
INTRODUCTION

Neural induction is a process of neural cell formation in ecto­
derm during embryogenesis (Kessler and Melton, 1994; Gould 
and Grainger, 1997; Hemmati-Brivanlou and Melton, 1997; Sasai 
and De Robertis, 1997; Munoz-Sanjuan and Brivanlou, 2002; 
De Robertis and Kuroda, 2004). In Xenopus embryos, Spemann 
organizer is placed in dorsal mesoderm and generates BMP 
antagonizers such as chordin, noggin and follistatin (Smith and 
Slack, 1983; Hemmati-Brivanlou and Thomsen, 1995; Harland 

and Gerhart, 1997; Zoltewicz and Gerhart, 1997; Faure et al., 
2000). These molecules induce neural cells via blocking of bone 
morphogenetic protein (BMP) signaling (Hemmati-Brivanlou and 
Thomsen, 1995; Sasal et al., 1995; Wilson and Hemmati-Brivanlou, 
1995; Munoz-Sanjuan et al., 2002). Previous studies show that 
activin treatment or microinjection of dominant negative BMP 
receptor (DNBR) induces neural cells in animal cap explants (AC) 
(Suzuki et al., 1994; Hawley et al., 1995; Xu et al., 1995). Moreover, 
various genes have been demonstrated to be involved in neural 
development (Karsten et al., 2008). Representatively, Zic3 (one 
of zic finger proteins, contributes initiating of neurogenesis in 
early stage), NCAM (neural cell adhesion molecule, pan-neural 
marker), NeuroD, Otx2 (Orthodenticlehomeobox 2, anterior 
neural marker), HoxB9 (Homeobox protein Hox-B9, posterior 
neural marker) and RX1 (eye specific marker) have been used for 
neural markers (Jacobson and Rutishauser, 1986; Sunshine et al., 
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Neural tissue is arisen from presumptive ectoderm via inhibition of bone morphogenetic protein (BMP) signaling during Xenopus 
early development. Previous studies demonstrate that ectopic expression of dominant negative BMP4 receptor (DNBR) produces 
neural tissue in animal cap explants (AC) and also increases the expression level of various genes involved in neurogenesis. To 
investigate detail mechanism of neurogenesis in transcriptional level, we analyzed RNAs increased by DNBR using total RNA 
sequencing analysis and identified several candidate genes. Among them, xCITED2 (Xenopus CBP/p300-interacting transcription 
activator) was induced 4.6 fold by DNBR and preferentially expressed in neural tissues at tadpole stage. Ectopic expression of 
xCITED2 induced anterior neural genes without mesoderm induction and reduced BMP downstream genes, an eye specific marker 
and posterior neural marker. Taken together, these results suggest that xCITED2 may have a role in the differentiation of anterior 
neural tissue during Xenopus early development.
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1987; Lee et al., 1995; Mizuseki et al., 1998; Nakata et al., 1998; 
Manzanares et al., 2002; Lunardi and Vignali, 2006; Zaghloul and 
Moody, 2007).

The CITED protein (CBP/p300-interacting transcription acti­
vator) family has 4 subtypes, CITED1 called as MSG1, CITED2 
(MGR1), CITED3 and CITED4 (MRG2) (Andrews et al., 2000). 
All family proteins have CR2 domain which is a highly conserved 
transcription activating domain (Shioda et al., 1997). Since CITED 
protein does not have DNA-binding motif, it has been studied as a 
transcriptional co-activator of CBP (Yahata et al., 2000). CITED1 
increases transcriptional activity through interacting with CBP 
and SMAD4 but CITED2 does not have SMAD4 binding motif. 
CITED2 enhances transcription with other proteins such as Lhx2 
which contains LIM domain (Glenn and Maurer, 1999). Previous 
studies addressed that CITED family proteins play a role in heart, 
liver development and anterior-posterior patterning (Goodman 
and Smolik, 2000). Although CITED2 protein has been studied 
minutely in mammalian cell, the role of CITED2 is not fully 
understood during Xenopus early development (Fujii et al., 1998; 
Schlange et al., 2000).

