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Abstract

Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol
consumption have diverse and well documented effects on the human immune system, leading to
increased susceptibility to infections like bacterial pneumonia. S. pneumoniae is the most common
bacterial etiology of community acquired pneumonia world-wide. The frequency and severity of
pneumococcal infections in individuals with a history of alcohol abuse is much higher than the
general population. Despite this obvious epidemiological relevance, very few experimental studies
have focused on the interaction of pneumococci with the immune system of a host acutely or
chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for
designing effective prophylactic and therapeutic interventions for such populations. Recent
advances in pneumococcal research have greatly improved our understanding of pneumococcal
pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the
effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the
host. The purpose of this review is to integrate the available knowledge in these diverse areas of
for a better understanding of the how the compromised immune system derived from alcohol
exposure responds to pneumococcal infections.
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The pathogen: Streptococcus pneumoniae

Streptococcus pneumoniae (pneumococcus) is an encapsulated Gram positive bacterium
which normally occurs as a commensal in the nasopharynx of humans. This harmless
commensal turns into a major human pathogen when the immune response of the host is
weakened as in the extremes of age or in people with underlying conditions like alcoholism
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(Burman et al., 1985; Samokhvalov et al., 2010). Pneumococcus can cause a wide range of
infections like pneumonia, bacteremia, septicemia, meningitis, otitis media, sinusitis,
endocarditis and peritonitis. Pneumococcal pneumonia is the most common manifestation of
infection.

Pneumococcal virulence factors

Pneumococcus has a wide arsenal of virulence factors that are expressed as cell surface
proteins or as toxins or secreted proteins (Fig.1). The most important of these virulence
factors is the polysaccharide capsule. On the basis of the capsular structure, pneumococci
are divided into more than 90 serotypes. While all the serotypes are able to establish a
carriage, invasive disease is restricted to just a small subset of serotypes. In fact, only ten
common serotypes account for 62% of invasive infections worldwide
(http:/lwww.cdc.gov/Features/Pneumonia/). The prevalence of different serotypes varies
according to the geographical location, vaccine use and anatomic site of infection.

The role of all the virulence factors in the pathophysiology of the disease and/ or evasion of
the host immune response is not completely understood. These virulence factors have been
recently reviewed in detail (Mitchell and Mitchell, 2010). Table 1 summarizes the important
pneumococcal virulence factors and their role in pathogenesis.

Epidemiology of pneumococcal pneumonia

S. pneumoniae is the most common bacterial etiology of community acquired pneumonia
worldwide. An estimated 570,000 cases of pneumococcal pneumonia occur annually in the
United States, leading to approximately 175,000 hospitalizations. Besides being a major
global childhood pathogen (~10.6 million children less than 5 years affected each year), it
also causes significant morbidity and mortality in the adult population. Pneumococci
account for up to 36% of the cases of adult community-acquired pneumonia in the United
States. Increasing resistance of pneumococcal strains to p-lactam and other antibiotics has
complicated the treatment. The introduction of a 23-valent polysaccharide vaccine based on
the most common serotypes has helped reduce the number of pneumococcal infections.
However, the efficacy of the polysaccharide vaccine in preventing invasive disease is only
about 60% in the groups for which it is indicated (Fine et al., 1994). Moreover, as
polysaccharides are T cell independent antigens, the memory immune response evoked by
the vaccine is poor and is not improved by booster doses. Conjugating the polysaccharide
antigen to a protein carrier is known to improve induction of an anamnestic response and
induce a more prolonged antibody response. In 2010, a polysaccharide vaccine containing
13 pneumococcal serotypes conjugated with a non toxic form of diphtheria toxin (CRM 197)
was licensed in the United States, for use in children. This replaces of the previously
available 7-valent conjugate vaccine (2010a). Since both the polysaccharide and conjugate
vaccine are serotype dependent, the extensive use of the vaccine against selected serotypes
can lead to a replacement in serotypes causing invasive pneumococcal disease, which will
ultimately result in decreased vaccine efficacy. A protein-based serotype-independent
vaccine seems like a promising alternative. Although many proteins and combinations of
proteins have been rigorously evaluated in animal models as potential pneumococcal
vaccine candidates, but a licensed protein based vaccine for human use still remains an
elusive goal. Until effective means of controlling the transmission and spread of antibiotic
resistance in pneumococcus are devised, infections caused by this organism will remain a
major human health concern, especially in high risk groups like people with a history of
alcohol abuse.
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Alcohol use and pneumococcal pneumonia

Benjamin Rush recognized the association of alcohol with increased susceptibility to
pneumonia as early as the 18th century. Subsequently, several studies have identified
alcohol as an independent risk factor for pneumococcal pneumonia. There is a dose-response
relationship between alcohol consumption and the incidence of community acquired
pneumonia (Samokhvalov et al., 2010). An estimated 50% of adult patients with pneumonia
have a history of alcohol abuse (Goss et al., 2003). In addition to the frequency, the severity
of complications and associated mortality of pneumococcal pneumonia is much higher in
these populations (Fernandez-Sola et al., 1995; Saitz et al., 1997). In an extensive recent
study on invasive pneumococcal disease involving about 19,000 patients over the span of 10
years, it was found that the overall mortality attributable to pneumococcus in alcohol related
disorders is 30% as compared to a mortality rate of 17% in those without alcohol related
conditions (Harboe et al., 2009). The incidence and mortality of pneumococcal pneumonia is
significantly increased in individuals abusing alcohol.

Laboratory models for evaluation of the effects of alcohol on the host
immune response

Various in vitro and in vivo approaches are available for evaluation of the effects of alcohol
on the host immune response. The methodology and the use of these approaches to simulate
different alcohol abuse patterns in humans (acute and chronic) have been reviewed recently
by Nagy (Nagy, 2008) and D'Souza El-Guindy et al., (D'Souza EI-Guindy et al., 2010). In
the in vitro approach, the relevant immune cells like monocytes, macrophages and dendritic
cells are isolated and exposed to alcohol. Alcohol administration for up to 24 hours is
considered acute exposure (Szabo and Mandrekar, 2008). The amount of alcohol in these
studies ranges from 1 to 500 mM (D'Souza EI-Guindy et al., 2010). Chronic exposure to
ethanol in cell culture systems is less clearly defined and time of exposure varies with
different cell types and ranges between 48 h to 10 days. These in vitro approaches have been
reviewed recently by Szabo and Mandrekar (Szabo and Mandrekar, 2008).

Although the in vitro approaches are less cumbersome and generate consistent results,
numerous studies including a study from our lab (Pruett et al., 2005) indicate that the
immune responses observed in vitro and in vivo are profoundly different. Animal models
serve as an indispensible tool for studying the in vivo effects of alcohol on different immune
components. Mouse and rat are the two most commonly used animal models for alcohol
research.

