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Wedescribe approaches for distances between pairs of two-dimen-
sional surfaces (embedded in three-dimensional space) that use
local structures and global information contained in interstructure
geometric relationships. We present algorithms to automatically
determine these distances as well as geometric correspondences.
This approach is motivated by the aspiration of students of natural
science to understand the continuity of form that unites the diver-
sity of life. At present, scientists using physical traits to study evo-
lutionary relationships among living and extinct animals analyze
data extracted from carefully defined anatomical correspondence
points (landmarks). Identifying and recording these landmarks is
time consuming and can be done accurately only by trained mor-
phologists. This necessity renders these studies inaccessible to non-
morphologists and causes phenomics to lag behind genomics in
elucidating evolutionary patterns. Unlike other algorithms pre-
sented for morphological correspondences, our approach does
not require any preliminary marking of special features or land-
marks by the user. It also differs from other seminal work in com-
putational geometry in that our algorithms are polynomial in
nature and thus faster, making pairwise comparisons feasible for
significantly larger numbers of digitized surfaces. We illustrate
our approach using three datasets representing teeth and different
bones of primates and humans, and show that it leads to highly
accurate results.

homology ∣ Mobius transformations ∣ morphometrics ∣ Procrustes

To document and understand physical and biological phenom-
ena (e.g., geological sedimentation, chemical reactions, onto-

genetic development, speciation, evolutionary adaptation, etc.), it
is important to quantify the similarity or dissimilarity of objects
affected or produced by the phenomena under study. The grain
size or elasticity of rocks, geographic distances between popula-
tions, or hormone levels and body masses of individuals—these
can be readily measured, and the resulting numerical values
can be used to compute similarities/distances that help build
understanding. Other properties like genetic makeup or gross
anatomical structure cannot be quantified by a single number;
determining how to measure and compare these is more involved
(1–4). Representing the structure of a gene (through sequencing)
or quantification of an anatomical structure (through the digiti-
zation of its surface geometry) leads to more complex numerical
representations. Even though such representations are not mea-
surements allowing direct comparison among samples of genes
or anatomical structures, they form an essential initial step for
such quantitative comparisons. The one-dimensional, sequential
arrangement of genomes and the discrete variation (four nu-
cleotide base types) for each of thousands of available corre-
spondence points help reduce the computational complexity of
determining the most likely alignment between genomes; align-
ment procedures are now increasingly automated (5). The result-
ing, rapidly generated and massive datasets, analyzed with

increasing sophistication and flexible in-depth exploration due
to advances in computing technology, have led to spectacular
progress. For instance, phylogenetics has begun to unravel mys-
teries of large-scale evolutionary relationships experienced as
extraordinarily difficult by morphologists (6).

Analyses of massive developmental and genetic datasets out-
pace those on morphological data. The comparative study of
gross anatomical structures has lagged behind mainly because
it is harder to determine corresponding parts on different sam-
ples, a prerequisite for measurement. The difficulty stems from
the higher dimension (two for surfaces vs. one for genomes), the
continuous rather than discrete nature of anatomical objects,*
and from large degrees of shape variations.

In standard morphologists’ practice, correspondences are
first assessed visually; then, some (10–100, at most) feature points
can usually be defined as equivalent and/or identified as land-
marks. Just as comparisons of tens of thousands of nucleotide
base positions are used to determine similarity among genomes,
the coordinates of these dozens of feature points (or measure-
ments they define) are used to evaluate patterns of shape varia-
tion and similarity/difference (7). However, as stated in 1936 by
G. G. Simpson, the paleontologist chaperon of the Modern
Synthesis in the study of evolution, the “difficulty in acquiring
personal knowledge” (ref. 8, p. 3) of morphological evidence
limits our understanding of the evolutionary significance of
morphological diversity; this remains true today. New techniques
for generating and analyzing digital representations have led
to major advances (see, e.g., refs. 9–11), but they typically still
require determinations of anatomical landmarks by observers
whose skill of identifying anatomical correspondences takes many
years of training.

