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Abstract

RGS9 and R9AP are components of the photoreceptor-specific GTPase activating complex responsible for rapid inactivation
of the G protein, transducin, in the course of photoresponse recovery from excitation. The amount of this complex in
photoreceptors is strictly dependent on the expression level of R9AP; consequently, the knockouts of either RGS9 or R9AP
cause comparable delays in photoresponse recovery. While RGS9 is believed to be present only in rods and cones, R9AP is
also expressed in dendritic tips of ON-bipolar cells, which receive synaptic inputs from photoreceptors. Recent studies
demonstrated that knockouts of R9AP and its binding partner in ON-bipolar cells, RGS11, cause a small delay in ON-bipolar
cell light responses manifested as a delayed onset of electroretinography b-waves. This led the authors to suggest that
R9AP and RGS11 participate in regulating the kinetics of light responses in these cells. Here we report the surprising finding
that a nearly identical b-wave delay is observed in RGS9 knockout mice. Given the exclusive localization of RGS9 in
photoreceptors, this result argues for a presynaptic origin of the b-wave delay in this case and perhaps in the case of the
R9AP knockout as well, since R9AP is expressed in both photoreceptors and ON-bipolar cells. We also conducted a detailed
analysis of the b-wave rising phase kinetics in both knockout animal types and found that, despite a delayed b-wave onset,
the slope of the light response is unaffected or increased, dependent on the light stimulus intensity. This result is
inconsistent with a slowdown of response propagation in ON-bipolar cells caused by the R9AP knockout, further arguing
against the postsynaptic nature of the delayed b-wave phenotype in RGS9 and R9AP knockout mice.
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Introduction

At the first step of visual processing in the vertebrate retina,

photoreceptors convey light-evoked signals to bipolar cells [1]. Both

cell types rely on G protein-mediated signaling pathways for

generating their light-responses. Accordingly, the amplitude and

kinetics of photoresponses in rods and cones are tightly controlled

by the rates at which the G protein, transducin, is activated by the

GPCR receptor, rhodopsin, and inactivated through the mecha-

nism of GTP hydrolysis (see [2,3] for comprehensive reviews and

[4,5] for more recent updates). While transducin has the intrinsic

ability to hydrolyze bound GTP, the rate of this reaction is slow and,

in photoreceptors, it is accelerated roughly 100-fold by the GTPase

activating protein, RGS9 [6,7,8].

In rods and cones, RGS9 exists as a complex with its obligatory

Gb5 subunit [9] and the anchor protein, R9AP [10]. R9AP is a

multi-functional protein. In addition to tethering RGS9?Gb5

on the surface of photoreceptor discs, R9AP enhances the ability

of RGS9?Gb5 to activate transducin GTPase [11,12], directs

RGS9?Gb5 to outer segments [13,14], and protects RGS9?Gb5

from intracellular proteolysis, ultimately setting the expression level

of the entire RGS9?Gb5?R9AP complex. The protective role of

R9AP was established by demonstrating that R9AP knockout

causes complete elimination of RGS9 from photoreceptors [15],

whereas R9AP overexpression in rods increases the amounts of

RGS9 and Gb5 as well [16].

While RGS9 in the retina was found to be expressed exclusively

in photoreceptors (e.g. [6,17,18]), a distinct fraction of R9AP is

present in dendritic tips of ON-bipolar cells [19,20], where it

stabilizes another RGS protein complex, RGS11?Gb5 [19,21,22].

This complex is thought to contribute to rapid inactivation of Go,

the G protein implicated in mediating light signaling in these cells

[23,24]. Light signals in ON-bipolar cells are triggered by a

reduction in the glutamate release from photoreceptors, which is

closely monitored by the mGluR6 receptors located in dendritic

tips of ON-bipolar cells [25,26]. Downstream from mGluR6 are

the TRPM1 channels [27,28,29], which open in response to the

light-induced suppression of mGluR6 activity. The current

working model (e.g. [24,30,31]) suggests that the signal between

mGluR6 and TRPM1 is carried by Go, which undergoes a rapid

activation/inactivation cycle, catalyzed by mGluR6 and RGS

proteins, respectively. In this model, the light-dependent cessation

of mGluR6 stimulation by glutamate leads to rapid TRPM1

opening, with response kinetics at least not slower than the Go

inactivation rate.

