with frequency 0.0001 and
a GRR of 14 the corresponding expected P-values are 1027

and 10218. For small values of lS and large values of GRR
(e.g., lS = 2 and GRR = 14), even a design based on 1000
affected individuals known to have an affected sibling is
expected to be more advantageous than a design based on
2000 unselected affected individuals (Figures 1 and 4). Sim-
ilar results are obtained when the design comparison is
based on power rather than expected P-value (Figure S2).

However, for complex diseases with larger values of lS
such as autism (lS � 22), the advantage of using family-
based designs (either affected relative pairs or affected indi-
viduals with a known affected sibling) diminishes, and un-
selected affected individuals can be more advantageous
(Figure 2 and Figure S3). This trend of greater advantage
with unselected affected individuals is more pronounced

Figure 1 The effect of locus frequency, GRR, and overall lS on the relative performance (as measured by the expected P-value) of affected relatives vs.
unrelated affected individuals. The three rows correspond to three different frequencies for the disease locus: 0.01, 0.001, and 0.0001. lS is between 2
and 10. The number of affected individuals is 2000: 1000 sib-pairs, 1000 first-cousin pairs, 1000 second-cousin pairs, 2000 unrelateds, and 2000
unrelated individuals known to have an affected sibling (i.e., unrelateds+).
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with increasing frequency of disease-causing variants (Fig-
ure 1). These results are in concordance with those in Risch
(1990b, 1992) for linkage analysis, which state that for
small values of overall lS and polymorphic information con-

tent (PIC) (Botstein et al. 1980) affected sib-pairs are opti-
mal, while for large values of lS and PIC, more distantly
related individuals are best.

Above we have assumed that the disease locus has only
one disease variant position. Although this is clearly
a simplified scenario, the results obtained are informative
for the more realistic scenario when the locus of interest
contains multiple disease variants. In Figure 3 we show the
results for the case when 5 different disease variant posi-
tions are present at the locus. Two cases are illustrated: (1)
the GRRs for the individual variants are a decreasing func-
tion of frequency, so that lower-frequency variants have sub-
stantially higher GRRs compared to more frequent variants
(for example, f = 0.0001 and GRR = 21 vs. f = 0.01and
GRR = 1.2), and (2) the GRR is the same for all variants
(i.e., 2). As can be seen, for the first case, due to the pres-
ence of high-risk low-frequency variants among the 5 dis-
ease variants, unrelated affected individuals that are known
to have an affected sibling are best for small values of lS (as
also shown previously in Figure 1), whereas for the second
case where the GRR for low-frequency variants is modest
(i.e., 2), distantly related affected individuals, and in partic-
ular unselected affected individuals, perform better. Also
shown are results when 10 additional random variants are
added to the region. In this case, the relative performance of

Figure 2 Usefulness of sequencing both affected individuals in a pair of
affected relatives. The three rows correspond to three different frequen-
cies for the disease locus: 0.01, 0.001, and 0.0001. The number of af-
fected individuals is 2000 for the two affected relatives design, i.e., 1000
sib-pairs and 1000 second-cousin pairs, and only 1000 for the design
based on only one affected individual in a pair, i.e., 1000 affected indi-
viduals known to have an affected sibling and 1000 affected individuals
known to have an affected second cousin.

Figure 3 Results are shown for scenarios where multiple (i.e., 5) disease susceptibility variants (DSVs) are present at the disease locus. The relationship
between the GRR and disease variant frequency is shown in the first column. In the top panel, the GRR is a decreasing function of variant frequency,
while in the bottom panel, the GRR is the same (i.e., 2) regardless of variant frequency. The third column presents results when 10 additional random
variants (i.e., not disease variants) are also present.
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different designs is unchanged, but the performance is re-
duced for all designs.