Several groups have sought to determine automatic corre-
spondence among morphological structures. Existing successful
methods typically introduce an effective dimensional reduction,
using, e.g., 2D outlines and/or images (12) or, in one of the few
studies attempting automatic biological correspondences in 3D
as a method for evolutionary morphologists, “automatically
detected crest lines” (13) on surfaces obtained by computed
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tomography (CT) scans to register modern human skulls to each
other (14) or to pre-Neanderthal, Homo heidelbergensis skulls
(15); another example is Wiley et al. (9). Studies using 2D out-
lines or images sacrifice a lot of the original geometric informa-
tion available in the 3D objects on which they are based; such
specifically limited representations cannot easily be incorporated
into other studies. More generally and most importantly, none
of these methods are independent of user input. When outlines
or standard 2D views are used, precise observations of the 3D
anatomical structures are required by the trained technician
who creates the outlines or 2D views (16, 17). Several methods
for 3D alignment use iterative closest point (ICP) algorithms
(18), which require observer input to fix an initial guess (then
further improved via local optimization); ICP-generated corre-
spondences can also have large distortions and discontinuities
of shape. In refs. 19 and 20, surfaces are matched by using the
Gromov–Hausdorff distances between them, and applications to
several shape analysis problems are given. However, Gromov–
Hausdorff distances are hard to compute and have to be approxi-
mated; the gradient descent optimization used in practice does not
guarantee convergence to a global (rather than local) minimum.

Determination of correspondences or similarities among
3D digitizations of general anatomic surfaces that is both (i) fully
automated and (ii) computationally fast (to handle the large
datasets that are becoming increasingly available as imaging
technologies become more widespread and efficient; ref. 21) is
still elusive. Our aim here is to fill this gap by fully automating
the determination of correspondences among gross anatomical
structures. Success in this pursuit will help bring to phenomic
studies the rate, objectivity, and exhaustiveness of genomic
studies. Large-scale initiatives to phenotype model species after
systematically knocking out each gene (22), as well as analysis of
computational simulations of organogenesis (23), stand to greatly
benefit from automating the determination of correspondence
among, and measurement of, morphological structures.

In this paper, we describe several distances between surfaces
that can be used for such fully automated anatomic correspon-
dences, and we test their relevance for biologically meaningful
tasks on several anatomical dataset examples (high-resolution
digitizations of bones and teeth). The paper is organized as
follows. Section 1 gives the mathematical background for our
algorithms: conformal geometry and optimal mass transportation
(also known as Earth Mover’s distance). In section 2, we use
these ingredients to define distances or measures of dissimilarity,
including a generalization to surfaces of the Procrustes distance.
Section 3 presents the results obtained by our algorithms for three
different morphological datasets and an application.

No technical advance stands on its own; this paper is no excep-
tion. Conformal geometry is a powerful mathematical tool (per-
mitting the reduction of the study of surfaces embedded in 3D
space to 2D problems) that has been useful in many computa-
tional problems; ref. 24 provides an introduction to both theory
and algorithms, with many applications, including the use of
conformal images of anatomical structures, combined with user-
prescribed landmarks and/or special features, for registration
purposes, seeking “optimal” correspondence between pairs of
surfaces (25). Earth Mover’s distances (26) and continuous opti-
mal mass transportation (27) have been used in image registra-
tion and for more general image analysis and parameterization
(28); in ref. 29, (quadratic) mass transportation is used to relax
the notion of Gromov–Hausdorff distance. Procrustes distances
for discrete point sets are familiar to morphologists and other
researchers working on shape analysis (7, 11). The mathematical
and algorithmic contribution of our work is the combination in
which we use and generalize these ingredients to construct appro-
priate distance metrics, paired with efficient, fully automatic al-
gorithms not requiring user guidance. They open the door to new
applications requiring a large number of distance computations.

1. Mathematical Components
Conformal Geometry. A mapping φ from one two-dimensional
(smooth) surface S to another, S0, defines for every point p ∈ S
a corresponding point φðpÞ ∈ S0. If the mapping is smooth itself,
it maps a smooth curve Γ on S to a corresponding smooth curve
Γ0 onS0, which is called the image of Γ. Two curves Γ1 and Γ2 onS
that intersect in a point s are mapped to curves Γ0

1, Γ0
2 that inter-

sect as well, in s0 ¼ φðsÞ. Consider the two (straight) lines ℓ1 and
ℓ2 that are tangent to the curves Γ1 and Γ2 at their intersection
point s; the angle between Γ1 and Γ2 at s is then taken to mean
the angle between the two lines ℓ1 and ℓ2; similarly, the angle
between the curves Γ0

1 and Γ0
2 [at s

0 ¼ φðsÞ] is the angle between
their tangent lines at s0. The mapping φ is called conformal if for
any two smooth curves Γ1 and Γ2 on S, the angle between their
images Γ0

1 and Γ0
2 is the same as that between Γ1 and Γ2 at the

corresponding intersection point.
Riemann’s uniformization theorem (24) guarantees that every

(reasonable) 2D surface S in our standard 3D space that is a
disk-type surface (i.e., that has a boundary but no holes) can
be mapped conformally to the 2D unit disk D ¼ fz∣z ¼ xþ iy;
jzj ≤ 1g, with the boundary of the disk corresponding to the
boundary of S.† This mapping is called “conformally flattening”.‡

This flattening process is accompanied by area distortion; the
conformal factor f ðx;yÞ on the disk, varying from point to point,
indicates the area distortion factor produced by the operation.