In general agreement with this model, the knockouts of both

RGS11 and R9AP have been shown to cause a delay in ON-

bipolar cell light responses, documented by recording electroret-
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inography (ERG) b-waves [20,32,33]. However, this b-wave delay

is very small, typically under ,15 ms, which is an ,1000-fold

shorter time than is required for Go to hydrolyze bound GTP in

the absence of RGS proteins [34]. One explanation for such small

effects of RGS11 and R9AP knockouts is that ON-bipolar cell

dendrites contain another RGS protein complex, RGS7?Gb5,

anchored by the R9AP homolog, R7BP [17]. RGS7?Gb5 may be

sufficient for rapid Go inactivation when RGS11?Gb5 is absent

[32,33] and, in fact, RGS11 knockout is accompanied by an

increase in the RGS7 content of the retina [32].

Here we report a surprising observation that the knockout of

RGS9 causes a delay in ERG b-wave responses essentially

identical to that observed in the R9AP knockout. Because RGS9

is expressed in photoreceptors only, this effect would be expected

to have a presynaptic origin. Furthermore, because RGS9

expression in photoreceptors is strictly dependent on the

expression of R9AP, this result also suggests that the identical b-

wave delay in the R9AP knockout may be explained by the lack of

RGS9 in rods and cones.

Results

R9AP expression in ON-bipolar cell dendrites and
photoreceptor synaptic morphology are not affected by
the RGS9 knockout

The goal of our study was to conduct a comprehensive

comparison of ERG responses in R9AP2/2 and RGS92/2 mice.

This required two control experiments addressing: (1) whether the

expression of R9AP in dendritic tips of ON-bipolar cells is affected

by the RGS9 knockout, and (2) whether either R9AP or RGS9

knockout affects the morphology of the photoreceptor-to-ON-

bipolar cell synapses.

The localization of R9AP in ON-bipolar cells of RGS92/2 and

WT mice was first examined in retina cross-sections. Figure 1a

shows that R9AP immunostaining in the outer plexiform layer

(where synapses between photoreceptors and bipolar cells are

located), was unaffected by the RGS9 knockout. Most staining was

observed at the tips of bipolar cell dendrites of rod ON-bipolar

cells, stained with a specific marker of these cells, PKCa. The

specificity of R9AP immunostaining in this and all subsequent

experiments was verified using the retinas from R9AP knockout

mice. The similarity in the R9AP staining patterns of outer

plexiform layers in RGS92/2 and WT mice was particularly well-

appreciated in immunostained retina whole mounts (Figure 1b),

where the dendritic tips of rod ON-bipolar cells appear as

scattered puncta. This view was also most instructive for

visualizing cone-to-ON-bipolar cell synapses, which appear as

patches colocalized with the cone-specific marker, peanut

agglutinin (Figure 1c).

We also analyzed R9AP immunostaining in dissociated rod

ON-bipolar cells from RGS92/2 and WT mice (Figure 1d). In

both cases, R9AP was found throughout the dendrites and to a

lesser degree in the cell soma. Such a loss of protein localization to

dendritic tips in dissociated rod bipolar cells was previously

documented for another synaptic protein, mGluR6 [35], and

may be interpreted as a consequence of lacking presynaptic cell

interactions. However, we observed no systematic difference in the

R9AP staining patterns of fifteen dissociated RGS92/2 and twelve

dissociated WT cells retaining overall normal morphology.

We next examined the ultrastructure of rod and cone synaptic

terminals in R9AP2/2 and RGS92/2 mice using electron

microscopy (Figure 2). In both mouse types, rod synapses appeared

normal, as judged from the structure of synaptic ribbons and

invaginating postsynaptic processes of horizontal and bipolar cells.

Similarly, pre- and postsynaptic structural elements of cone

synaptic terminals of these mice appeared normal. While we are

not aware of any similar published data on the RGS9 knockout,

the observation of normal synaptic morphology in R9AP2/2 mice

is entirely consistent with the recent report by Jeffrey et al. [20].

Taken together, the data shown in Figs. 1 and 2 did not reveal any

notable changes in R9AP localization in the outer plexiform layer

of RGS92/2 mice or any morphological abnormalities in either

knockout mouse type.