The utility of sequencing both affected individuals in
a pair of affected relatives

Sequencing both individuals from a pair of affected relatives
doubles the sequencing costs, so it is important to consider
the circumstances under which power is increased by this
approach. We evaluated the utility of sequencing both
affected individuals in an affected relative pair compared
to sequencing only one individual from the pair (Figure 4
and Figure S4). We find that for affected sibling pairs, se-
quencing the second sibling contributes little additional in-
formation; hence sequencing only one of two affected siblings
is expected to be on average almost as good as sequencing
both of them, with the significant advantage of reducing the
sequencing cost by half (Figure 4). However, for more dis-
tantly related individuals, such as second cousins, sequencing
both individuals is expected to be more powerful than se-
quencing only one of them. The advantage can be significant.
For example, when lS = 2, for a locus with frequency 0.001
and a GRR of 5.5 the expected P-value is 1024 for a study
with 1000 affected second-cousin pairs (power at a = 1.6 ·
1026 is 87%) and only 1022.1 for a study with 1000 affected
individuals known to have a second cousin affected (power is

47%). If instead we compare the power of a study with 1000
affected second-cousin pairs with that of a study with 2000
affected individuals known to have a second cousin affected,
hence the same sequencing cost for both studies, we find that
the power levels are very similar (data not shown).

Discussion

In complex diseases characterized by extensive genetic
heterogeneity, each disease locus is likely to be responsible
for a very small fraction of affected individuals in a popula-
tion. The choice of the affected individuals to be included in
a study greatly influences the power to identify disease loci.
The framework developed here, based on the effective
number of variants in a pair of affected relatives, makes it
feasible to quantify the enrichment in rare disease variants
in family-based vs. population-based samples and to inves-
tigate the optimal study design for identifying rare disease
variants in complex traits.

We have shown here that for diseases with small values
for the sibling recurrence risk ratio, as observed with many
complex traits, sequencing affected individuals with an
affected close relative, such as a sibling, can be an extremely
powerful strategy for identifying rare disease variants with
moderate to large GRRs. This finding is in concordance with

Figure 4 For complex traits with a large value for lS (e.g., lS = 22 for autism) we show expected P-values for a disease locus with frequency f = 0.001 as
a function of the GRR for five study designs, each with 2000 affected individuals: 1000 sib-pairs, 1000 first-cousin pairs, 1000 second-cousin pairs, 2000
unrelateds, and 2000 unrelated individuals known to have an affected sibling (i.e., unrelateds+).
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previous findings for breast cancer and common variants
(Antoniou and Easton 2003). However, we find that the
advantage of using affected individuals with a positive fam-
ily history declines with increasing values of lS. For complex
diseases with large values of lS, such as autism (lS � 22),
unselected affected individuals may be preferable. The main
explanation for these results is that for a complex disease
involving many contributing disease loci, one single locus is
likely to explain less of the overall familial aggregation when
lS is large than when lS is small. Hence when lS is large,
focusing on affected relatives (or individuals with an af-
fected relative) may enrich the sample in rare disease loci
that are less likely to be shared among multiple families, and
therefore unselected affected individuals may be preferable.

Designs based on affected relative pairs are commonly
employed in linkage analysis (Weeks and Lange 1988). Al-
though here we have not attempted to examine the perfor-
mance of linkage analysis, we note that the results we
obtained agree well with those for linkage analysis (Risch
1990b, 1992), which state that for small values of overall lS
and disease locus frequency affected sib-pairs are optimal,
while for large values of lS and disease locus frequency,
more distantly related individuals are best.

The framework developed here is important for the
statistical analysis of rare variant data. We have introduced
here the concept of effective number of variants at a position
in a set of relatives, which allows for a unified treatment of
both biologically related and unrelated affected individuals
and makes feasible natural extensions of statistical tests
recently developed for population-based designs (such as
the weighted-sum statistic in Madsen and Browning 2009)
to general designs based on affected relative pairs and/or
unrelated affected individuals. One simple statistic for af-
fected relative pairs would be a weighted sum of the effective
number of variants at different positions. Such extensions are
currently under development.

The main goal of this article is to introduce a framework
to assess the enrichment of rare disease mutations in
affected relative pairs of different types. Such an enrichment
analysis is of relevance for any association testing method,
and therefore the results presented are expected to be valid
in general for association testing. We have applied this
framework to the problem of optimal study design for
association studies with rare variants.

