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123  8  2.0 mm Hg) and attenuated acetylcholine (ACh)-me-

diated vasodilation (78.3, 72.7, and 78.2% of the chow + air 

response at the highest dose of ACh) compared to chow + air 

controls. Combined HFD and E-IH treatment did not further 

impair vasodilation compared to chow + E-IH alone. Vasodi-

latory responses were normalized by the antioxidant EUK-

134 in each treatment group.  Conclusions:  Increased adi-

posity and simulated sleep apnea impair endothelium-

dependent vasodilation through enhanced generation of 

reactive oxygen species (ROS). However, the combined treat-

ment does not exacerbate either ROS generation or vascular 

dysfunction observed with HFD or E-IH alone. 

 Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Reactive oxygen species (ROS) contribute to many car-
diovascular diseases by causing impaired endothelium-
dependent vasodilation, atherosclerosis, cardiac hyper-
trophy and cardiomyocyte apoptosis  [1–6] . Superoxide 
(O2

–� ) impairs endothelium-dependent vasodilation by 
scavenging nitric oxide (NO) to form peroxynitrite 
(ONOO – )  [6] . It may also oxidize the NO synthase (NOS) 
co-factor, tetrahydrobiopterin, leading to uncoupling of 
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 Abstract 
  Background:  Although there often is a clinical co-incidence 

of increased adiposity and obstructive sleep apnea, each 

factor is independently associated with elevated oxidative 

stress.  Objective:  We hypothesized that overweight rats ex-

posed to simulated sleep apnea would develop exacerbated 

oxidative stress leading to impaired endothelium-depen-

dent vasodilation.  Methods:  Rats were fed either a chow or 

high-fat diet (HFD; 60% kcal from fat) for 6 weeks. During the 

final 14 days of each diet, animals were exposed to either air 

or eucapnic intermittent hypoxia (E-IH) to simulate sleep ap-

nea.  Results:  Rats exposed to either E-IH or HFD alone 

showed increases of 161 and 176%, respectively, in oxidative 

stress (measured as thiobarbituric acid-reactive substances) 

compared to chow + air controls. However, oxidative stress 

was lower following combined HFD + E-IH treatment (132% 

of chow + air controls) compared to each individual treat-

ment. All three treatment groups, chow + E-IH, HFD + air and 

HFD + E-IH, had increased blood pressure (144.5  8  4.4, 148.2 

 8  5.6, and 136.2  8  2.0 mm Hg, respectively, vs. chow + air: 
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the enzyme [reviewed in ref.  7 ]. Through this mecha-
nism, O2

–�  decreases the bioavailability of NO  [8, 9]  there-
by impairing vasodilation. Another ROS with vasoactive 
properties is H 2 O 2 , which is a potent oxidant with report-
ed vasodilatory or vasoconstrictor effects depending on 
the concentration or tissue examined  [10–12] . Due to 
these effects of ROS, a balance between the production of 
ROS and their scavenging by endogenous antioxidant 
pathways is integral to maintenance of normal vascular 
function  [12] .

  Sleep apnea is characterized by repeated episodes of 
breathing cessation and is linked with elevated oxidative 
stress  [1, 13]  and increased cardiovascular morbidity  [1] . 
The most common form of this disorder affecting 2–4% 
of the population is obstructive sleep apnea (OSA), which 
is often associated with obesity but is also seen in elderly 
individuals with normal body mass indices  [14–17] . Pa-
tients with OSA not only develop increased ROS levels 
but also impaired glucose tolerance, which can lead to 
insulin resistance  [14, 18–20] . These effects of OSA on 
glucose tolerance are likewise observed in rodent models, 
where lean, high-cholesterol diet-fed or genetically obese 
mice exposed to intermittent hypoxia (IH) develop im-
paired glucose tolerance  [21, 22] . Similarly, IH increases 
oxidative stress in both lean mice and mice fed a high-
cholesterol diet for 84 days. In these latter studies, oxida-
tive stress appeared to be a consequence of IH rather than 
diet, since it was not observed in animals fed high choles-
terol alone  [22] .