Characterization of ERG responses in R9AP and RGS9
knockout mice

Light responses of R9AP2/2 and RGS92/2 mice were analyzed

by electroretinography. ERGs are field potentials recorded at

the cornea, which reflect the cumulative light-evoked activity of

several types of retinal neurons. A typical ERG response has two

phases: a- and b-waves. The a-wave is a negative deflection

immediately following the light stimulus, which primarily

originates from suppression of the circulating dark current in rod

and cone outer segments. The subsequent positive deflection,

called the b-wave, originates primarily from the light-induced

depolarizing currents in ON-bipolar cells [36,37].

Figure 3a shows averaged ERG responses of R9AP2/2, RGS92/2

and WT littermate mice evoked by light flashes of different

intensities. Complete stimulus-response curves for both a- and b-

wave responses are shown in Figure 3b, while the summary of fitting

parameters is presented in Table 1. Overall, the ERG responses of

R9AP2/2 and RGS92/2 mice were very similar to those recorded

from the corresponding WT controls. The a-waves were virtually

identical under all tested conditions. The b-waves displayed a trend

of increased amplitudes, particularly at brighter flash intensities, an

effect noted in previous studies [8,20]. However, a paired

independent t-test did not reveal this trend to be statistically

significant. For example, at the flash intensity of 1000 cd?s/m2, p-

values for the difference between b-wave amplitudes in knockout

and WT littermates were 0.23 and 0.19 for RGS92/2 and R9AP2/2

mice, respectively.

R9AP and RGS9 knockout mice display a distinct delay in
the rising phase of their b-wave responses but not a
reduction in response slope

To conduct a detailed analysis of the b-wave rising phase

kinetics, we re-plotted the data from Figure 3a on a shorter

timescale (Figure 4a). In this analysis, we also removed the

oscillatory potentials (high frequency wavelets originating from

inner retina activity that superimpose the rising b-wave) and

subtracted a-waves where applicable (see Materials and Methods

for details). On this timescale, it is easy to see the previously

reported delay in b-wave rising phase caused by the R9AP

knockout [20]. However, it is also evident that a comparable delay

is present in RGS92/2 mice. This delay can be further illustrated

by plotting first derivatives of b-wave responses [20], which reflect

the slopes of b-wave rising phases (Figure 4b). Note that the small

differences in response amplitudes and maximal slopes between

the two WT controls are most likely explained by differences in

genetic backgrounds.

To analyze the kinetics of the b-wave rising phase in each

knockout quantitatively, we calculated the mean values of three

response parameters at multiple flash intensities (Figure 5): 1) the

time of b-wave onset, 2) the time required to reach the maximal

b-wave slope, and 3) the maximal value of the b-wave slope.

Both mice were characterized by an increase in the b-wave

onset time observed at flash intensities up to 1 cd?s/m2 (Figure 5a).

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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For instance, the average b-wave onset at the flash intensity

of 0.005 cd?s/m2 was increased by 8 ms in R9AP2/2 mice

(p = 0.033) and by 6 ms in RGS92/2 mice (p = 0.003). This delay

decreased with increasing flash intensity and became negligible at

the three brightest flashes. This is why a-wave amplitudes evoked

by bright flashes in R9AP2/2 and RGS92/2mice were not

increased compared to WT controls (Figure 3a), as may be

expected from a delay in b-wave onset.

Both knockouts also delayed the time required for the b-wave

to reach its maximal slope. However, this effect was most

pronounced at bright flashes (Figure 5b). For instance, at the

flash intensity of 1000 cd?s/m2, a 15 ms delay was observed in

R9AP2/2 mice (p = 9.7?1029) and an 11 ms delay in RGS92/2

mice (p = 0.001). This delay is similar to that reported by Jeffrey

et al. [20], who found that b-waves of R9AP2/2 mice were delayed

by an average of 13 ms at flash intensities $,30 cd?s/m2.