Although cirrhosis in humans in mostly caused by chronic alcohol abuse, because of the
shorter life span of rodents, administration of alcohol alone does not lead to cirrhosis.
Therefore, in most rodent models intragastric administration of carbon tetrachloride for 8 to
12 weeks is used for the induction of cirrhosis (Mellencamp and Preheim, 1991). Various
models for chronic alcohol administration are available in both mice and rats; these models
vary in the method of alcohol administration. Alcohol exposure for 4 to 32 weeks has been
used in rodent models to mimic chronic alcohol abuse in humans. The Tsukamoto-French
model involves continuous intragastric administration of alcohol (Tsukamoto and French,
1993). Desired levels of blood alcohol concentration can be maintained using this model for
long durations of time but this model is very expensive and requires expertise and training to
perform the catheter implantation surgery which hampers the common use of this model.
Other methods like Lieber—DeCarli diet involve the administration of alcohol in a liquid diet
as the only source of food and water to the experimental animals (DeCarli and Lieber,
1967). This model is much more affordable than the Tsukamoto-French model but it does
not simulate human drinking as animals are forced to consume alcohol. Yet another method
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uses the addition of alcohol to drinking water (Coleman et al., 2008). Alcohol administration
for up to 32 weeks which is difficult to attain with other models can be achieved using this
model. The ease of administration, low cost and the various variations of this model make it
attarctive for chronic administration of alcohol without inducing a stress response. This
model does not cause substantial liver damage (Cook et al., 2007) present in advanced
stages of alcohol abuse.

In acute ethanol exposure models, ethanol is generally administered either through
intraperitoneal route (Plackett and Kovacs, 2008) or as an oral gavage (Carson and Pruett,
1996). The peak blood concentrations are achieved after about 30 minutes of alcohol
administration depending upon the amount of alcohol, animal strain and the route of alcohol
administration (faster in intraperitoneal route than oral gavage). The oral gavage method of
alcohol administration mimics human drinking much better than the intraperitoneal method.
Besides the models mentioned above there are several others which are available, for a
detailed review of these models and the factors that should be taken into consideration for
choosing an appropriate model for studies in alcohol research; the readers are referred to a
recent review by D'Souza EI-Guindy et al., (D'Souza EI-Guindy et al., 2010).

Alcohol consumption patterns

The amount and the pattern of alcohol consumption influence its effects on the immune
system. Most studies indicate that acute intoxication is associated with attenuation of the
inflammatory response while chronic exposure has a pro-inflammatory effect. These
exposure dependent effects of alcohol have been recently reviewed by Goral et al., (Goral et
al., 2008). Parallel studies evaluating the effects of different drinking patterns on
pneumococcal infections are not available. The few studies reported in literature that have
evaluated the effect of either acute or chronic alcohol in pneumococcal infections will be
discussed in the following sections. In this review we will focus on correlating the current
understanding innate and adaptive immune response to pneumococci with the information
available on the effect of alcohol on these responses (Fig. 2).

Innate immunity and inflammation

The innate immune system is the first line of host defense against any pathogen. The
organisms that are able to evade the innate defenses are subsequently targeted by the
adaptive immune system which generates antigen specific responses. Both these arms of the
host immune response play an important role in defense against pneumococcal infections.

Alcohol induced suppression of host defenses provides an ideal opportunity for normally
commensal pneumococci to invade and cause infections. Invasion usually begins by the
aspiration of pneumococci from the nasopharynx to the lower respiratory tract. This transit
is facilitated by the decreased cough and epiglottis reflex commonly observed in people with
a history of alcohol abuse. As pneumococci descend from the nasopharynx to the lungs the
first structural barrier encountered is the mucaociliary apparatus. In a normal host, the
mucous present in this region traps the invading microorganism and the coordinated ciliary
movement pushes it back to the upper respiratory tract. Chronic ethanol ingestion in a rat
model has shown that ethanol causes defects in the mucociliary apparatus by decreasing the
ciliary beat frequency. This aids the transition of pneumococci into the rat lungs in a dose
dependent fashion (Vander Top et al., 2005). This defect is one reason chronic alcohol
abusers are more prone to pneumococcal infections. In contrast, acute ethanol exposure
increases the ciliary beat frequency in vitro in bovine bronchial epithelial cells (Sisson,
1995; Sisson et al., 1999; Wyatt et al., 2003) and a cirrhotic rat model shows no mucaociliary
defects (Propst-Graham et al., 2007). Upon reaching the alveoli pneumococci encounter host
immune cells and soluble effector molecules.
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The Toll like receptors (TLR's) belong to a family of molecules called pathogen associated
molecular pattern receptors that play a key role in the initial activation of the innate immune
response. The stimulation of cells by a TLR ligand results in intracellular signaling cascades
that lead to production of pro-inflammatory cytokines and chemokines. These, in turn,
synchronize the local and the systemic inflammatory responses (Akira and Takeda, 2004).
TLR's 2, 4 and 9 are considered to be important for the recognition of pneumococcal
components. TLR2, expressed on the alveolar macrophages and alveolar epithelial type 11
cells (Droemann et al., 2003) recognizes lipotechoic acid and peptidogylcan present in the
pneumococcal cell wall (Yoshimura et al., 1999). Since pneumococcus is a Gram positive
pathogen it lacks LPS (lipopolysaccharide) which is the normal ligand for TLR4. Instead,
TLR4 interacts with pneumolysin which is an important cytolytic toxin produced by almost
all clinical isolates of pneumococcus (Malley et al., 2003). Although pneumolysin is
recognized by TLR4 both TLR2 and 4 are important for pneumolysin induced inflammatory
responses (Dessing et al., 2009). Besides this cytolytic toxin, pneumococcus also produces
autolysins which cause the bacterial cell to rupture and in the process release DNA and other
cellular products (Moscoso and Claverys, 2004). The pneumococcal DNA released by
autolysin induced cell lysis is recognized by TLR9 (Moscoso and Claverys, 2004). It is now
known that even viable, intact pneumococcal cells are able to stimulate TLR9 (Mogensen et
al., 2006). The crucial roles of TLR's 4 and 9 in pneumococcal pathogenesis are
demonstrated in mouse models (Albiger et al., 2007; Malley et al., 2003). However, some
studies in mouse and human lung tissue models indicate that absence or blocking of TLR's 2
and 4 did not have a significant impact on cytokine release, pneumococcal clearance and
morbidity (Knapp et al., 2004). Although the exact role of each of these TLR's in
pneumococcal infection remains controversial, it seems that some TLR's may be
independently dispensable but might have significant additive impact. A recent study
demonstrated a significant synergy between TLR2 and both TLR4 and TLR9 for the
induction of MyD88 dependent splenic cytokine and chemokine response to pneumococcus
(Lee et al., 2007). The combined effects of TLR2 and 4 in response to acute ethanol
exposure have been evaluated in human monocytes. It was found that the presence of both
TLR2 and 4 ligands resulted in a synergistic inflammatory response. TLR4 ligand resulted
in an attenuated response while there was no change in response with TLR2 ligand alone
(Oak et al., 2006). Thus, it seems important to study the collective TLR responses. Although
specific effects of alcohol on TLR's induced by pneumococci are not known, previous
studies from our laboratory and others suggest that acute ethanol suppresses cytokine and
chemokine responses induced by most TLR ligands in mice (Boe et al., 2001; Pruett et al.,
2004b) including ligands for TLR4, 2 and 9 (Dai and Pruett, 2006a, b; Goral and Kovacs,
2005; Mandrekar et al., 1999; Mason et al., 2000). Besides chemokine levels ethanol
exposure also affects the functioning of alveolar macrophage and neutrophil function,
(discussed in detail in the subsequent sections).