  Elevated production of ROS in OSA patients likely 
contributes to vascular dysfunction  [23] . For example, 
OSA patients exhibit impaired endothelium-dependent 
vasodilation (measured by reduced forearm blood flow) 
compared to obese control patients  [24] . Similarly, endo-
thelium-dependent flow-mediated vasodilation is im-
paired in patients with OSA compared to control subjects 
 [25, 26] . Normalization of vasodilatory responses by in-
travenous injection of the antioxidant vitamin C suggests 
impaired vasodilation is due to elevated oxidative stress 
 [27] .

  Similar to OSA, obesity is clearly linked to oxidative 
stress and impaired vasodilation  [28, 29] . For example, 
rabbits fed a high-cholesterol diet exhibit a strong nega-
tive correlation between ROS and endothelium-depen-
dent vasodilation  [30] . Similarly, rats fed a high-fat diet 
(HFD; 60% kcal from fat) for 6 weeks demonstrate elevat-
ed oxidative stress and impaired endothelium-dependent 
vasodilation that is normalized by antioxidants [31]. 
However, the potential interaction between IH exposure 
and increased adiposity has not been examined. The goal 

of the present study, therefore, was to test the hypothesis 
that combined increased adiposity and IH leads to more 
profound oxidative stress and impaired vasodilatory re-
activity than observed with either condition alone.

  Experimental Procedures 

 Study Design 
 All protocols were reviewed and approved by the Institutional 

Animal Care and Use Committee of the University of New Mex-
ico Health Sciences Center. Male Sprague-Dawley rats (140–160 g 
body weight; Harlan Industries, Indianapolis, Ind., USA) were di-
vided into two groups and fed either a chow diet (diet 2018; 3.4 
total kcal/g; Harlan Teklad Global Diets, Madison, Wisc., USA) 
containing 57.33% carbohydrates, 18.9% protein and 5% kcal fat, 
or HFD (diet D12492; 5.24 total kcal/g; Research Diets, New 
Brunswick, N.J., USA) consisting of 20% carbohydrates, 20% pro-
tein, and 60% kcal fat (mainly lard). Rats were maintained on the 
respective diets for 6 weeks. During the final 14 days of each diet, 
rats were exposed to either air or eucapnic IH (E-IH) as described 
previously  [32, 33] . Briefly, animals were housed in Plexiglas cag-
es with free access to food and water. To simulate the E-IH condi-
tions of sleep apnea, rats were exposed to repeated episodes of
a 90-second stream of N 2 -CO 2  to reach an ambient nadir of
5% O 2 :5% CO 2  followed by a 90-second air flush for 7 h/day. Con-
trol rats were exposed to air-air cycling for 7 h/day. The nadir of 
5% O 2  was chosen to simulate systemic hypoxemia observed in 
OSA patients in whom minimum O 2  saturations of  � 70% are seen 
 [34, 35] . The CO 2  level used has been shown previously in our 
laboratory to maintain eucapnia  [36] . Animals were housed in 
identical cages in the same animal facility and exposed to a 12:   12 
h light-dark cycle. Rats were weighed prior to and following each 
treatment. At the end of the treatment protocols, epididymal fat 
pad mass was measured to gauge adiposity and systolic blood 
pressure was assessed by tail cuff plethysmography. Plasma sam-
ples were collected by cardiocentesis following the 14-day expo-
sure to either air or E-IH. Samples were collected during the 
morning in rats deeply anesthetized with sodium pentobarbital 
prior to removal of mesenteric arteries for vascular studies as de-
scribed below. Radioimmunoassay measurements of plasma cor-
ticosterone (the major glucocorticoid in rodents  [37] ) and leptin 
were performed by the Hormone Assay and Analytical Services 
Core Facility at Vanderbilt University (Nashville, Tenn., USA). 
Plasma nitrates and nitrites (NOx) were measured using a com-
mercially available kit (780001; Cayman Chemical, Ann Arbor, 
Mich., USA) according to the manufacturer’s protocol. Plasma 
thiobarbituric acid-reactive substances (TBARS), an indirect 
marker of lipid peroxidation, were analyzed using a kit from
OXItek according to the manufacturer’s protocol (catalogue No. 
0801192; ZeptoMetrix, Buffalo, N.Y., USA).