Figure 1. R9AP expression in ON-bipolar cells of WT and RGS92/2 retinas. (A) Co-immunostaining of retina cross-sections from WT, RGS92/2

and R9AP2/2 mice for R9AP (green) and the rod ON-bipolar cell marker, PKCa (red). Shown are the outer plexiform layers of each section. Scale bar:
25 mm. (B) Single confocal sections through the outer plexiform layers of whole mount retinas of WT, RGS92/2 and R9AP2/2 mice immunostained for
R9AP. We observed no notable differences in the pattern of R9AP immunostaining between RGS92/2 (40 frames from 6 retinas) and WT controls (30
frames from 6 retinas). Scale bar: 10 mm. (C) Single confocal sections through the outer plexiform layers from whole mount retinas of WT and RGS92/2

mice co-immunostained for R9AP (red) and peanut agglutinin (PNA, green) labeling cone pedicles in the outer plexiform layer. Scale bar: 25 mm. (D) Rod
ON-bipolar cells dissociated from WT, RGS92/2 and R9AP2/2 retinas co-immunostained for R9AP and PKCa. Scale bar: 10 mm.
doi:10.1371/journal.pone.0027573.g001

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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Another parameter affected by both knockouts at brighter flash

intensities over 1 cd?s/m2 was an increase in the maximal b-wave

slope (Figure 5c). This parameter was not specifically analyzed by

Jeffrey et al. [20]; however, a similar effect caused by the R9AP

knockout could be seen in Figures 4 and 6 of their paper.

Taken together, our results demonstrate that the onset of the b-

wave is similarly delayed in R9AP2/2 and RGS92/2 mice. At least

one response parameter, the time of b-wave onset or the time at

which a b-wave reaches its maximal slope, was affected at all flash

intensities tested in our study. However, none of the parameters

analyzed in Figure 5 were differentially affected by the individual

knockouts. This was established by calculating the differences in

parameters’ values between each knockout and the corresponding

WT control and then conducting independent paired t-tests for

these differences at each flash intensity condition (data not shown).

Discussion

G protein-mediated signaling pathways play a critical role in

generating light-responses of photoreceptors and ON-bipolar cells.

The rates at which G proteins are activated and inactivated in

these cells are major contributing factors in setting the temporal

resolution of visual processing. RGS9 and R9AP, along with Gb5,

comprise the GTPase-activating complex for transducin, regulat-

ing deactivation of the phototransduction cascade in rods and

cones. Recent studies demonstrated that R9AP is also expressed in

dendritic tips of ON-bipolar cells [19,20], suggesting that R9AP,

along with its partners RGS11 and Gb5, might be a component of

another GTPase-activating complex that regulates the kinetics of

light responses in ON-bipolar cells. One argument supporting this

hypothesis is the presence of a distinct, though small, delay in the

rising phase of ERG b-waves observed in R9AP2/2 and

RGS112/2 mice [20,32,33,38].

The first major result obtained in our study is that the b-wave

onset delay previously reported in R9AP2/2 mice is also present in

RGS92/2 mice, despite the lack of documented RGS9 expression

in bipolar cells. The phenotypes observed in these animals are very

similar in each quantitative characteristic we analyzed, leading us

to suggest that the delay may have a common cellular origin in

photoreceptors where both proteins are present. Our second

finding is that a delayed onset of the b-wave in both mouse types is

not followed by slower kinetics of the b-wave rising phase. Instead,

this slope in R9AP2/2 and RGS92/2 mice is steeper than in WT

controls at bright flash intensities. The current theory on the light

signal propagation (see Introduction) suggests that a reduction in

the GTPase activity of Go due to the lack of RGS11?Gb5?R9AP

expression in ON-bipolar cell dendrites could decrease rather than

increase this slope. Thus this finding, though indirectly, also argues

against the bipolar cell origin of b-wave delays in both knockouts.