The signaling pathways triggered by most TLR's and members of the interleukin-1 receptor
(IL-1R) family culminate in the activation of NF-xB which leads to the synthesis of pro-
inflammatory cytokines and co-stimulatory molecules (Akira and Takeda, 2004). IL-1R
associated kinases (IRAKSs) are a group of molecules that play an important role in the
MyD88 dependent pathways. Inherited IRAK-4 deficiency is associated with severe and
recurrent invasive pneumococcal disease in humans (Picard et al., 2003). In the absence of
IRAK-4, TLR ligands are unable to induce critical inflammatory cytokines which are
important for prevention of pneumococcal disease. Although ethanol's effect on IRAK-4 has
not been evaluated, studies from our laboratory and others with IRAK-1, which acts
downstream of IRAK-4 indicate that acute ethanol exposure causes an inhibition of IRAK-1
(induced by bacterial lipopolysaccharide, a ligand for TLR4) in a mouse model (Pruett et al.,
2004a) and in human monocytes (Oak et al., 2006).
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Many of the studies discussed in this review have been conducted in human monocytes.
However, this is still relevant for pneumococcal pneumonia, as monocytes are the precursors
of alveolar macrophages which are vital in inflammatory response against pneumococcus.
Also, recent evidence indicates that like neutrophils, monocytes are also recruited to the lung
in response a pneumococcal infection (Goto et al., 2004).

The MyD88 signaling pathways release NF-xB from its inhibitor 1B complex, NF-«xB then
migrates to the nucleus and induces the expression of inflammatory cytokines (Akira and
Takeda, 2004). This cytokine expression leads to recruitment of neutrophils to the lungs and
plays a vital role in the killing of pneumococci. Polymorphisms in IxB genes are associated
with increased susceptibility to invasive pneumococcal disease in humans (Chapman et al.,
2007). It has been recently reported that PspA, an important surface exposed pneumococcal
virulence factor, is involved in the activation of human monocytes via NF-xB and p38
MAPK signaling cascades in invasive pneumococcal disease (Cao et al., 2010). An
increased activation of NF-kB has been observed in monocytes from patients with alcoholic
hepatitis (which is caused by chronic alcohol abuse) as compared to controls (Hill et al.,
2000). While, acute ethanol exposure decreases nuclear translocation and activation of NF-
kB p65/p50 heterodimer, it increases NF-xB p50 homodimer. binding to DNA in human
monocytic cells in response to LPS (Mandrekar et al., 1997). The NF-xB p50 homodimer is
implicated in inhibition of NF-xB driven gene transcription. Upstream from NF-kB in the
TLR and other signaling cascades in the innate immune system are the mitogen activated
protein (MAP) kinases. One of these is p38 MAPK, which plays a significant role in
inflammatory cytokine release from a human lung tissue model of pneumococcal infection
(Xu et al., 2008). Previous work from our laboratory indicates that p38 phosphorylation in
peritoneal macrophages induced by TLR ligands are suppressed by acute ethanol ingestion
(Pruett et al., 2004a). Thus, acute ethanol intoxication may have an effect on p38 signaling
induced in response to pneumococcal stimuli.

Cytokines are responsible for communication among different cellular components of the
immune system. The pro-inflammatory cytokines are important to initiate an inflammatory
reaction while the anti-inflammatory cytokines inhibit the pro-inflammatory response once
the infection is cleared to protect against an exaggerated immune response which can
damage the host cells. Alcohol intoxication has profound effects on both these responses and
these effects depend on the amount and the duration of alcohol intake. While acute ethanol
intoxication inhibits pro-inflammatory cell activation, chronic alcohol use is associated with
increased pro-inflammatory cytokine activation. The effect of alcohol on cytokine
expression has been recently reviewed in detail by Crews et al. (Crews et al., 2006). We will
briefly review the cytokines important in pneumococcal defense.

On activation by pneumococcal stimuli, alveolar macrophages produce large amounts of
tumor necrosis factor- alpha (TNF-a). This early response cytokine, along with IL-1 plays a
crucial role in inducing the nuclear translocation of NF-«xB transcription factors (Li and
Verma, 2002) which in turn leads to the production of cytokines necessary for neutrophil
recruitment to lungs. In a mouse model of pneumococcal infection, deficiency of signaling
receptors for TNF-a and IL-1 leads to decreased bacterial clearance as it impairs neutrophil
recruitment and expression of neutrophil chemokines. The diminished response from this
combined deficiency is because of the indispensible role of TNF-a and IL-1 in chemokine
expression through NF-«xB (Jones et al., 2005). TNF-a antibodies worsen the outcome of
pneumococcal pneumonia in a mouse model (Takashima et al., 1997). Monoclonal TNF-a
antibodies which are used to treat certain chronic conditions are associated with increased
risk of invasive pneumococcal disease in humans (Baghai et al., 2001). TNF-a can also
cause upregulation of receptors implicated in tissue invasion of pneumococci, such as
platelet activating factor receptor, increasing the risk of bacteremia (Cundell et al., 1995).
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Because of its pro-inflammatory effects, polymorphisms in humans leading to secretion of
high amounts of TNF-a are associated with increased rick of septic shock and respiratory
failure in community acquired pneumonia (Waterer et al., 2001; Wunderink et al., 2002).
Thus, an optimal level of TNF-a is important for a productive outcome of pneumococcal
pneumonia. Acute ethanol intoxication impairs pulmonary TNF-a response to LPS
challenge (Karavitis et al., 2008; Kolls et al., 1995; Nelson et al., 1989). Acute ethanol also
causes a change in cell membrane fluidity which prevents the cleavage of TNF-a from the
cell surface (Zhao et al., 2003). Moderate acute ethanol consumption significantly reduces
LPS induced TNF-a and IL-B production by human monocytes (Mandrekar et al., 2006).
This might be an added factor in the impaired immune response against pneumococcal
infection in individuals with a history of alcohol abuse. The effects of chronic ethanol
exposure on TNF-a are contradictory. While some studies show that chronic exposure
increases TNF-a production (Zhang et al., 2001), others suggest an opposite effect (D'Souza
et al., 1996; Omidvari et al., 1998; Standiford and Danforth, 1997).