In this study, we found that Xenopus homologue of CITED2 
(xCITED2) was induced by DNBR and preferentially expressed 
in neural tissues. Over-expression of xCITED2 increased neural 
genes such as Zic3, NeuroD, neurogenin-1, NCAM and Otx2 in 
AC, but decreased BMP downstream genes and a posterior neural 
marker, HoxB9. Taken together, the results suggest that xCITED2 
functions in anterior neural induction during Xenopus early 
development.

MATERIALS AND METHODS

Embryo injection and explant culture

Xenopus laevis embryos were obtained by artificial fertilization 
(Sive et al., 2010).  Developmental stages were designated accor­
ding to Nieuwkoop and Faber (Nieuwkoop, 1969). Embryos at 
the one cell stage or two-cell stage were injected in the animal pole 
with mRNA as descried in the figure legends. Animal caps were 
dissected from the injected embryos at stage 8~9 and cultured to 
various stages in 67% Leibovitzs L-15 medium (GIBCO/BRL) with 
BSA (1 mg/ml), 7 mM Tris-HCl (pH 7.5) and gentamicin (50 μg/ml).

Cloning of xCITED2 

The xCITED2 ORF sequence is appeared in NCBI GenBank 
under the accession number NM_001094820. Open reading frame 
(ORF) was amplified by PCR using cDNA library of stage 12 
Xenopus embryos (Primer forward: 5`-GCGAATTCAATGGC
AGACCACATGATGGC-3` reverse: 5`CGTCTAGAACACAC

CTAACAGCTTACTCTG-3`). The full length of xCITED2 ORF 
was cloned into EcoRI/XbaI-digested pCS2 vector. For epitope 
tagging, xCITED2 ORF were cloned into pCS2-HA vector (pCS2-
HA-xCITED2).

In vitro transcription

All synthetic mRNAs used for microinjection were produced 
by in vitro transcription. The xCITED2 cDNA was inserted 
in the pCS2 vector. The cDNA were linearized and used for in 
vitro synthesis of capped mRNA using in vitro transcription kit 
(Ambion) in accordance with the manufacturer’s instructions. The 
synthetic RNA was quantified by ethidium bromide staining in 
comparison with a standard RNA.

RNA isolation and reverse transcription-polymerase chain 

reaction (RT-PCR)

Total RNA was extracted from whole embryo or cultured 
animal explants with TRIzol reagent (Life Technologies, Inc.) 
following the manufacturer’s instruction. RT-PCR was performed 
with a Superscript pre-amplification system (Invitrogen). PCR 
was performed as follows: first, a denaturation step of 94oC for 5 
minutes; second, 94oC for 1 minute; third, each annealing tem­
perature, for 1 minute ; fourth, 72oC for 1 minute; fifth, repeat 
second, third and fourth steps 19-30 cycles of amplification 
was performed as described at the Xenopus Molecular Marker 
Resource (XMMR; University of Texas). Primer set for xCITED2 
was following forward: CTCATCATCATCAGCACACC, reverse: 
CGATCACCAAGGACATAAGG. ODC was used as control to 
normalize the amount of cDNA used.

Western blotting

Embryos were injected at the one cell stage with RNA constructs 
as described, and frozen at stage 11. They were then homogenized 
in lysis buffer (50 mM Tris [pH 7.4]), 150 mM NaCl, 1% NP-40, 
0.25% sodium deoxycholate, 0.1% SDS, 50 mM NaF and 1 mM 
Na3VO4) containing of 1 mM PSMF, 15 mM glycerophosphate, 
1 X proteinase inhibitor cocktail (Calbiochem). Cell lysates 
were cleared by centrifugation. Proper amount of lysate was 
boiled in sample buffer, and resolved by electrophoresis in 10% 
SDS-polyacrylamide gels. HA-tagged xCITED2 proteins were 
visualized after western blotting using rabbit polyclonal anti 
HA (Santa Cruz, sc-Y11) using ECL Western blotting detection 
reagents (Amersham Pharmacia Biotech).
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RESULTS

xCITED2 is identified using total RNA sequencing analysis 

in DNBR-treated animal cap explants

We screened for the expressed RNA in DNBR-injected AC using 
total RNA sequencing (Jones and Woodland, 1987; Karsten et al., 
2008). We analyzed about 22,000 contigs of the expressed sequences 
(bigger than 300 nucleotides) and found several uncharacterized 
genes induced by DNBR during early Xenopus development. We 
interested in the expressed sequence [accession number NM_ 
001094820] which encodes a protein that shared identity of 69% 
with hCITED2; its homologues were also identified in mouse 
and chick. In total RNA sequencing data, the expression level 
of xCITED2 was increased 4.6-fold by DNBR at stage 11, when 
compared with the data obtained from the untreated control AC. 