The assumption that the b-wave delay in RGS92/2 and even

R9AP2/2 mice originates in photoreceptors begs the question of

whether it is caused by a slow response recovery in outer segments

containing the bulk of both proteins. RGS9 knockout slows the

photoresponse recovery phase without changing the rising phase

kinetics. Detailed analysis of dim-flash rod photoresponses of

RGS92/2 mice showed no deviation from the control WT

trajectory for at least 100 ms after the flash when the recovery

begins [7]. In contrast, both our data (Figures 4 and 5) and the

data by Jeffrey et al. [20] clearly indicate that the delay in b-wave

onset becomes prominent at the times shorter than 100 ms after

the flash. This suggests that, at least in the case of rods responding

to dim flashes, the b-wave delay is likely to originate outside outer

segments. In fact, small but detectable fractions of both R9AP and

RGS9 proteins reside in other photoreceptor compartments

Figure 2. Electron microscopy analysis of rod and cone
synaptic terminals in WT, RGS92/2 and R9AP2/2 mice. Shown
are representative electron micrographs of cross-sections through rod
spherules (smaller images on the left) and through the base of cone
pedicles (right). At least 60 rod spherules and 10 cone pedicles were
analyzed for each mouse type. Abbreviations are: SR – synaptic ribbon,
HC – horizontal cell process, BC – bipolar cell dendrite. Asterisks
indicate flat synaptic contacts at the cone terminals. Scale bars:
200 nm.
doi:10.1371/journal.pone.0027573.g002

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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[14,18,39]. Yet, the mechanism by which R9AP and/or RGS9

may affect photoreceptor synaptic output remains completely

unknown. One possibility is that RGS9 and R9AP control the

GTPase activity of another G protein regulating synaptic

transmission. For instance, the GPCR dopamine D4 receptor

was implicated in light- and dark-adaptation of the retina via

mechanisms confined to photoreceptors [40,41]. Currently, no

evidence connects D4-mediated G protein signaling with RGS9.

However, this may be a productive direction to explore,

particularly because in the central nervous system another splice

isoform of RGS9 regulates G protein signaling downstream from

D2, a dopamine receptor of the same subfamily as D4 [42,43,44].

A similar idea that a photoreceptor-specific protein may have

different signaling functions in different cellular compartments was

previously suggested for recoverin [45]. Recoverin is a Ca2+-

binding protein [46] thought to regulate rod and cone photo-

response recovery and adaptation by interacting with rhodopsin

kinase in the outer segment [47,48,49]. However, recoverin is also

present in every other compartment of the photoreceptor cell [50].

Parallel recordings from photoreceptors and ON-bipolar cells of

recoverin knockout mice revealed that this knockout affected

bipolar cell responses significantly earlier than it affected the

photoresponse kinetics in outer segments [45]. The authors

concluded that recoverin has a second site of action in the

photoreceptor synaptic terminals.

There is another piece of puzzle required to be considered in

regards to the origin of the b-wave delay: the delay is also observed

in the knockout of RGS11, the established R9AP partner in ON-

Figure 3. ERG responses of R9AP2/2 and RGS92/2 mice. (A) ERG recordings from R9AP2/2 or RGS92/2 mice (red) and their corresponding WT
littermates (black) were averaged from all recordings evoked by a given flash intensity. Arrows indicate the time when light flash was applied.
(B) Stimulus-response curves of b-wave amplitudes (upper panel) and a-wave values measured at 8 ms after the flash, a time point preceding the b-
wave onset (lower panel). Data for each knockout mouse are shown in red, data for WT littermates are shown in black. Data points (mean 6 SEM)
were fitted using Equation 1 (Materials and Methods); fitting parameters are summarized in Table 1. The data were averaged from 13 eyes of R9AP2/

2; 13 eyes of R9AP+/+; 7 eyes of RGS92/2; and 7 eyes of RGS9+/+ mice.
doi:10.1371/journal.pone.0027573.g003

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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bipolar cells [20,32,33,38], and in the mouse in which RGS7
function was altered by hypomorphic deletion [32,33]. Though it
could not be completely ruled out that small fractions of RGS11
and RGS7 reside in photoreceptors [39], immunolocalization
results argue that it is not the case [19,21,32,33,38], including the
study in which the specificity of immunostaining was established
with the RGS11 knockout control [19]. Therefore, the b-wave
delay phenotype caused by RGS11 knockout and the RGS7
mutant may be potentially caused by different mechanisms than
the phenotype observed in RGS92/2 and R9AP2/2 mice. To
complicate matters even further, single cell recordings from ON-
bipolar cells in retina slices of RGS112/2 mice did not reveal any
delay in light response kinetics [19]. This suggests that, at least in
the case of RGS11 knockout, the manifestation of delayed ON-
bipolar cell responses requires the preservation of specific
conditions maintained in vivo, which is lost in the retina slice.