One important practical implication of this theorem is that
the family of conformal maps between two surfaces can be
characterized naturally via the flattened representations of the
surfaces: If γ is a conformal mapping from S to S0, and φ (φ0)
is a flattening (i.e., a conformal map to the disk D) of S (S0),
then the family of all possible conformal mappings from S to
S0 is given by γ ¼ φ0−1 ∘ m ∘ φ, where m ranges over all the con-
formal bijective self-mappings of the unit disk D. We shall call
such m disk-preserving Möbius transformations; they constitute
a group, the disk-preserving Möbius transformation group M.
Each m in M is characterized by three parameters and is given
by the closed-form formula mðzÞ ¼ eiθðz − αÞð1 − zᾱÞ−1, where
θ ∈ ½0;2πÞ, jαj < 1. For our applications, it is important that
the flattening process (starting from a triangulated digitized ver-
sion of S) and more importantly the disk-preserving Möbius
transformations can be computed fast and with high accuracy;
for more details, see refs. 30 and 31.§ Note that the flattening
map of a surface S is not unique; one can choose any arbitrary
point of S to be mapped to the origin of the disk D, and any
direction through this point to become the “x axis.” The transition
from choosing one (center, direction) pair to another is simply
a disk-preserving Möbius transformation. It is convenient to
equip the disk D with its hyperbolic measure dηðx;yÞ ¼ ½1−
ðx2 þ y2Þ�−2dxdy, invariant with respect to Möbius transforma-
tions; correspondingly, we set fðx;yÞ ¼ ½1 − ðx2 þ y2Þ�2f ðx;yÞ, so
that fdη ¼ f dxdy.

OptimalMass Transportation.An integrable function μ is a (normal-
ized) mass distribution on a domain D if μðuÞ ≥ 0 is well defined
for each u ∈ D, and ∫ DμðuÞdu ¼ 1. If τ is a differentiable bijec-
tion from D to itself, the mass distribution μ0 ¼ τ�μ on D defined
by μðuÞ ¼ μ0ðτ½u�ÞJτðuÞ (where Jτ is the Jacobian of the map τ)
is the transportation (or push-forward) of μ by τ in the sense

†We shall restrict ourselves to this case here, although our approach is more general;
see ref. 30).

‡The uniformization theorem holds for more general surfaces as well. For instance,
surfaces without holes, handles, or boundaries can be mapped conformally to a sphere;
if one point is removed from such a surface, it can be mapped conformally to the full
plane. Surfaces with holes or handles can still be conformally flattened to a piece of
the plane.

§If the digitization of the surface is given as a point cloud, standard fast algorithms can be
used to determine an appropriate (e.g., Delauney) triangulation.
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that, for any arbitrary (nonpathological) function F on D,
∫ DFðuÞμ0ðuÞdu ¼ ∫ DFðτ½u�ÞμðuÞdu. The total transportation
effort is given by Eτ ¼ ∫ Ddðu;τ½u�ÞμðuÞdu, where dðu;vÞ denotes
the distance between two points u and v in D.

If two mass distributions μ and ν on D are given, then the
optimal mass-transportation distance between μ and ν (in the
sense of Monge; see ref. 32, p. 4) is the infimum of the transpor-
tation effort Eτ, taken over all the measurable bijections τ from
D to D for which ν equals the transportation of μ by τ. This set of
bijections is hard to search; the determination of an optimal
mass-transportation scheme becomes more tractable if the mass
“at u” need not all end up at the same end point. One then con-
siders measures π on D ×D with marginals μ and ν (which means
that, for all continuous functions F, G on D, ∫ D×DFðuÞdπðu;vÞ ¼
∫ DFðuÞμðuÞdu and ∫ D×DGðvÞdπðu;vÞ ¼ ∫ DGðvÞνðvÞdv); the opti-
mal mass transportation in this more general Kantorovitch for-
mulation is the infimum over all such measures π of Eπ ¼
∫ D×Ddðu;vÞdπðu;vÞ. A comprehensive treatment of optimal mass
transport is in ref. 32.