Interleukin-6 (IL-6) delays neutrophil apoptosis and enhances neutrophil cytotoxic function
including oxygen radical production (Biffl et al., 1996), so it is often classified as a pro-
inflammatory cytokine. However, it can also have anti-inflammatory properties under some
circumstances (Tilg et al., 1994). Adaptive immune mechanisms such as T-cell proliferation,
development of antigen-specific cytotoxic T-lymphocytes and B-cell stimulation are also
dependent upon IL-6 (Barton, 1997). Stimulation of human monocytes with pneumococcal
surface protein A (PspA) induces the release of significant amounts of IL-6 (Cao et al.,
2010). IL-6 is the major inducer of acute phase proteins like C-reactive protein (CRP),
which is particularly important in resistance to pneumococcus. In community-acquired
pneumonia, there is a positive correlation between IL-6 and CRP levels (Ortgvist et al.,
1995). A number of studies indicate that high 1L-6 (Kellum et al., 2007; Ortqvist et al.,
1995) and IL-8 lavels (Bonten et al., 1997) are the best predictors of increased severity and
mortality of pneumococcal infection. Previous studies from our lab in a binge drinking
model in mice indicate that ethanol exposure decreased the levels of IL-6 in peritoneal
macrophages and serum (Pruett et al., 2004a; Pruett et al., 2004b). Other studies have also
shown that acute ethanol exposure suppresses IL-6 production by alveolar macrophages in
response to LPS in an ex vivo model (Karavitis et al., 2008). Chronic alcohol exposure in
early stages of septic shock leads to significantly lower levels of IL-6 and IL-8 as compared
to non alcoholics (von Dossow et al., 2004). It is intriguing that alcohol suppresses IL-6 and
IL-8 levels which are associated with a poor prognosis in pneumococcal pneumonia,
especially considering that individuals abusing alcohol have increased severity and mortality
of pneumococcal infections.

Peripheral blood neutrophils express receptors for chemokines of the o (CXC) family which
contain the glutamic acid-leucine-arginine (ELR) motif preceding the first conserved
cysteine residue. Neutrophil recruitment to the alveolar space during bacterial pneumonia is
mediated by the rapid expression of these ELR*CXC chemokines (Mizgerd, 2002). Acute
alcohol intoxication suppresses ELR* response in lungs (Boe et al., 2001; Boe et al., 2003;
Happel et al., 2007). Cytokine-induced neutrophil chemoattractant (CINC) and macrophage
inflammatory protein-2 (MIP-2) are the major ELR*CXC cytokines involved in neutrophil
recruitment in rat lungs; the concentration of these chemokines increases upon
pneumococcal challenge. Experimental evidence indicates that acute ethanol administration
suppresses the mRNA and protein expression of these chemokines in bronchoalveolar
lavage (BAL) fluid obtained from rats following pneumococcal challenge (Boe et al., 2001).
The impaired chemokine production led to decreased chemotactic activity of neutrophils in
the BAL fluid which could be reversed by the administration of these CXC chemokines
(Boe et al., 2003). Chronic ethanol consumption also decreases MIP-2 mRNA and protein
levels in alveolar macrophages in response to LPS. It has similar effects on another
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important CC chemokine, macrophage inflammatory protein 1a (MIP-1a) (Standiford and
Danforth, 1997).

In order to maintain the levels of neutrophils in the blood stream and supply an increased
influx to the lungs in response to pneumococcal infection, the host needs to increase the
production of neutrophils. Granulocyte colony stimulating factor (G-CSF) is a lineage-
specific hematopoietic growth factor that induces neutrophil production and also enhances
their release from the bone marrow into the systemic circulation (Semerad et al., 2002).
During pneumococcal pneumonia, it serves as an important signaling link between the lung
and the bone marrow. Alcohol has long been related to defects in hematopoiesis (Heermans,
1998). Chronic alcohol abuse is frequently associated with leukopenia particularly
granulocytopenia (Seppa et al., 1993). Reduction in the number of mature granulocytes with
vacuolization of myeloid progenitor cells is observed in the bone marrow analysis of chronic
alcohol abusers (Heidemann et al., 1981). The suppression of G-CSF in response to alcohol
exposure has also been validated in animal models. Acute ethanol exposure suppresses the
plasma G-CSF response to E. coli in a rat model of infection (Bagby et al., 1998). The
hematopoietic precursor cell response to pneumococcal pneumonia is impaired by acute
ethanol administration in a mouse model (Raasch et al., 2010). Administration of G-CSF
prior to infection significantly attenuates the adverse effects of acute ethanol exposure on the
expression of adhesion molecules and lung recruitment of neutrophils and also enhances its
bactericidal activity against E. coli and K. pneumoniae (Nelson et al., 1991; Zhang et al.,
1998). In a chronic ethanol exposure and a cirrhosis rat model, G-CSF administration did
not provide any protection against pneumococcal pneumonia despite causing an increase in
the number of circulating neutrophils (Lister et al., 1993b; Preheim et al., 1996).

Granulocyte monocyte colony stimulating factor (GM-CSF) is also a hematopoietic growth
factor but unlike G-CSF, it has a wider spectrum of stimulation that includes leukocytes,
erythrocytes and megakarocytes. GM-CSF plays a crucial role in stimulating the terminal
differentiation of alveolar macrophages and accumulation of these cells in the lungs.
Conjugation of GM-CSF with PspA provides increased protection against fatal
pneumococcal challenge in a mouse model (Wortham et al., 1998). The effects of chronic
ethanol ingestion on GM-CSF have been examined in a rat model. Chronic ethanol exposure
had no effect on GM-CSF expression within the alveolar space but it significantly decreased
membrane expression of the GM-CSF receptor on alveolar macrophages. Chronic ethanol
ingestion also decreased the cellular expression and nuclear binding of PU.1, a master
transcription factor for GM-CSF (Joshi et al., 2005).These effects could be reversed by
treatment with rGM-CSF or glutathione precursors like S-adenosylmethionine (SAM)
(Brown et al., 2009; Joshi et al., 2005). GM-CSF treatment also promotes the alveolar
epithelial barrier integrity that is severely affected by chronic alcohol abuse (Pelaez et al.,
2004).