Finally, we should stress that the results obtained in this study do

not contradict the hypothesis that rapid generation of light

responses in ON-bipolar cell dendrites relies on the interchange-

able function of RGS7 and RGS11. Rather, we suggest that the

specific phenotype of b-wave delay may reflect directly or

indirectly modified synaptic output from photoreceptors, or a

similar phenotype may originate from not immediately connected

presynaptic or postsynaptic mechanisms. Elucidating the function

of RGS7 and RGS11 in bipolar cells awaits a more direct analysis

Table 1. A summary of fitting parameters obtained from the
analysis of ERG b-wave and a-wave stimulus-response curves
in Figure 3B.

I0.5,1 [cd?s/m2] Rmax,1

I0.5,2 [cd?s/
m2] Rmax,2

a-wave

RGS9+/+ 36.960.8 40662 --- ---

RGS92/2 43.565.8 422620 --- ---

R9AP+/+ 38.761.1 40962 --- ---

R9AP2/2 27.660.3 41361 --- ---

b-wave

RGS9+/+ 0.002760.0002 55568 7.261.6 241611

RGS92/2 0.003260.0003 581611 14.761.1 351617

R9AP+/+ 0.004460.0003 44567 5.660.7 37369

R9AP2/2 0.005960.0004 53569 5.360.6 433610

The data were averaged from 13 eyes of R9AP2/2; 13 eyes of R9AP+/+; 7 eyes of
RGS92/2; and 7 eyes of RGS9+/+ mice and were fitted using Equation 1 (see
Materials and Methods); I0.5,1 and I0.5,2 are half-saturating flash intensities of rod-
and cone-driven responses, Rmax,1 and Rmax,2 are the corresponding maximal
response amplitudes. Fitting parameters are given as mean 6 SEM.
doi:10.1371/journal.pone.0027573.t001

Figure 4. The effects of R9AP and RGS9 knockouts on the b-wave rising phase. (A) Examples of averaged b-wave responses from R9AP2/2

and RGS92/2 (red) and WT (black) mice shown on a shorter time scale than in Figure 3A to illustrate differences in the rising phase kinetics. Traces
were filtered to remove oscillatory potentials and the a-wave was additionally subtracted from the 100 cd?s/m2 flash responses. (B) The first
derivatives of the traces in (A) used to calculate maximal slopes of the b-wave rising phase and times required to reach the maximal slope.
doi:10.1371/journal.pone.0027573.g004

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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Figure 5. Plots of three parameters characterizing the rising phases of b-waves as functions of flash intensity. (A) Time of b-wave
onset. (B) Time required to reach the maximal slope of the rising b-wave. (C) The value of maximal b-wave slope. The data in (A) and (B) were fitted
by Equation 2 (fitting parameters are summarized in Tables 2 and 3, respectively); the data in (C) were fitted to Equation 3 (fitting parameters are
summarized in Table 4). The statistical significance of the difference between the pairs of mean values obtained from knockout mice and their WT
littermates was determined by a paired independent t-test, yielding p-values marked as follows: (*) p,0.05; (**) p,0.01; (***) p,0.001.
doi:10.1371/journal.pone.0027573.g005

Table 2. A summary of fitting parameters for the analysis of
ERG b-wave onset time as a function of flash intensity.

ymax [ms] n k [cd?s/m2] y0 [ms]

RGS9+/+ 119613 0.2260.02 0.001360.0011 1.461.1

RGS92/2 12763 0.2360.01 0.001760.0004 3.460.6

R9AP+/+ 12365 0.2560.01 0.001660.0005 3.460.8

R9AP2/2 11564 0.2760.01 0.009560.0021 2.861.0

The data were fitted using Equation 2 (see Materials and Methods); ymax is the
asymptotic maximal onset value, n is the Hill coefficient, and k and y0 are fitting
parameters (mean 6 SEM).
doi:10.1371/journal.pone.0027573.t002

Table 3. A summary of fitting parameters for the analysis of
the time required to reach the maximal slope of b-wave rising
phase as function of flash intensity.

ymax [ms] n k [cd?s/m2] y0 [ms]

RGS9+/+ 13366 0.3260.02 0.001960.0007 21.261.0

RGS92/2 12762 0.3960.01 0.002860.0003 30.460.3

R9AP+/+ 12864 0.3660.02 0.008160.0019 20.961.1

R9AP2/2 12468 0.4860.03 0.009260.0014 35.560.9

The data were fitted using Equation 2 (see Materials and Methods); ymax is the
maximal onset value, n is the Hill coefficient, and k and y0 are fitting parameters
(mean 6 SEM).
doi:10.1371/journal.pone.0027573.t003

Effects of RGS9 and R9AP Knockouts on ERG b-Wave
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of the true RGS7 knockout and the double knockout of both

proteins.