  Methods 
  Preparation of Experimental Solutions.  The cell-permeant 

ROS-sensitive fluorescent indicator, 5-(and-6)-chloromethyl-
2 � ,7 � -dichlorodihydrofluorescein diacetate, acetyl ester (DCF; 
Molecular Probes, Carlsbad, Calif., USA), was dissolved in anhy-
drous dimethyl sulfoxide (DMSO) at a concentration of 50  � g/ml. 
Immediately prior to loading, DCF was mixed with a 20% v/v so-
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lution of pluronic acid in DMSO, and this mixture was diluted 
with HEPES buffer to yield a final concentration of 5  �  M  DCF and 
0.05% pluronic acid. Phenylephrine (PE) and acetylcholine (ACh; 
Sigma-Aldrich, St. Louis, Mo., USA) were dissolved in deionized 
water, aliquoted, and frozen (–20   °   C) until use.

   Oral Glucose Tolerance Tests (OGTT).  OGTT were performed 
1 day prior to euthanasia and collection of isolated arteries (be-
low). Rats were food restricted by providing 4 g/rat of their respec-
tive diets at 5 p.m. the night prior to the OGTT. After an initial 
tail vein blood sample was drawn at 8 a.m. the following morning 
(0 min), rats were administered 1 g/kg  D -glucose by gavage. Blood 
samples were taken 0, 60, and 120 min after glucose administra-
tion for analysis of whole-blood glucose using a spectrophotomet-
ric glucose meter (CardioChek PA; Polymer Technology Systems, 
Indianapolis, Ind., USA).

   Isolation of Mesenteric Resistance Arteries.  Rats were anesthe-
tized with sodium pentobarbital (200 mg/kg, i.p.) and a midline 
laparotomy performed to remove the mesenteric arcade. Mesen-
teric arteries were chosen since they are known to contribute sig-
nificantly to overall blood pressure regulation  [38]  and are repre-
sentative of systemic vascular reactivity. The arcade was immedi-
ately placed in ice-cold HEPES buffer (in m M : 134.4 NaCl, 6 KCl, 
1 MgCl 2 , 1.8 CaCl 2 , 10 HEPES, 10 glucose, pH 7.4 with NaOH) 
pinned out in a Silastic-coated dissection dish, and fifth-order 
mesenteric resistance arterioles ( � 1 mm length; 80–120  � m, i.d.) 
were dissected free. Isolated arterioles were transferred to a 
HEPES-filled vessel chamber (CH-1; Living Systems Instrumen-
tation, Burlington, Vt., USA), cannulated with glass pipettes, and 
secured in place with silk ligatures. The vessels were stretched 
longitudinally to approximate in situ length, pressurized to 60 
mm Hg with either a buffer-filled column or servo-controlled 
peristaltic pump (Living Systems Instrumentation), and the 
chamber placed on a microscope stage. Vessels were superfused 
during each experimental protocol with warm physiological sa-
line solution (PSS) at 37   °   C containing (in m M ): 129.8 NaCl, 5.4 
KCl, 0.5 NaH 2 PO 4 , 0.83 MgSO 4 , 19 NaHCO 3 , 1.8 CaCl 2 , and 5.5 
glucose at a rate of 10 ml/min. The PSS was aerated with 21% O 2 , 
6% CO 2 , balance N 2  gas mixture throughout the experiments to 
maintain oxygenation and pH. Therefore, all studies were con-
ducted under standardized normoxic conditions. Arterial viabil-
ity was verified prior to each experiment by noting the responses 
to the vasoconstrictor PE (10 –6   M ) and to the endothelium-depen-
dent vasodilator ACh (10 –6   M ).