Interleukin 12 (IL-12) is a crucial regulatory cytokine that contributes to both innate and
acquired immunity. It preferentially activates Th1 and NK cells to induce the production of
IFN-y (Gately et al., 1998). Although some animal studies indicate that the role of IL-12 and
IFN-y are dispensable in pneumococcal infection (Kuranaga et al., 2006; Lauw et al., 2002;
Rijneveld et al., 2002). However, most studies suggest a crucial role of IL-12 in host
resistance to pneumococcal infection. IL-12 receptor deficiency is associated with recurrent
pneumococcal sepsis in humans (Gruenberg et al., 2010). Mice deficient in IL-12, IFN-y, or
IL-6 show a reduced 1gG anti-PspA response of all 1gG isotypes (Khan et al., 2002). In a
mouse model, intranasal administration of IL-12 alone or in combination with
pneumococcal polysaccharide or PspA protects against carriage, pulmonary and systemic
pneumococcal infection (Arulanandam et al., 2001; Lynch et al., 2003; Sun et al., 2007).
Acute ethanol exposure suppresses IL-12 secretion by alveolar macrophages in response to
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LPS in an ex vivo model and in lungs and blood in a murine model (Karavitis et al., 2008;
Mason et al., 2000). Production of IL-12 in response to other TLR's (including some that
should be activated by pneumococci) is also inhibited in a binge drinking mouse model
(Pruett et al., 2004b).

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that inhibits the production of most
of the pro- inflammatory cytokines discussed earlier. High levels of IL-10 hamper effective
pneumococcal clearance and decrease survival in a mouse model. (van der Poll et al., 1996).
In humans, high IL-10 levels are associated with poor prognosis of sepsis (van der Poll et
al., 1997). A polymorphism in the IL-10 gene promoter is associated with increased I1L-10
release and correlates with greater severity of illness in community acquired pneumonia
(Gallagher et al., 2003; Schaaf et al., 2003). In a mouse model, IL-10 deficiency is
associated with early onset and higher mortality from septic shock as a result of uninhibited
pro-inflammatory reactions (Latifi et al., 2002). Thus in a normal host, this cytokine plays a
crucial role in maintaining the balance between an effective immune response needed to
confine the infection and an exaggerated inflammatory reaction. Acute ethanol exposure
increases the production of IL-10 in vitro in human monocytes and monocyte derived
macrophages (Mandrekar et al., 1996; Mandrekar et al., 2006; Szabo et al., 1996). The effect
of chronic ethanol exposure is controversial, as one study indicates that there is no
difference in IL-10 levels in individuals with a history of chronic alcohol abuse as compared
to controls (von Dossow et al., 2004), while another study in postoperative patients indicates
that chronic alcohol abusers have a four-fold higher levels of IL-10 after surgery as
compared to non- alcoholics (Sander et al., 2002).

Many human cell types produce a number of antimicrobial proteins such as lysozyme,
lactoferrin, complement, transferrins, and cathelicidins in response to pneumococcal
infection. Some of these have direct antimicrobial activity while others facilitate
opsonophagocytosis. Recent evidence indicates that antimicrobial peptides not only play an
important role in the innate immune response but also act as a link between innate and
adaptive immune responses and have immunomodulatory roles (Diamond et al., 2009).
Lysozyme and lactoferrin are the most abundant antimicrobial proteins in the lung (Travis et
al., 2001). These are produced both by myeloid cells such as alveolar macrophages and
neutrophils, and by the alveolar epithelial cells. A recent study evaluated the effects of
alcohol use on these two antimicrobial proteins in the epithelial lining fluid of humans. BAL
fluid of alcohol abusing subjects showed impaired in vitro killing of pneumococcus
associated with a decreased concentration of both lysozyme and lactoferrin (Burnham et al.,
2010). The metabolic end product of alcohol, acetaldehyde also decreases the activity of
lysozyme (Brecher et al., 1995). The modulation of the antimicrobial protein concentration
and activity by alcohol could contribute to the increased severity of pneumococcal infection
in individuals with a history of alcohol abuse.

Amongst the cell types most important in resistance to pneumococci are the alveolar
macrophages; these are the resident phagocytes in the lung which constitute the first line of
phagocytic defense at this site. Alveolar macrophages are not critical for bacterial clearance
in pneumococcal pneumonia (Knapp et al., 2003). However, alveolar macrophages play an
important role in the inflammatory response as they are the major source of TNF-a that
stimulates the release of chemokines required for neutrophil recruitment (Kirby et al., 2005).
They also play an indispensible role in modulation of the inflammatory response in
pneumococcal pneumonia by phagocytosis of apoptotic neutrophils (Knapp et al., 2003).
Recent evidence indicates that besides innate immune response to pneumococcal infections,
alveolar macrophages also play a crucial role in antigen presentation to secondary lymphoid
organs. Following exposure to pneumococcus murine alveolar macrophages rapidly
transport bacteria to the draining lymph nodes. In case of pneumococcal infection, it is the
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alveolar macrophages and not the dendritic cells that are responsible for the earliest delivery
of these bacteria to the secondary lymphoid tissues (Kirby et al., 2009). Chronic ethanol
ingestion severely affects the production of pro-inflammatory cytokines (Standiford and
Danforth, 1997), cell viability and phagocytic capability of alveolar macrophages despite the
increased surface expression of C3b and Fc receptors on these cells (Bagasra et al., 1988;
Brown et al., 2004). Some of these effects are attributed to decreased glutathione availability
(Brown et al., 2004). Chronic alcohol consumption also severely affects oxidant release by
alveolar macrophages in vitro and in vivo (Antony et al., 1993). Both acute and chronic
ethanol administration inhibit nitric oxide secretion from rat alveolar macrophages in vitro
but have differential effects on superoxide secretion (D'Souza et al., 1996). An interesting
recent study evaluated the mechanisms by which chronic ethanol ingestion impairs alveolar
macrophage function in a guinea pig model. The investigators found that chronic exposure
not only decreases alveolar macrophage maturation but also severely impairs the phagocytic
capability of the mature macrophages. This defect could be reversed by oral administration
of glutathione precursor SAM (Brown et al., 2009).