Software implementing the described methods is avail-
able in File S2, as well as on the first author’s webpage at
http://www.columbia.edu/~ii2135/, and should be helpful
in the design of association studies with rare variants.
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Supplemental Material

S1 Effective number of variants in related individuals

We derive here in detail the results in the text, in particular relations (1) and (2).

Assumption S1. We assume for simplicity that all individuals who carry a rare variant
are in fact heterozygous. This assumption is reasonable for our setting since homozygous
genotypes would have very low probability for rare variants (f 2 ≤ 10−4 for f ≤ 0.01).

We are interested in computing the joint distribution of the genotypes at a position in
two related individuals. Let us code the genotype of an individual as 0, 1 or 2, denoting
the number of rare variants (or minor alleles) in the genotype. For example, a homozygous
genotype for the rare variant is denoted by 2 (however, we ignore individuals with genotype
2 by Assumption S1).

Claim S2. Let p{i,j} be the probability that the genotypes in two related individuals are i and
j, with i, j ∈ {0, 1}. Let ϕ be the kinship coefficient for the two relatives, f be the minor
allele frequency at a variant position, and δ be 1 if the two relatives can share two alleles
IBD, and 0 if the two relatives can share a maximum of one allele IBD. Then the following
relationships are true:

p{0,0} (1− f)2 · [1− 2f(1− 2ϕ) + f 2(1− 4ϕ+ 4δϕ2)]
p{0,1} 4f(1− f)2 · [(1− 2ϕ)− f(1− 4ϕ+ 4δϕ2)]
p{1,1} 4f(1− f) · [ϕ+ f(1− f)(1− 4ϕ+ 4δϕ2)]

Table S-1: Joint probabilities for the genotypes in two related individuals.

Proof. To calculate p{i,j} we condition on the IBD sharing between the two individuals.
There are at most two alleles that can be shared IBD between two individuals, depending
on the precise relationship. Let pij|k be the probability that in a set of relatives the first
genotype is i and the second genotype is j conditional on the IBD sharing being k, where
i, j ∈ {0, 1} and 0 ≤ k ≤ 2. We now calculate the probabilities pij|k in turn.

- IBD sharing is 0 with probability

P (IBD = 0) = 1− 4ϕ+ 4δϕ2.

Because the genotypes at the two relatives are independent in this case it is relatively
easy to calculate pij|0 (Table S-2).

The results in the table are based on multiplying the probabilities of individual geno-
types. For example,

p01|0 = P (genotype 1 is 0 and genotype 2 is 1| IBD = 0) = (1−f)2·2f(1−f) = 2f(1−f)3.
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Genotype 2
Genotype 1 0 1

0 (1− f)4 2f(1− f)3

1 2f(1− f)3 4f 2(1− f)2

Table S-2: Joint probabilities for the genotypes in two related individuals, conditional on
the IBD sharing being 0, i.e., pij|0.

- IBD sharing is 1 with probability

P (IBD = 1) = 4ϕ− 8δϕ2.

Results for pij|1 are in Table S-3.

Genotype 2
Genotype 1 0 1

0 (1− f)3 f(1− f)2

1 f(1− f)2 f(1− f)

Table S-3: Joint probabilities for the genotypes in two related individuals, conditional on
the IBD sharing being 1, i.e., pij|1.

The results in the table are calculated as follows:

p00|1 = P (genotype 1 is 0 and genotype 2 is 0| IBD = 1) =

= P (genotype 1 is 0| genotype 2 is 0 and IBD = 1)P ( genotype 2 is 0|IBD = 1) =

= (1− f) · (1− f)2 = (1− f)3.

Also

p10|1 = P (genotype 1 is 1 and genotype 2 is 0| IBD = 1) =

= P (genotype 1 is 1| genotype 2 is 0 and IBD = 1)P ( genotype 2 is 0|IBD = 1) =

= f · (1− f)2.

Similarly

p11|1 = P (genotype 1 is 1 and genotype 2 is 1| IBD = 1) =

= P (genotype 1 is 1| genotype 2 is 1 and IBD = 1)P ( genotype 2 is 1|IBD = 1) =

=

(
1

2
f +

1

2
(1− f)

)
· 2f(1− f) = f(1− f).
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Genotype 2
Genotype 1 0 1

0 (1− f)2 0
1 0 2f(1− f)

Table S-4: Joint probabilities for the genotypes in two related individuals, conditional on
the IBD sharing being 2, i.e., pij|2.