   Measurement of Vascular ROS. V essel chambers were placed 
on a Nikon Diaphot 300 microscope and examined with a 10 !  
f luorescence (FITC) objective. Following 30 min of equilibration 
in aerated PSS, vessels were loaded at 37   °   C with DCF in the dark 
in a temperature-controlled vessel chamber (Living Systems
Instruments). DCF is oxidized by cytoplasmic peroxynitrite 
(ONOO – ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals 
( � OH) to produce a fluorescent product  [39–41] . Images were col-
lected prior to DCF loading (for background) and 50 min later 
using a cooled, digital CCD camera (SenSys 1400; Photometrics, 
Tucson, Ariz., USA). Images were processed with MetaFluor 4.5 
software (Molecular Devices, Sunnyvale, Calif., USA). Sensitivity 
of DCF fluorescence as a measure of ROS was verified in prior 
experiments by noting the inhibitory effect on the signal resulting 
from a combination of 10 m M  tiron (a superoxide dismutase mi-
metic) and 1,200 U/ml catalase  [5] . Previous studies from our lab-
oratory have also demonstrated increased DCF fluorescence in 

isolated arterioles in response to xanthine/xanthine oxidase 
which augments ROS production  [42] . Since DCF may leak from 
cells, fluorescence from the extravascular solution was subtracted 
from the total to estimate intravascular ROS  [40] .

   ACh-Induced Vasodilation.  In separate experiments, vessel 
chambers were transferred to an inverted microscope (model 
TMS; Nikon) equipped with a 10 !  objective, video camera and 
monitor for analysis. Arteries remained pressurized at 60 mm Hg 
for a 30-min equilibration period and were then superfused for
1 h with either control PSS or PSS containing chloro[[2,2 � -[1,2-
ethanediyl bis [(nitrilo-KN)methylidyne]] bis [6-methoxyphenola-
to-KO]]]-manganese (EUK-134, 10  �  M ; Cayman Chemical). 
EUK-134 is a synthetic manganese-porphyrin complex with anti-
oxidant properties as a superoxide dismutase and catalase mi-
metic to scavenge ROS  [43] . It is also an effective scavenger of 
lipid peroxides  [44] . Vessels were then constricted to 50% of rest-
ing inner diameter with PE. Subsequent vasodilation in response 
to increasing concentrations of ACh (10 –9  to 10 –5   M , 3 min each 
step) was then assessed by measuring intraluminal diameter us-
ing a video dimension analyzer (Living Systems). Data were digi-
tized using DATAQ A/D software for analysis (DATAQ Instru-
ments, Akron, Ohio, USA).

   Analysis.  Data are expressed as means  8  SEM. Potential dif-
ferences in DCF fluorescence were examined by one-way analysis 
of variance (ANOVA). When significance was indicated, groups 
were compared using Tukey post hoc analysis. Percent vasodila-
tion to ACh was calculated as the percent difference of intralumi-
nal diameter observed at each concentration versus calcium-free 
PSS. Prior to analysis, percentage data were arcsine transformed 
to approximate a normal distribution. Data from vasodilation ex-
periments were analyzed by two-way repeated-measures ANO-
VA. Where significant differences were indicated, individual 
groups were compared using Student-Newman-Keuls post hoc 
analysis. A probability value  ̂  0.05 was accepted as statistically 
significant for all comparisons.

  Results 

 Effects of Treatment on Body Mass, Adiposity, and 
Plasma Hormone Levels 
 There were no significant differences in body mass be-

tween rats prior to beginning each feeding protocol (data 
not shown) or between rats in similar feeding protocols 
prior to exposure to air-air and E-IH cycling ( fig. 1 a). By 
the end of the 6-week protocol, rats fed HFD and exposed 
to air-air cycling gained significantly more weight than 
chow + air rats. Exposure to E-IH diminished weight gain 
in rats fed either diet ( fig. 1a ). There was no significant 
difference in body mass between chow and HFD rats ex-
posed to E-IH ( fig. 1 a). Overall, HFD rats developed sig-
nificantly more adipose tissue compared to the chow rats 
regardless of treatment ( fig. 1 b). Adiposity was measured 
using the epididymal fat pad as it can be easily extracted 
objectively and reflects overall increases in adiposity. 
Rats exposed to E-IH not only gained less weight than the 
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air-exposed animals, but also demonstrated less adipos-
ity ( fig. 1 b).