Neutrophils or polymorphonuclear leukocytes (PMNL) are the main phagocytic cells
responsible for bacterial clearance in pneumococcal pneumonia (Kolling et al., 2001). The
number of PMNL's in the alveolar space is very low but in response to infectious stimuli, a
large number of these cells are recruited from the circulation to the alveolar space.
Impairment of neutrophil recruitment and function is the most commonly cited defect
caused by alcohol that makes the host more susceptible to pneumococcal infection. Alcohol
affects almost all aspects ranging from adhesion and migration to phagocytosis; involved in
neutrophil dependent killing of pneumococci. Acute ethanol intoxication causes a dose
dependent inhibition of neutrophil hyper adherence to activated endothelial surfaces
(MacGregor et al., 1988). Studies in a rat model have shown that the expression of surface
adhesion molecules CD11b/c and CD18 by neutrophils in response to LPS is suppressed by
acute alcohol. This defect can be reversed by the administration of G-CSF (Zhang et al.,
1998). The S100 proteins enhance the adhesion of phagocytes to the vascular endothelium,
acute alcohol exposure inhibits the S100A8 and S100A9 response to LPS in the lungs in a
rat model of infection (Zhang et al., 2007). In rodent models of pneumococcal infection
acute ethanol intoxication profoundly suppresses the expression of lung chemokines which
induce the recruitment of neutrophils to the lungs resulting in delayed neutrophil delivery,
increased bacterial burden and mortality (Boe et al., 2001). In addition to these defects,
acute ethanol exposure also leads to a dose dependent inhibition of the release of primary
and secondary granule contents on activation (MacGregor et al., 1988). Hydrogen peroxide
production by lung recruited PMNL's is also suppressed by acute ethanol administration
(Zhang et al., 1997).

Chronic ethanol exposure significantly compromises the anti-pneumococcal activity of
PMNL's in a rat model as it reduces both the oxidative burst and lysozyme release by
PMNL's (Jareo et al., 1996). In a rat model, chronic ethanol ingestion shows a serotype-
dependent effect on the bactericidal activity of the neutrophils in vitro and in vivo. In this
study, the serotypes 10 A, 14 and 19F showed significant alcohol induced defect, while the
serotypes 6B and 37 were not associated with any alcohol induced defect (Jareo et al.,
1995). Chronic ethanol exposure does not have any effect on the adhesion of neutrophils in
vitro and their recruitment in a rat model of pneumococcal pneumonia. In vitro studies
indicate that neutrophil chemotaxis is impaired by ethanol (Lister et al., 1993a). In a rat
model of cirrhosis, there is no defect in the adherence, chemotaxis and pulmonary
recruitment (Preheim et al., 1991) while phagocytosis in vivo (Gentry et al., 1995; Propst-
Graham et al., 2007) and degranulation, as determined by the level of lysozyme and
complement component C3 in the BAL fluid in a rat model, are severely affected (Propst-
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Graham et al., 2007). Both chronic and acute ethanol exposure induces defects at multiple
levels which adversely affect the neutrophil response to pneumococcal infection.

Mast cells are present throughout the respiratory tract. The main role of these cells is the
release of pro-inflammatory cytokines including TNF-a, and the recruitment of neutrophils
cells although they can also phagocytose and kill opsonized bacteria (Feger et al., 2002).
The interaction of human mast cells with pneumococci has recently been demonstrated
(Cruse et al., 2010). In a murine model of pneumococcal pneumonia, an increase in the
number of mast cells is associated with pneumococcal clearance (Kerr et al., 2002).
Subsequently, it has been established that human lung mast cells mediate pneumococcal
killing in response to pneumolysin. Pneumococcal exposure causes the release of the pro-
inflammatory mediator leukotriene C4 from human mast cells, which has the potential to
recruit professional phagocytes to sites of infection (Cruse et al., 2010). A study in human
mast cell line and mouse bone marrow derived mast cells indicates that ethanol exposure
causes a dose dependent apoptosis of mast cells (Nurmi et al., 2009).

The classical complement system plays an important role in promoting the phagocytosis of
pneumococci (Brown et al., 2002). Liver is the most important source of complement
proteins; chronic alcohol abuse is associated with liver damage and cirrhosis and thus it
adversely affects the production of complement components. Significantly decreased levels
of serum C3 concentrations are observed in patients with alcoholic cirrhosis and in a
cirrhotic rat model following pneumococcal infection (Homann et al., 1997; Propst-Graham
etal., 2007). A study in a rat model indicates that the complement activating activity of
pneumolysin is particularly detrimental in a cirrhotic host as it further reduces the inherently
low complement levels. This ultimately prevents effective phagocytosis of pneumococcal
cells (Alcantara et al., 1999).

Acute phase proteins are surrogate markers of inflammation. Two acute phase proteins, C-
reactive protein (CRP) (Horowitz et al., 1987)and mannose binding lectin (MBL) (Eisen et
al., 2008)are implicated in defense against pneumococcal infection. The role of MBL in
pneumococcal defense is less clearly defined as one study indicates homozygotes of an
MBL variant are at increased risk of invasive pneumococcal disease (Roy et al., 2002b)
while another study indicates that MBL is not an acute phase reactant in pneumococcal
pneumonia and its levels do not correlate with severity of the disease (Perez-Castellano et
al., 2006) Passive administration of human CRP in mouse, protects against lethal
pneumococcal infection (Yother et al., 1982) and in humans, CRP gene polymorphisms are
associated with an increased risk of invasive pneumococcal disease (Roy et al., 2002a).. The
inflammatory response is suppressed in acute ethanol exposure, but paradoxically binge
drinking is associated with high levels of CRP (Imhof et al., 2001; Pruett and Pruett, 2006).
This effect seems to be mediated by increased gut permeability caused by acute alcohol
exposure, which leads to increased amounts of bacterial components in the circulation and
induction of an acute phase response (Pruett and Pruett 2006). Since CRP plays an important
role in recognition and uptake of pneumococcal cells and their presentation to the dendritic
cells (Thomas-Rudolph et al., 2007), an elevated CRP levels should confer an advantage to
the host. But it is clear that this does not fully counteract other anti-inflammatory and
immunosuppressive effects of alcohol.

Acquired Immunity

The major cell type involved in initiating an acquired immune response is the dendritic cell,
which are specialized phagocytic cells, easily detectable in the lungs (Segura and
Villadangos, 2009). The main role of dendritic cells is to sample the airway and when they
encounter an antigen, capture it, process it, move to lymph nodes that drain the lungs, and
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function as efficient antigen presenting cells to activate Th cells required for both humoral
and cell mediated response. As previously mentioned, in pneumococcal infections, this
immune surveillance is carried out both by the dendritic cells and the alveolar macrophages
(Kirby et al., 2009). On induction with pneumolysin and choline- binding protein A (CbpA),
human dendritic cells produce CC and CXC chemokines (Bernatoniene et al., 2008). These
chemokines have pro-inflammatory activities early in the infection before antigen
presentation has occurred to a substantial degree. Pneumococcus has elaborate mechanisms
to evade human dendritic cell surveillance which are mediated through the production of
pneumolysin and pneumococcal adherence and virulence factor A (PavA) (Littmann et al.,
2009; Noske et al., 2009). This immune evasion is facilitated by the alcohol induced
impairment of the dendritic cell function. Patients with alcoholic liver cirrhosis, both with
active ethanol intake and on withdrawal (1 year) have decreased numbers of circulating
dendritic cells (Laso et al., 2007). Chronic ethanol exposure in vitro impairs cytokine-driven
differentiation and function of dendritic cells (Lau et al., 2006). Acute, moderate alcohol
exposure both in vitro and in vivo affects the differentiation of dendritic cells and accessory
cell function resulting in impairment of Th1 responses (Mandrekar et al., 2004; Szabo et al.,
2004). Alcohol treated dendritic cells also show reduced IL-12, increased IL-10 production,
and a decrease in expression of the co-stimulatory molecules CD80 and CD86 (Mandrekar
et al., 2004).