- IBD sharing is 2 with probability

P (IBD = 2) = 4δϕ2.

In this case, the two genotypes are identical. Results for pij|2 are in Table S-4.

It is relatively easy to derive the results in the table. For example:

p11|2 = P (genotype 1 is 1 and genotype 2 is 1| IBD = 2) =

= P (genotype 1 is 1| genotype 2 is 1 and IBD = 2)P (genotype 2 is 1|IBD = 2) =

= 1 · 2f(1− f) = 2f(1− f).

From Tables S-2, S-3 and S-4 we get:

p{0,0} = P (genotype 1 is 0 and genotype 2 is 0) =

= p00|0P (IBD = 0) + p00|1P (IBD = 1) + p00|2P (IBD = 2)

= (1− f)2 · [(1− 4ϕ+ 4δϕ2)(1− f)2 + (4ϕ− 8δϕ2)(1− f) + 4δϕ2]. (S3)

p{0,1} = P (genotype 1 is 0 and genotype 2 is 1 OR genotype 1 is 1 and genotype 2 is 0) =

= 2P (genotype 1 is 0 and genotype 2 is 1) =

= 2(p01|0P (IBD = 0) + p01|1P (IBD = 1) + p01|2P (IBD = 2))

= 2f(1− f)2 · [2(1− 4ϕ+ 4δϕ2)(1− f) + (4ϕ− 8δϕ2)]. (S4)

p{1,1} = P (genotype 1 is 1 and genotype 2 is 1) =

= 2(p11|0P (IBD = 0) + p11|1P (IBD = 1) + p11|2P (IBD = 2))

= f(1− f) · [4(1− 4ϕ+ 4δϕ2)f(1− f) + (4ϕ− 8δϕ2) + 8δϕ2]. (S5)

Using simple algebraic manipulation it is possible to simplify the above expressions for
p{0,0}, p{0,1}, and p{1,1} (Table S-5).

We can easily check the two extreme cases: ϕ = 0, δ = 0 (unrelated individuals, Table
S-6) and ϕ = 0.5, δ = 1 (identical twins, Table S-7).
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p{0,0} (1− f)2 · [1− 2f(1− 2ϕ) + f 2(1− 4ϕ+ 4δϕ2)]
p{0,1} 4f(1− f)2 · [(1− 2ϕ)− f(1− 4ϕ+ 4δϕ2)]
p{1,1} 4f(1− f) · [ϕ+ f(1− f)(1− 4ϕ+ 4δϕ2)]

Table S-5: Joint probabilities p{i,j} for the genotypes in two related individuals.

p{0,0} (1− f)2(1− f)2

p{0,1} (1− f)2 · 2f(1− f) + 2f(1− f) · (1− f)2

p{1,1} [2f(1− f)] · [2f(1− f)]

Table S-6: Joint probabilities for the genotypes in two unrelated individuals (ϕ = 0, δ = 0).

p{0,0} (1− f)2

p{0,1} 0
p{1,1} 2f(1− f)

Table S-7: Joint probabilities for the genotypes in two identical twins (ϕ = 0.5, δ = 1).

Claim S6. For a pair of individuals that each carry a rare variant in heterozygous state we
calculate the effective number of variants for the pair as:

keff|2 ∼= log2f [4fϕ+ 4f 2(1− 4ϕ+ 4δϕ2)] .

Proof. We define the effective number of variants in a pair of individuals that are both
heterozygous, denoted by keff|2, to satisfy the equation:

P (genotype 1 is 1 and genotype 2 is 1|neither genotype is 2) =

= P (genotype 1 is 1|genotype 1 is not 2)keff|2 .

When the two individuals are unrelated we can see that keff|2 should be 2. Similarly, when
the two individuals are identical twins keff|2 should be 1, as expected.