  Exposure to E-IH did not affect plasma corticosterone 
levels in chow-fed rats but levels were significantly in-
creased in HFD-fed rats compared to chow + air and 
chow + E-IH animals. No significant difference in plasma 
corticosterone levels was observed between HFD + E-IH 
and HFD + air rats ( fig. 2 a). High-fat feeding resulted in 
significantly greater plasma leptin compared to chow + 
air or E-IH rats. Despite the diminished weight gain, 
plasma leptin levels were not significantly decreased in 
rats treated with the HFD + E-IH combination compared 
to HFD treatment alone ( fig. 2 b).

   Oral Glucose Tolerance Test.  HFD + E-IH rats had sig-
nificantly greater initial fasting (time 0) blood glucose 
compared to HFD + air, chow + air and chow + E-IH rats 
( fig. 3 ). Blood glucose levels in HFD + E-IH rats were not 
affected by the oral glucose load, whereas blood glucose 
levels in chow + air, chow + E-IH and HFD + air rats dem-
onstrated a significant increase at 60 min but returned to 
fasting levels at the conclusion of the OGTT ( fig. 3 ).

  Measurement of ROS 
 Plasma TBARS was greater in both HFD and E-IH 

treatments compared to chow control ( fig.  4 a). Plasma 
TBARS were also elevated with the combined stimulus of 
HFD + E-IH compared to the chow + air group; however, 
TBARS were lower in this combined group compared to 

HFD alone. A similar pattern existed in DCF fluores-
cence in isolated arterioles ( fig.  4 b). Again, vessel ROS 
were greater in both the HFD and E-IH groups compared 
to chow + air controls. However, ROS were not different 
from chow + air controls in the combined stimulus (HFD 
+ E-IH) group ( fig. 4 b).

  Blood Pressure and Plasma NOx 
 Systolic blood pressure was greater in all treatment 

groups (chow + E-IH, HFD + air, and HFD + E-IH) com-
pared to chow + air controls ( fig. 5 a). In contrast, circu-
lating NOx levels were significantly higher in HFD + 
E-IH rats compared to both chow + E-IH and HFD + air 
rats ( fig. 5 b). Plasma levels of NOx were not significant-
ly different in chow + air, chow + E-IH or HFD + air rats 
( fig. 5 b).

  ACh-Induced Vasodilation 
  Effect of EUK-134 in Arteries from Chow + Air Con-

trols.  ACh caused concentration-dependent dilation in 
vessels preconstricted to 50% of resting inner diameter 
with PE. This vasodilatory response to ACh was mod-
estly inhibited by treatment with the ROS scavenger 
EUK-134 ( fig. 6 a). These data suggest that ACh-induced 
vasodilation may be mediated, in part, through one or 
more ROS species in vessels from chow + air control rats.

   Effect of EUK-134 in Arteries from Chow + E-IH Rats.  
Vasodilatory responses to ACh were impaired in small 
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  Fig. 1.   a  Body mass measurements during the 6-week study proto-
col. Body mass of rats measured before starting respective diets (0 
week) was not different between groups (data not shown) and was 
increased in all groups at week 4, prior to air or E-IH exposure. At 
week 6, after 14 days of E-IH exposure, only air rats had a further 

increase in body mass.  b  Epididymal fat pad mass following air or 
E-IH treatment in chow and HFD groups. Diminished weight gain 
in E-IH rats was accompanied by decreased adiposity in each feed-
ing protocol. Means  8  SEM. n = 14–23;  a  p  !  0.05 vs. chow + air;
 b  p  !  0.05 vs. HFD + air;  c  p  !  0.05 vs. chow + E-IH. 
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arteries from chow + E-IH rats compared to chow + air 
rats. Data for chow + air rats were repeated in this figure 
for ease of comparison. The antioxidant EUK-134 nor-
malized vasodilation to the level of chow + air controls 
( fig. 6 b).

   Vasodilatory Responses in Arteries from HFD + Air 
Rats.  Vasodilatory responses to ACh were affected in 
small arteries from HFD + air rats ( fig. 6 c) compared to 
arteries from chow + air rats (data repeated from  fig. 6a ). 
The antioxidant EUK-134 again normalized vasodilation 
to the level of chow + air controls.