Dendritic cells and the alveolar macrophages carry pneumococcal antigens to regional
lymph nodes and invoke a specific immune response with cytotoxic T lymphocytes and
antibody producing B lymphocytes (Jakubzick et al., 2006; Kirby et al., 2009). As described
previously, alcohol abuse affects the functioning of both dendritic cells and alveolar
macrophages. Decreased number of thymus cells and thymic weight is observed in animal
models of chronic alcohol exposure (Grossman et al., 1988). Studies in a mouse model show
an early rapid increase in T cell proliferation to areas with increased pneumococcal invasion.
Also, CD4* T cell deficient mice are unable to survive a lethal pneumococcal challenge
indicating a crucial role of cells in pneumococcal infections (Malley et al., 2005).
Lymphopenia is commonly observed in patients with alcohol related liver diseases. The
number of circulating T cells is significantly reduced in individuals with a history of chronic
alcohol abuse (Roselle et al., 1988). Besides affecting CD4* T cells, chronic alcohol abuse
also inhibits 1L-17 production in vitro and in vivo in response to inflammatory stimuli
(Shellito et al., 2001). IL-17A is important for immunity to pneumococcal colonization
(Malley et al., 2006).

Interestingly, chronic alcohol abuse with liver disease leads to an increase in the specific
plasma antibody titers against the pneumococcal serotype used for immunization, but these
immunoglobulins are not protective against a subsequent pneumococcal challenge with the
same serotype (Preheim et al., 1992). This review will focus primarily on antibody
responses to pneumococcal vaccine polysaccharides rather than attempt an exhaustive
survey of adaptive immune responses. These studies will be further discussed in the
following section in the context of the effectiveness of pneumococcal vaccination in
individuals with a history of alcohol abuse.

Efficacy of antibiotics, immunomodulation and vaccines for treatment of
pneumococcal infections in individual's with alcohol exposure

Despite the increased severity and mortality of pneumococcal infection in people abusing
alcohol, there are very few studies available that have specifically evaluated the efficacy of
various therapeutic and prophylactic options for this select population. The recent guidelines
for treatment of community-acquired pneumonia in patients with co-morbidities like
alcoholism, recommend the use of a B-lactam plus macrolide combination or a respiratory
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fluoroquinolone alone as an empirical therapy (Mandell et al., 2007). Parenteral
administration of macrolides (azithromycin), fluoroquinolones (trovafloxacin) and p-lactams
(ceftriaxone) show similar efficacies against pneumococcal pneumonia in a cirrhotic rat
model (Preheim et al., 2005). The efficacy of three different fluroquinolones (levofloxacin,
moxifloxacin and trovafloxacin) at two different doses in a rat model of chronic alcohol
intoxication was also found to be similar (Olsen et al., 2006). Based on the limited literature
available, alcohol abuse does not seem to affect the efficacy of the antibiotics, but thorough
and more extensive studies are needed to formulate specific guidelines.

Some immunomaodulation therapies are being tried as an adjunct to antibiotics for treatment
of pneumococcal pneumonia. As previously described, animal studies have shown that oral
administration of SAM, a precursor of glutathione, decreases alcohol induced defects in
alveolar macrophages (Brown et al., 2009). Also the administration of SAM or rGM-CSF
reverses the decreased membrane expression of GM-CSF caused by chronic ethanol
administration (Brown et al., 2009; Joshi et al., 2005). Intrapulmonary administration of
IFN-y enhances the CXC chemokine response to LPS in experimental animals. Pretreatment
with G-CSF attenuated the adverse effects of acute ethanol administration on neutrophils
(Nelson et al., 1991; Zhang et al., 1998). A recombinant human G-CSF (filgrastim) has been
used in a clinical trial of 756 patients with community-acquired pneumonia. Filgrastim
administration was found to be safe and well tolerated in these patients. The treatment
improved blood neutrophil count accelerated radiologic improvement and reduced serious
complications. Despite these beneficial effects, filgrastim failed to alter the mortality or
morbidity outcomes (Nelson et al., 1998). Extensive clinical trials are needed to establish
and validate the role of these therapies in pneumococcal infections in people with acute or
chronic alcohol exposure.

The Advisory Committee on Immunization Practices (ACIP) recommends the use of the 23-
valent pneumococcal polysaccharide vaccine in people with a history of alcohol abuse, and
also in cirrhosis, for the prevention of invasive pneumococcal disease (2010b). A meta
analysis of prospective trials found that although the vaccine is efficacious in low risk
adults, it is not as effective in high risk adults (Fine et al., 1994). There are very few studies
that have evaluated the effectiveness of pneumococcal vaccine in alcohol abusing
individuals and the results of these studies are contradictory. Studies using 14-valent
pneumococcal vaccine in patients with alcoholic liver disease and cirrhosis indicate that
these patients respond well to the vaccine (Pirovino et al., 1984; Simberkoff et al., 1983;
Smith et al., 1980). These results cannot be readily generalized to the currently available 23-
valent vaccine. A study comparing the efficacy of the 23-valent vaccine in native Alaskan
with a history of chronic alcohol abuse with non alcoholics found that both groups
responded adequately to the vaccine although the magnitude of response was better in non
alcoholics and this was particularly evident for some serotypes (McMahon et al., 1993).
Another study with patients with end stage liver disease (a common outcome of chronic
alcohol abuse) indicates that although these patients responded to the vaccine, their mean
IgA and I1gM levels declined very rapidly. Antibody levels in the patients were at or below
the pre-vaccination baseline, three months after transplantation. This study concluded that
vaccination with 23-valent pneumococcal vaccine may not be effective for liver transplant
patients (McCashland et al., 2000). Increased serum antibody titers in response to the
polysaccharide vaccine do not necessarily correlate with protection. This has been validated
in another study where increased serum concentration of functional, type-specific
anticapsular antibodies in vaccinated cirrhotic rats did not provide protection against type 3
pneumococcal challenge (Preheim et al., 1992). In a study that compared the vaccine
response to type 3 pneumococcal polysaccharide and pneumococcal polysaccharide vaccine
conjugated to a protein carrier (CRM1g7) in chronic ethanol rat model, it was found that
although the protein conjugated vaccine led to an anamnestic response, this was not

Alcohol. Author manuscript; available in PMC 2012 September 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bhatty et al.