In order to confirm the induction of xCITED2 in DNBR-treated 
sample, RT-PCR analysis was performed with AC obtained from 
embryos in various conditions. As shown Fig. 1A, the expression 
level of xCITED2 was increased in the samples treated with either 
DNBR or Activin at stage 24, but not in the untreated control 
AC. The control AC differentiated to epidermis (as shown by 
enhanced expression of XK81 in Fig. 1A). As we have known, 

Fig. 1. Blocking of BMP4 signaling induced the expression of xCITED2 in animal cap explants of Xenopus embryos. (A) Animal caps were dissected 
from stage 8~9 embryos that had been injected at the one cell stage or two-cell stage with 2 ng of DNBR RNAs or animal cap explants dissected from 
un-injected embryos were treated with activin (50 ng/ml). Animal caps were harvested at stage 24 and RT-PCR analysis was performed. Pan-neural 
marker: NCAM, mesoderm marker: Actin, epidermis marker: XK81. ODC serves as mRNA loading control. (B) Alignment of xenopus xCITED2 with 
human and mouse homologues of CITED2. Yellow indicated that Amino-acids which are conserved between xenopus CITED2 (gene bank number: 
NP_001088289.1) and other members (human: NP_006070.2, mouse: NP_034958.2). All family members contain transcription activating domain 
(CR-2 domain) in C-terminal region. This diagram was generated by the VectorNTI 8.0.

Fig. 2. Temporal and spatial expression pattern of xCITED2 in Xenopus 
development. (A)Temporal Expression pattern of xCITED2 was analyzed 
using RT-PCR at various stages as indicated. ODC serves as loading 
control. xCITED2 was expressed from Oocyte and maintained until tail-
bud stages. (B) Spatial expression pattern of xCITE2 was also analyzed by 
RT-PCR with dissected parts as indicated from stage 28 embryos.
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either activin- or DNBR-treated samples differentiated to neural 
tissues (as shown by NCAM expression in Fig. 1A). We cloned and 
sequenced the full-length cDNA of xCITED2 into pCS2 vector 
using PCR amplification. xCITED2 encodes 225 amino acids and 
contains highly conserved CR-1 and CR-2 domain as indicated 
in Fig. 1B. CR-2 is a Glu/Asp-rich carboxy-terminal domain 
consisted of 55 amino acids and it has been known to acts as a 
transcription activating domain.

xCITED2 is preferentially expressed in neural tissues

To investigate temporal expression of xCITED2 during Xenopus 
early development, we performed RT-PCR analysis with embryos 
of several developmental stages (Fig. 2A). Transcripts of xCITED2 
were present from oocyte until tadpole stage. We then determined 
spatial expression of xCITED2 at stage 28. Each part was dissected 
as shown in Fig. 2B and immediately performed RT-PCR analysis 
(Fig. 2B). xCITED2 was highly expressed in head and dorsal 
regions.

Together, DNBR induced expression of xCITED2 in AC and its 
spatial expression pattern in whole embryos suggest that xCITED2 
has a role in neural development of Xenopus embryos.

Ectopic expression of xCITED2 induces neural genes in 

animal cap explants

To perform gain of functional studies, we constructed HA-
tagged xCITED2 because specific antibody for xCITED2 was 
commercially not available. Expression level of HA-xCITED2 was 
checked by western blotting using anti-HA probe (Fig. 3A). Over-
expression of HA-xCITED2 induced a neural specific gene, Zic3 
without organizer (chordin), mesoderm (Xbra) and endoderm 
(Mixer) gene induction in AC, but expression levels of BMP 
downstream genes (PV.1, Xvent1 and Xvent2) were reduced at 

stage 12. Consistently, neural specific genes (NCAM and Krox20) 
were expressed without either dorsal (Actin) or ventral (Globin) 
mesoderm, and endoderm (Edd) formation by xCITED2 in 
AC at stage 24. The results suggest that xCITED2 play a role in 
neurogenesis without inducing dorsal mesoderm.