   Vasodilatory Responses in Arteries from HFD + E-IH 
Rats.  ACh-induced dilation in arteries from HFD + E-IH 
rats was impaired to a similar degree as dilation in vessels 
from chow + E-IH rats (data from chow + E-IH repeated 
for comparison). There are no significant differences in 
the responsiveness of chow + E-IH and HFD + E-IH ar-
teries ( fig. 6 d). Similar to results in the arteries from rats 
treated with just E-IH (chow + E-IH) or HFD (HFD + 
air), the antioxidant EUK-134 normalized vasodilation in 
these arteries.

  Discussion 

 The major findings of this study were: (1) rats exposed 
to E-IH gain less weight and adiposity than their air-ex-
posed counterparts; (2) combined high-fat feeding and 
E-IH induces fasting hyperglycemia; (3) both E-IH and 
HFD increase oxidative stress; however, the effects are not 
additive; (4) increased ROS impair vasodilation in arteries 

from both E-IH and HFD rats leading to elevated blood 
pressure; (5) ROS appear to contribute to vasodilation in 
arteries from control rats; (6) HFD does not exacerbate the 
impaired vasodilation or vascular levels of ROS caused by 
E-IH alone, and (7) although HFD + E-IH rats had in-
creased oxidative stress compared to control rats, the lev-
els were diminished in comparison to HFD + air alone. 
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These data suggest both elevated adiposity and simulated 
sleep apnea impair vascular function in an ROS-depen-
dent manner; however, elevated adiposity does not exac-
erbate the vascular dysfunction in E-IH-exposed rats.

  Rats exposed to simulated sleep apnea through E-IH 
have previously been shown to gain less weight than air-

exposed rats  [22]  but this has not been addressed in rats 
exposed to a hypercaloric diet. Normally, HFD-fed rats 
gain significantly more weight and adiposity than chow-
fed rats, as seen in the current study in air-exposed ani-
mals ( fig. 1 ). However, rats exposed to E-IH gained less 
weight and adiposity than those exposed to air regardless 
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of diet, suggesting E-IH powerfully suppresses weight 
gain in rats ( fig. 1 ). Sleep deprivation may play a role in 
decreased weight gain in rats exposed to E-IH since these 
animals tend to rouse intermittently during the hypoxic 
episodes  [45] .

  It is possible that hypoxia-induced sleep deprivation 
decreases food intake although this was not assessed in 
the present study due to housing constraints in the hy-
poxic exposure system. Plasma levels of the adipose-de-
rived hormone leptin were found to be elevated in HFD 
+ air and HFD + E-IH rats above those of chow + air and 

chow + E-IH rats ( fig. 2 b). The diminished weight gain 
observed in the chow + E-IH rats is not associated with a 
rise in the levels of this satiety hormone ( fig. 1 a,  2 b). Like-
wise, levels of leptin were not different in HFD + air and 
HFD + E-IH rats suggesting that leptin levels are more 
indicative of adiposity as opposed to contributing to the 
diminished weight gain through decreased appetite in 
these animals ( fig. 2 b).

  Plasma corticosterone, the major glucocorticoid hor-
mone released in rodents  [37] , was measured as a marker 
of stress but levels were not different between the chow + 
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air and chow + E-IH groups ( fig. 2 a). Combined treatment 
of rats with HFD and E-IH resulted in greater plasma cor-
ticosterone levels than both the chow + air and chow + 
E-IH groups, but not significantly different from HFD + 
air ( fig. 2 a). These data demonstrate that while increased 
dietary fat intake leads to mild, but insignificant, increas-
es in stress hormone levels, conditions that mimic sleep 
apnea significantly exacerbate stress in these animals.

  Rats fed HFD and exposed to E-IH developed fasting 
(time 0) hyperglycemia compared to all other groups 
( fig. 3 ). These findings suggest that HFD and E-IH inter-
act to further impair glucose handling compared to HFD 
+ air or chow + E-IH alone. These data closely resemble 
those of humans with OSA who develop increased fasting 
plasma glucose levels compared to obese controls  [35]  as 
well as insulin resistance  [19] . It is also established that 
increased corticosteroids can elicit insulin resistance  [46, 
47]  and this may be a factor contributing to the fasting 
hyperglycemia observed in HFD + E-IH rats.