In order to define keff|2 we need to calculate first the probability that two relatives are both
heterozygous, given that they are not homozygous (as by Assumption S1). More precisely,
for a pair of relatives we have:

P (genotype 1 is 1 and genotype 2 is 1|neither genotype is 2) =

=
P (genotype 1 is 1 and genotype 2 is 1)

P (neither genotype is 2)
=

=
p{1,1}

p{0,0} + p{0,1} + p{1,1}
=

=
4f · [ϕ+ f(1− f)(1− 4ϕ+ 4δϕ2)]

(1 + f)− f 2(1− 4δϕ2) + f 3(1− 4ϕ+ 4δϕ2)

∼= 4f · [ϕ+ f(1− 4ϕ+ 4δϕ2)]

(1 + f)
∼= 4fϕ+ 4f 2(1− 4ϕ+ 4δϕ2).
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In the approximation above, we approximate f(1 − f) ∼= f and (1 + f) − f 2(1 − 4δϕ2) +
f 3(1 − 4ϕ + 4δϕ2) ∼= 1 for f ≤ 0.01. These approximations are very good, and have only
negligible effect.

Also the probability that an individual is heterozygous, conditional on not being homozy-
gous is:

P ( genotype is 1| genotype is not 2) =
2f(1− f)

1− f 2
=

2f

1 + f
∼= 2f

if we assume that 1 + f ∼= 1 for f ≤ 0.01. As can be seen, the conditioning on the genotype
not being 2 has negligible effect, so we will ignore it in subsequent calculations.

By definition the effective number of variants in a pair of individuals that are both
heterozygous, denoted by keff|2, satisfies the equation:

P (genotype 1 is 1 and genotype 2 is 1|neither genotype is 2) =

= P (genotype 1 is 1|genotype 1 is not 2)keff|2 .

Using the relationships above we get:

keff|2 ∼= log2f [4fϕ+ 4f 2(1− 4ϕ+ 4δϕ2)] .

Note that the above approximation is extremely good. It is easy to see that for two unre-
lated individuals, since ϕ = 0 and δ = 0, we get keff|2 = 2; for two identical twins, since
ϕ = 0.5 and δ = 1 we get keff|2 = 1. These values match our intuition, namely, that for
unrelated individuals the two variants are indepedent, while for identical twins there is only
one independent variant.

If only one of the two relatives carries a rare variant, then the effective number of variants
in the pair, denoted by keff|1, is 1. Similarly, if neither of the two relatives is carrier of rare
variant, then keff|0 = 0. For a pair of relatives we calculate the effective number of variants,
denoted by keff, as follows:

keff =

⎧⎨
⎩

keff|2 if both relatives carry a rare variant
keff|1 if only one of the two relatives carries a rare variant
keff|0 if neither of the two relatives carries a rare variant

Using the derivations above, we can now calculate the effective number of variants ex-
pected at a variant position in a pair of individuals:

E[keff] = keff|2p{1,1} + keff|1p{1,0} =

= keff|2 · 4f(1− f) · [ϕ+ f(1− f)(1− 4ϕ+ 4δϕ2)] +

+ keff|14f(1− f)2 · [(1− 2ϕ)− f(1− 4ϕ+ 4δϕ2)]. (S7)
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S2 Effective number of variants in affected relatives at a disease
locus

In a similar fashion, we can also calculate the effective number of variants we expect to
observe at a disease locus, and derive relation (4) in text. We assume a two-locus genetic
heterogeneity model, with either locus being an independent disease cause. Similar to the
derivations above we calculate pD{i,j}, i.e., the probability that two affected relatives have

genotypes i and j at the first disease locus, with i, j ∈ {0, 1}. Using Bayes rule we obtain:

pD{i,j} =
p{i,j}P (two affected | the two genotypes at the first disease locus are i and j)

P (two affected relatives)
.

If we let K be the disease prevalence, and KR be the risk to a type R relative of an
affected individual, then it is true that:

P (two affected relatives) = KKR.

In order to compute

P (two affected relatives| the two genotypes at the first disease locus are i and j),

we need to introduce some notation.