xCITED2 induces anterior neural tissue

We found that xCITED2 was induced by DNBR and over-
expression of xCITED2 induced neural genes in AC. Because 
DNBR-induced neural tissue is anterior, we examined whether 
xCITED2-induced neural tissue was also anterior. As shown 
in Fig. 4, xCITED2 induced an anterior specific neural marker; 
OTX2. OTX2 was similarly expressed in either DNBR or activin-
treated AC. Overexpression xCITED2 further increased OTX2 
transcripts in either DNBR or activin-treated AC. At the same 
conditions, xCITED2 reduced a posterior specific neural marker; 
HoxB9 which was induced by activin treatment in AC. In addition, 
other neural markers NCAM, NeuroD and Xneurogenin-1 were 
also induced, but an eye specific marker; Rx1 was dramatically 
reduced by co-injection of xCITED2.

The results suggest that xCITED2 induces anterior neural tissue 
in AC of Xenopus embryos.

DISCUSSION

Previous studies have demonstrated that inhibition of BMP4 
signaling leads to induce neurogenesis (Hawley et al., 1995). To 
understand the mechanism of neurogenesis, we investigated 
DNBR-induced genes using total RNA sequencing analysis. 
We analyzed total 21,891 expressed sequences and found 506 
transcripts were up-regulated more than 3-fold. Up-regulated 
transcripts included a number of well-known genes involved in 

Fig. 3. xCITED2 induced neurogenesis in Xenopus 
Animal cap. (A) Expression level of HA-xCITED2 
was confirmed by western-blot analysis. 1 ng of HA-
xCITED2 RNAs were injected at 1 cell stage embryo 
and harvested at stage 12. Immuno-bloting was 
performed using anti-HA probe. (B) 1 ng of xCITED2 
RNAs were injected at 1 cell stage and dissected 
animal cap at stage 8 and incubated in animal cap 
media until stage 12 or stage 24 (C). RT-PCR was 
performed to analyze various genes expression. ODC 
was used as loading control, ventral marker: Xvent1/2, 
GATA2, PV.1, endoderm marker: mixer and Edd, 
mesoderm marker: Xbra, Actin, organizer marker: 
chordin and neural marker: Zic3, NCAM, Krox20.
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neurogenesis such as Zic, OTX and Sox family genes. In addition, 
we found several uncharacterized genes in neurogenesis processes 
(data not shown). 

In this works, we examined the xCITED2 which was one of 
uncharacterized genes. xCITED2 has been well known to interact 
with CBP/p300 and act as a co-transcriptional activator. Although 
physiological function of xCITED2 has been fully understood in 
mammalian cell, the role of xCITED2 in early development has 
been elusive. During chick development, CITED2 is expressed 
in an anterior region of primitive streak, presomitic and lateral 
plate mesoderm, in the head-fold (future forebrain) and head 
mesoderm (Schlange et al., 2000). This spatial expression pattern 
suggests that CITED2 may functions in neurogenesis. In this 
work, we showed that xCITED2 was expressed in head and dorsal 
region and overexpression of xCITED2 resulted in anterior neural 
induction in AC. In addition, we constructed xCITED2-deltaCR2 
construct which does not contain the CR-2 domain. Over-
expression of xCITED2-deltaCR2 did not induce any neural 
genes (data not shown). This suggests that xCITED2 functions to 
induce anterior neural genes as a transcriptional co-activator.

Interestingly, CBP/p300 which is major binding partner of 
xCITED2 is expressed in anterior neural region in dorsal side 
during Xenopus early development (Fujii et al., 1998). Although 
Yoichi Kato et al. demonstrated that functional inhibition of CBP/
p300 induces neutralization, co-expression of xCITED2 and 

CBP/p300 together has not been examined and may function 
in neurogenesis because physiological function of CBP/p300 
depends on its binding partner (Kato et al., 1999). Further studies 
involving relationship between xCITED2 and CBP/p300 will help 
to understand the neurogenesis of vertebrate embryos.
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