Materials and Methods

Animals
Mice were handled following the protocol (protocol registry

number A041-11-02) approved by the Institutional Animal Care

and Use Committees of Duke University and reared under the

normal diurnal cycle. C57/Bl6 WT mice were purchased from

Charles River. R9AP2/2 mice are described in Keresztes et al.

[15], and RGS92/2 mice are described in Chen et al. [7]. Wild

type (R9AP+/+ and RGS9+/+, called ‘‘WT’’ throughout the text for

simplicity), and knockout mice (R9AP2/2 and RGS92/2) were

littermates obtained by breeding of R9AP+/2 and RGS9+/2 mice.

Immunohistochemistry
Co-immunostaining of R9AP and PKCa in retinal cross

sections was performed essentially as described in Herrmann et

al. [51] with two modifications: we obtained retinal cross sections

from eyecup preparations and used short fixation times of 15 min.

For immunostaining of dissociated bipolar cells, we followed a

protocol modified from Suzuki et al. [52]: retinas were incubated

for 30 minutes at 37uC in standard mammalian saline (135 mM

NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES

and 10 mM glucose, pH 7.4) containing 40 U/ml activated

papain (Worthington, Freehold, NJ). Digested retinas were rinsed

with standard mammalian saline containing 0.1 mg/ml bovine

serum albumin (Sigma, St Louis, MO), and the retinal pieces

were mechanically triturated with a fire polished glass pipette.

Concanavalin-A coated cover glass was prepared by spotting

1 mg/ml concanavalin-A (Sigma, C2010, St Louis, MO) solution

in 1 M NaCl on the cover glass for 20 min, followed by rinsing

with distilled water and drying via aspiration. Two drops of cell

suspension were placed on concanavalin-A coated cover glass

preloaded with 100 ml of standard mammalian solution, and the

cells were allowed to adhere at 4uC for 1 h. Cells were rinsed with

standard mammalian solution to remove non-adhered cells, fixed

with 4% PFA in PBS for 15 min, rinsed three times with PBS and

further processed following the procedure for immunohistochem-

istry of retinal cross sections.

For immunostaining of retina flat mounts, retinas were removed

from eyecups and fixed for 15 min in 4% formaldehyde. Retinas

were rinsed for 15 min in PBS, incubated at 4uC in 15% and 30%

sucrose (for 3 h each), blocked for 1 h with goat serum and

incubated with a mixture of primary antibodies for 5 days. Retinas

were washed 3 times with PBS for 15 min, incubated in secondary

antibody solution for 48 h, washed 3 times with PBS for 15 min,

and mounted under glass coverslips. Images were acquired by

scanning a single optical section through the outer plexiform layer

in which R9AP staining was most intense.

Primary antibodies used were rabbit anti-R9AP (1:200, [14],

mouse anti-PKCa (1:500, Santa Cruz), and anti-peanut agglutinin

lectin (PNA) antibody tagged with Alexa-488 fluorophore (1:250,

Molecular Probes); secondary antibodies were goat anti-mouse

Alexa Fluor 594 and goat anti-rabbit Alexa Fluor 488 (both 1:500,

Invitrogen).

Electron microscopy
Transmission electron microscopy in 65 nm-thick retina cross-

sections was performed as described in Petters et al. [53].

Electroretinography
ERGs were recorded using the Espion E2 system (Diagnosys

LLC, Littleton, MA) as described previously [51]. Mice were dark-

adapted overnight, and ERG responses were evoked by a series of

10 flashes ranging from 0.0001 cd?s/m2 to 1000 cd?s/m2. For

flashes up to 0.1 cd?s/m2, responses of 10 trials were averaged. For

0.5 and 1 cd?s/m2 flash responses, 3 trials were averaged. For

brighter stimuli, responses to single flashes were recorded without

averaging. Intervals between individual flashes were chosen to

ensure that the retinas of R9AP2/2 and RGS92/2 mice recovered

completely from each flash; specifically, no indications of flash-

induced reduction of response amplitudes, enlargement of

oscillatory potentials or shortening of implicit times were observed.