  ACh-mediated vasodilation was significantly im-
paired in all three treatment groups (chow + E-IH, HFD 
+ air, and HFD + E-IH;  fig. 6 ) and correlated with elevat-
ed blood pressure ( fig.  5 a). One mechanism by which 
ACh elicits vasodilation is through NO. However, plasma 
NOx levels of chow + E-IH and HFD + air rats were not 
significantly different from chow + air rats ( fig.  5 b). 
Moreover, plasma NOx was markedly elevated in the 
HFD + E-IH rats ( fig. 5 b). However, this latter measure is 
reflective of basally produced NO in vivo and may not 
relate to ACh-induced activation of NOS. Furthermore, 
the NOx assay does not distinguish between bioavailable 
NO and NO that has been scavenged by ROS.

  Vascular ROS appear to contribute to ACh-mediated 
vasodilation in arteries from chow + air rats since scav-
enging ROS with EUK-134 modestly attenuated dilation 
( fig. 6 a). Although EUK-134 is a general ROS scavenger, 
H 2 O 2  is most likely involved in this vasodilatory response 
in controls. Indeed, production of H 2 O 2  is elevated in en-
dothelial cells following ACh administration  [48]  and 
may elicit concentration-dependent vasodilation in mes-
enteric arteries of mice  [48]  although other studies ob-
served vasoconstriction  [10] . The ROS scavenger EUK-
134 used in the present study possesses enhanced cata-
lase-like properties and thus is reportedly an effective 
scavenger of both O2

–�  and H 2 O 2   [43] .
  In contrast to the results in arteries from chow-fed 

control rats, EUK-134 consistently improved vasodilato-
ry responses to ACh in arteries from rats exposed to 
E-IH, HFD or their combination. This observation cor-
relates with elevated TBARS and DCF fluorescence in ar-

teries from these groups ( fig. 4 ). Therefore, the attenuated 
vasodilation in vessels from these rats likely results from 
O2

–�  scavenging of NO, producing ONOO – , since incuba-
tion with EUK-134 normalized vasodilation ( fig. 6 b) and 
there were either no differences in NOx (chow + E-IH and 
HFD + air) or levels were significantly elevated (HFD + 
E-IH;  fig. 5 b). Thus, ROS may contribute both to normal 
vasodilation (H 2 O 2 ) and to impaired vasodilation (O2

–�   ) in 
these different experimental settings.

  Obesity alone results in oxidative stress-mediated at-
tenuation of endothelium-dependent vasodilation  [28] . 
Similarly, patients with newly diagnosed OSA have re-
duced forearm blood flow responses to the endothelium-
dependent vasodilator ACh compared to obese control 
patients  [24] . In the present study, HFD rats and chow + 
E-IH rats had significantly increased ROS shown by ele-
vated plasma TBARS and increased vascular DCF fluo-
rescence ( fig. 4 ). These results are similar to observations 
of elevated TBARS in patients with OSA compared to 
control subjects  [49] . However, combining HFD and E-IH 
actually diminished DCF fluorescence and TBARS, al-
though the TBARS values remained higher than those in 
chow + air controls ( fig. 4 ).

  Another effect of E-IH in the HFD rats was a decrease 
in body weight. Body weight was similar between chow- 
and HFD-fed rats exposed to E-IH ( fig. 1 a); however, the 
HFD + E-IH rats maintained higher adiposity compared 
to chow + E-IH and chow + air rats ( fig. 1 b). The dimin-
ished adiposity in HFD + E-IH compared to HFD + air 
( fig. 1 b) may have negated some of the effects of the HFD, 
especially if the effects of HFD alone are related to the 
degree of adiposity and not to the diet per se.

  In conclusion, high-fat feeding and simulated sleep ap-
nea both induce oxidative stress, elevated blood pressure, 
and impaired vasodilation but their effects do not appear 
to be additive. The lack of an additive effect of the two 
stimuli may relate to the effect of E-IH to reduce adipos-
ity in HFD-fed animals.
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