Notation. We follow closely the notations in Risch (1990a). Let xi and yj be the marginal
“penetrance summands” at the two disease loci in our two-locus model, defined such that the
penetrance wij = 1− (1−xi)(1−yj); i and j index the possible genotypes at the two loci with
0 ≤ i ≤ 2, and 0 ≤ j ≤ 2. Let pi and qj be the population frequencies of those genotypes,
and τjk be the conditional probability that the relative has genotype k given that the proband
has genotype j. K1 and K2 are the prevalences for the two disease loci; K1R and K2R are
the recurrence risks in relatives corresponding to the two disease loci.

Then the following relationships hold (see Risch 1990a):

K = 1− (1−K1)(1−K2).

K1 =
2∑

i=0

pixi.

K2 =
2∑

j=0

qjyj.

K2K2R =
2∑

j=0

2∑
k=0

qjτjkyjyk.

With these notations, we can now show how to derive

P (two affected relatives| the two genotypes at the first disease locus are 1 and 1).
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P (two affected relatives| the two genotypes at the first disease locus are 1 and 1) =

=
2∑

j=0

2∑
k=0

qjτjk[1− (1− x1)(1− yj)][1− (1− x1)(1− yk)] =
2∑

j=0

2∑
k=0

qjτjk −

−(1− x1)
2∑

j=0

2∑
k=0

qjτjk(1− yk)− (1− x1)
2∑

j=0

2∑
k=0

qjτjk(1− yj) +

+(1− x1)
2

2∑
j=0

2∑
k=0

qjτjk(1− yj)(1− yk) =

= 1− 2(1− x1)(1−K2) + (1− x1)
2(1− 2K2 +K2K2R) =

= x2
1 + 2x1(1− x1)K2 + (1− x1)

2K2K2R.

If we let

βR =
x2
1 + 2x1(1− x1)K2 + (1− x1)

2K2K2R

KKR

, (S8)

then

pD{1,1} = p{1,1}βR.

Note that βR = 1 when neither of the two-loci is involved in disease.
Similarly, we can calculate

P (two affected relatives| the two genotypes at the first disease locus are 0 and 1).

P (two affected relatives| the two genotypes at the first disease locus are 0 and 1) =

=
2∑

j=0

2∑
k=0

qjτjk[1− (1− x0)(1− yj)][1− (1− x1)(1− yk)] =
2∑

j=0

2∑
k=0

qjτjk −

−(1− x1)
2∑

j=0

2∑
k=0

qjτjk(1− yk)− (1− x0)
2∑

j=0

2∑
k=0

qjτjk(1− yj) +

+(1− x0)(1− x1)
2∑

j=0

2∑
k=0

qjτjk(1− yj)(1− yk) =

= 1− (1− x0)(1−K2)− (1− x1)(1−K2) + (1− x0)(1− x1)(1− 2K2 +K2K2R).

Let

αR =
1− (1− x0)(1−K2)− (1− x1)(1−K2) + (1− x0)(1− x1)(1− 2K2 +K2K2R)

KKR

,

(S9)
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then

pD{0,1} = p{0,1}αR.

Note that αR = 1 when neither of the two-loci is involved in disease.

For one pair of affected relatives the effective number of rare variants we expect to observe
at the first disease locus is:

E[kD
eff] = pD{1,1}keff|2 + pD{0,1}keff|1 =

= keff|2 · 4f(1− f) · [ϕ+ f(1− f)(1− 4ϕ+ 4δϕ2)]βR +

+ keff|14f(1− f)2 · [(1− 2ϕ)− f(1− 4ϕ+ 4δϕ2)]αR (S10)

i.e., relation (4) in text. Note the similarity between this expression and that of E[keff] in
eq. (S7).

Calculation of αR and βR for a disease model. When comparing different study designs
for a two-locus disease model, we need to calculate αR and βR for a specific disease model,
characterized by the disease prevalence K, the overall λS, the GRR and frequency f at the
first locus.

To calculate x0 and x1 in the expressions of αR (eq. S9) and βR (eq. S8) above we use

the following derivations. If we let GRR be the genotype relative risk, i.e., GRR = P (aff|Aa)
P (aff|AA)

,
then it is possible to show using derivations similar to those used in the calculation of αR

and βR that:

GRR =
x1 + (1− x1)K2

x0 + (1− x0)K2

.

Also

K1 =
2∑

i=0

pixi ≈ p0x0 + p1x1.