Page 14

accompanied by increased survival. The unconjugated vaccine led to a non significant
increase in survival in the ethanol fed group of rats (Henriksen et al., 1997). There are case
reports of fatal pneumococcal infections in patients with history of alcohol abuse despite
vaccination with polysaccharide vaccine. Pneumococcal isolates from all patients in these
two case reports were from serotypes included in the vaccine and these isolates were
sensitive to the antibiotics used for management of infection (Hanna et al., 2000; McMahon
et al., 1999). All the studies raise doubts about the effectiveness of the current vaccine for
this patient population. Given the defects caused by alcohol in immune responses against
pneumococcus, this is not entirely surprising. More extensive and well designed studies are
needed in this area to help devise specific guidelines for pneumococcal vaccination in
people with a history of alcohol abuse. It is possible that multi component protein vaccines
may be sufficiently more potent than current capsular vaccines that this could partially
alleviate the problems associated with a decreased anamnstetic response and the deranged
response of an alcohol exposed host to certain serotypes. Since immune responses to T cell
dependent antigens are known to be adversely affected by alcohol abuse (Jerrells, 1991), the
efficacy of these protein based vaccines for people with a history of alcohol abuse
population also remains questionable. However, this will have to wait until such a vaccine is
licensed and its response analyzed for this group of people.

Future directions

As described earlier, both mice and rat models are available to study the effects of alcohol
on different organs but all studies evaluating the effect of alcohol in pneumococcal infection
have used rat as the animal model. Although both rat and mouse models are available for
pneumococcal investigation, mouse is the most commonly used and well characterized
model for pneumococcal pneumonia and sepsis (Chiavolini et al., 2008). The immune
system of mice and rats is different and the susceptibility of different serotypes of
pneumococci also varies for different strains of mice and rats. There is a need for a
standardized model, ideally a mouse model, to study the effects of alcohol on pneumococcal
immune responses. The availability of a wide range of mouse reagents; inbred and outbred
strains; transgenics and knockout strains, and the availability of mouse genomes makes it an
attractive research model that provides more flexibility and tractability. Also, there are many
studies which have used mouse as a model for evaluating the effect of alcohol on the
immune response of the host. A mouse model for chronic and acute ethanol exposure for
pneumococcal research will allow the interpretation of the results obtained in light of the
current knowledge available in field of pneumococcal immune response.

Studies evaluating the effects of alcohol on the outcome of pneumococcal infections have
mostly used serotype 3 pneumococcal isolates for challenge through different routes while
some studies have also used LPS for stimulation of immune cells (Lister et al., 1993; Nelson
et al., 1989). There are greater than 90 pneumococcal serotypes and it is generally accepted
that these serotypes have different invasive abilities. A recent meta-analysis indicates that
serotypes 3, 6A, 6B, 9N and 19F are associated with pneumococcal bacteremia (Weinberger
et al., 2010). Serotypes causing invasive disease in patients with comorbid conditions like
alcoholism are different from those causing disease in normal healthy populations (Harboe
et al., 2009; Sjostrom et al., 2006). It has been suggested that serotypes recognized as having
high invasive potential (like serotype 1 and 7F) behave as primary pathogens while clones or
serotypes with lower invasive potential behave as opportunistic pathogens. These
opportunistic pathogens are more prevalent in patients with comorbidities. Infections caused
by these “opportunistic' serotypes are much more severe than the invasive serotypes
(Sjostrom et al., 2006). Alcohol is one of the most important underlying conditions for
pneumococcal disease and it is likely that the serotypes causing infection in alcohol exposed
individuals are different from those in the normal populations. The adaptive and innate
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immune responses evoked by different serotypes of pneumococci are different (Burgess et
al., 2008; Soininen et al., 2001). The rarely invasive serotypes initiate a more robust immune
response than the commonly invasive serotypes (Burgess et al., 2008). Serotype-dependent
bactericidal response to pneumococcal infection in an alcohol exposed host has also been
described by one study (Jareo et al., 1995). Therefore, it is important to evaluate the
prevalence of serotypes responsible for invasive pneumococcal infections in alcohol abusing
populations in order to design appropriate intervention strategies for these group of people.

In summary, the independent interactions of alcohol and pneumococci with host immune
system are known. However, despite the documented evidence for increased incidence of
pneumococcal infections in alcohol abusing individuals, integrated knowledge to address the
intersection of these two important areas of research is limited. Understanding the
synergistic effects of alcohol and pneumococci in appropriate animal models with relevant
serotypes is critical for translational research in the context of the identification of
appropriate intervention points as well as treatment strategies.
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Fig. 1. Pneumococcal virulence factors

This figure was adapted from a previously published figure (Clin Microbiol Rev. 1998
11:645-57) and was provided by Dr. David E. Briles, University of Alabama at
Birmingham, USA. Abbreviations: PspA, pneumococcal surface protein A; PspC,
pneumococcal surface protein C; CbpA, choline binding protein A.
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Fig. 2. Effect of alcohol on innate and adaptive immune responses important for defense against

pneumococcal infections

Ch- chronic alcohol, Ac- acute alcohol, LTA- lipotechoic acid, ply- pneumolysin, pn-

pneumococcal, inflam- inflammatory, resp-response, APC- antigen presenting cell, cyt-
cytokines, 1- increase, |- decrease, <> - No change, *In most studies, “Effects of alcohol on

stimulated cells
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Table |

Important pneumococcal virulence factors and their role in pathogenesis.
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Pneumococcal virulence factor

Role in pathogenesis

Reference

Capsule

Prevents opsonophagocytosis and mechanical removal
by mucus

(Jonsson et al., 1985; Nelson et al.,
2007)

Pneumolysin (Ply)

Cytolytic toxin, complement activating activity

(Mitchell et al., 1991)

Neuraminidase (NanA,B & C)

Cleaves N-acetyl neuraminic acid on host cell surfaces
and exposes potential pathogen binding sites, Nan A
plays an important role in biofilm formation.

(Camara et al., 1994)

Hyaluronidase

Helps in spread of infection

(Fitzgerald and Repesh, 1987)

Pneumococcal surface protein A(PspA)

Binds to lactoferrin and inhibits complement activation

(Hammerschmidt et al., 1999)

Pneumococcal surface protein C (PspC or
CbpA or SpsA)

Binds to sIgA and factor H; prevents C3b formation

(Dave et al., 2001; Hammerschmidt
etal., 1997)

Pilus

Mediates binding of pneumococci to host cells.

(Barocchi et al., 2006)

Autolysin A(LytA)

Causes pneumococcal autolysis, proposed to release
ply; prevents phagocytosis

(Martner et al., 2008; Martner et al.,
2009)
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