Based on these criteria, the inter-flash interval times were 10 sec

for flashes covering intensities of 0.0001 – 0.005 cd?s/m2, 30 sec

for flashes covering 0.01 – 0.5 cd?s/m2, and 60 sec for the 1 cd?s/

m2 flash. Recovery times were 120 sec after the 1 cd?s/m2 flash,

150 sec after the 10 cd?s/m2 flash, and 300 sec after the 100 cd?s/

m2 and 1000 cd?s/m2 flashes, respectively.

Data analysis
Determination of a-waves and b-wave amplitudes was per-

formed as described [51] using MATLAB software (Version

R2007a, Mathworks Inc.). Rod-driven a-waves were measured at

8 ms after the flash stimulus was applied (to exclude post-

receptoral contribution from the analysis, e.g. [54]). For b-wave

amplitude determination, the oscillatory potentials were removed

from the signals by 55 Hz FFT low-pass frequency filtering, and

the b-wave amplitude was calculated from the bottom of the a-

wave response to the b-wave peak.

Data points from b-wave stimulus-response curves were fitted by

Equation 1 using a least-square fitting procedure:

R~Rmax ,1
I

IzI0:5,1
zRmax ,2

I

IzI0:5,2
ð1Þ

The first term of Equation 1 is thought to describe rod-mediated

responses (index 1), and the second term is thought to describe

primarily cone-mediated responses (index 2) observed at the flash

intensities $1 cd?s/m2 for dark-adapted mice [51,55,56]. Rmax,1

and Rmax,2 are maximal response amplitudes, and I0.5,1 and I0.5,2

are half-saturating flash intensities. Data points from a-wave

stimulus-response curves were fitted to a single term of Equation 1.

To examine the b-wave rising phase kinetics, we analyzed three

parameters: the time of b-wave onset, the maximal slope of the

b-wave rising phase, and the time required to reach the maximal

slope of the b-wave rising phase. The b-wave onset was

Table 4. A summary of fitting parameters for the analysis of
the maximal slope of ERG b-wave rising phase as function of
flash intensity.

Ihalf [cd?s/m2] Smax [mV/ms] n

RGS9+/+ 0.008560.0012 21.860.4 0.6560.06

RGS92/2 0.015160.0026 27.760.5 0.6560.06

R9AP+/+ 0.020960.0024 20.860.3 0.6860.04

R9AP2/2 0.055160.0029 27.460.2 0.6360.02

The data were fitted using Equation 3 (see Materials and Methods); Ihalf is the
half-saturating flash intensity, Smax is the asymptotic value of the maximal slope
at saturating flash intensities, and n is the Hill coefficient (mean 6 SEM).
doi:10.1371/journal.pone.0027573.t004
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determined from the response traces by visual inspection. The

other two parameters for b-waves evoked by flashes up to

0.01 cd?s/m2 were determined by obtaining the first derivative

of the filtered b-wave response as described before [20]. Responses

evoked by flashes $0.1 cd?s/m2 had considerable a-wave

contributions which obscure the filtering procedure; therefore,

the a-wave contribution was first subtracted from the ERG trace

by fitting the a-wave leading edge to the ‘P3 model’ [57], including

the data up to 80% of the a-wave peak [54]. For the purpose of

this fitting the maximal a-wave amplitude was set at the actual

maximal measured value. Following this procedure of a-wave

subtraction, the isolated b-wave response was filtered and the first

derivative was calculated as above.

The relation between the time of b-wave onset and flash

intensity was fitted to Equation 2:

y~
ymax{y0

1z
I

k

� �n zy0 ð2Þ

where ymax is the maximal value, I is flash intensity, n is the Hill

coefficient, and k and y0 are fitting parameters. The same equation

was used to fit the dependency of the time to the maximal b-wave

slope on flash intensity.

The dependency of the maximal b-wave slope value on flash

intensity was fitted to Equation 3:

S~Smax
In

InzIn
half

; ð3Þ

where S is the value of the maximal slope, Smax is the asymptotic

value of the maximal slope at saturating flash intensities, I is the

flash intensity, Ihalf is the half-saturating flash intensity, and n is the

Hill coefficient.
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