(By Assumption S1, we ignore the low probability case of an individual being a homozygous
carrier for the rare allele.) From the two equations above we can now calculate x0 and x1,
and obtain:

x1 =
K1 + p0K2(GRR− 1)/(GRR(1−K2))

p1 + p0/GRR
.

x0 =
K1 − p1x1

p0
.

If we let λ1R = K1R

K1
, and λ2R = K2R

K2
; R be any relationship such as S =sibling, C = first
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cousins, and SC = second cousins, then as in Risch (1990a) we have:

λR − 1 =
KR

K
− 1 =

(
K1

K

)2

(λ1R − 1) +

(
K2

K

)2

(λ2R − 1) .

λS − 1 = 4(λC − 1) = 16(λSC − 1).

λ1S − 1 = 4(λ1C − 1) = 16(λ1SC − 1).

λ2S − 1 = 4(λ2C − 1) = 16(λ2SC − 1).

To calculate λ1S we make use of the relationship between the genotype relative risk
(GRR) and the sibling risk ratio at a single locus (λ1S), as derived in Rybicki and Elston
(2000). Based on these relationships, we now have all the relations required to calculate αR

and βR for a specified two-locus disease model.

S3 Empirical distribution of kD, Total
eff

We have performed simulations in order to generate the empirical distribution of kD,Total
eff ,

the effective number of variants at the first disease locus in a two-locus heterogeneity model,
assuming a range of values for the relevant parameters. In particular, we assume the disease
prevalence to be 0.03, the frequency at the first disease locus to be 0.001 or 0.01, and
the GRR to be between 1 − 4; λS is 2 or 4. We used Risch’s two-locus heterogeneity
model, and simulated datasets consisting of 1000 affected sib-pairs, or 2000 unrelated affected
individuals. We generated 10000 such datasets, and for each dataset we calculated the
effective number of variants observed at the locus, kD,Total

eff . In Figure S-1 we show the

empirical distribution of kD,Total
eff when the GRR= {1, 2.5}, with the corresponding theoretical

Poisson density function overlaid. The mean values for kD,Total
eff over the simulated datasets

are shown in Table S-8, together with the analytical results in eq. (4) in text or eq. (S10)
in the Supplemental Material S2. As shown, the concordance is extremely good.

29



GRR
Relationship λS f Type 1 2 3 4

Sib-Pairs 2 0.01 A 31.3 55.59 88.39 128.7
S 31.19 54.97 86.36 123.3

0.001 A 3.11 5.59 9.11 13.63
S 3.13 5.55 9.07 13.62

4 0.01 A 31.30 42.82 58.63 78.24
S 31.02 42.29 57.77 76.28

0.001 A 3.10 4.28 5.98 8.18
S 2.99 4.29 5.78 7.99

Unrelateds 2 0.01 A 39.56 76.48 112.1 146.3
S 40.2 78.3 114.8 150.3

0.001 A 3.99 7.86 11.70 15.53
S 4.06 7.89 11.96 15.92

4 0.01 A 39.56 76.48 112.1 146.3
S 39.78 77.64 115.32 149.41

0.001 A 3.99 7.86 11.70 15.53
S 3.96 7.99 12.07 15.73

Table S-8: Effective number of variants expected at a disease locus, kD,Total
eff , with a GRR

of 1 − 4 and frequency of 0.001 − 0.01 in a dataset of 1000 affected sib-pairs, or 2000
unrelated affected individuals, with λS = {2, 4}. A two-locus disease heterogeneity model
is assumed. Results based on analytical calculations (A) – using eq. (4) in text or eq. (S10)
in Supplemental Material S2 – and 10000 simulated datasets (S) are shown.

S4 Locus specific recurrence risk to siblings

In Supplemental Table S-9 for each of the disease variants in Figure 1 we report the locus
specific recurrence risk to siblings (λ1S).

f GRR λ1S

0.01 1.7 1.004
2.1 1.010
2.5 1.020

0.001 3.5 1.006
4.5 1.010
5.5 1.020

0.0001 8 1.005
11 1.010
14 1.020

Table S-9: The locus specific λS for the disease variants in Figure 1.

30



.



.



.



.



 