2. New Distances Between Two-Dimensional Surfaces
Conformal Wasserstein Distance (cW). One can use optimal mass
transport to compare conformal factors f and f 0 obtained by
conformally flattening two surfaces, S and S0. If m is a disk-
preserving Möbius transformation, then f and m�f ¼ f ∘ m−1 are
both equally valid conformal factors for S. A standard approach
to take this equivalence into account is to “quotient” over M,
which leads to the conformal Wasserstein distance:

DcWðS;S0Þ ¼ inf
m∈M

�
inf

π∈Πðm�f ;f 0 Þ

Z
D×D

edðz; z0Þdπðz; z0Þ�; [1]

where edð· ; ·Þ is the (conformally invariant) hyperbolic distance ¶

in D; DcW satisfies then all the properties of a metric (33). In
particular, DcWðS;S0Þ ¼ 0 if S and S0 are isometric. However,
computing this metric requires solving a Kantorovitch mass-
transportation problem for every candidate m; even though
the whole procedure has polynomial runtime complexity, it is
too heavy to be used in practice for large datasets.

Conformal Wasserstein Neighborhood Dissimilarity Distance (cWn).
We propose another natural way to use Kantorovich’s optimal
mass transport to compare surfaces S and S0. Instead of deter-
mining the most efficient way to transport “mass” f from z to z0,
we can quantify how dissimilar the “landscapes” are, defined by f
and f 0 near z, respectively, z0, and replace the distance edð· ; ·Þ by
a measure of neighborhood dissimilarity. The neighborhood
Nð0;RÞ around 0 is given by Nð0;RÞ ¼ fz; jzj < Rg; neighbor-
hoods around other points are obtained by letting the disk-
preserving Möbius transformations act on Nð0;RÞ: For any m
in M such that z ¼ mð0Þ, Nðz;RÞ is the image of Nð0;RÞ under
the mapping m. Next we define the dissimilarity between f at z
and f 0 at z0:

dRf ;f 0 ðz;z0Þ ¼ inf
m∈M;mðzÞ¼z0

�Z
Nðz;RÞ

jfðwÞ − f 0ðmðwÞÞjdηðwÞ
�
:

It is straightforward to check that, for all m;m0 in M,
dRm�f ;m0�f 0 ðmðzÞ; m0ðz0ÞÞ ¼ dRf ;f 0 ðz; z0Þ. We now use optimal transport
and define the conformal Wasserstein neighborhood dissimilarity
distance between f and f 0:

DR
cWnðS;S0Þ ¼ inf

π∈Πðf ;f 0Þ

Z
D×D

dRf;f 0 ðz;z0Þdπðz;z0Þ; [2]

where the superscript recalls that this definition depends on the
choice of the parameter R. For a proof that this formula defines a
true distance between (generic) surfaces S and S0, and further
mathematical properties, see refs. 33 and 34. One practical dif-
ference with DcW is that [2] requires solving only one Kantoro-
vitch mass-transportation problem once the special dissimilarity
cost is computed, resulting in a simpler optimization problem. To
implement the computation of these distances, we discretize the
integrals and the optimization searches, picking collections of
discrete points on the surfaces; the minimizing measure π in the
definition ofDR

cWnðS;S0Þ can then be used to define a correspon-
dence between points of S and S0.

Continuous Procrustes Distance Between Surfaces.Both cWand cWn
are intrinsic: They use only information “visible” from within
each surface, such as geodesic distances between pairs of points;
consequently, they do not distinguish a surface from any of
its isometric embeddings in 3D. The continuous Procrustes (cP)
distance (35) described in this section uses some extrinsic infor-
mation as well; it fails to distinguish two surfaces only if one is
obtained by applying to the other a rigid motion (which is a very
special isometry).

The (standard) Procrustes distance is defined between discrete
sets of points X ¼ ðXnÞn¼1;…; N ⊂ S and Y ¼ ðYnÞn¼1;…; N ⊂ S0

by minimizing over all rigid motions: dPðX;YÞ ¼
minR rig:mot:

�
ð∑N

n¼1 jRðXnÞ − Ynj2Þ1∕2
�
, where j · j denotes the

standard Euclidean norm ∥. Often X;Y are sets of landmarks
on two surfaces, and dPðX;YÞ is interpreted as a distance between
these surfaces. This practice has several drawbacks: (i) dPðX;YÞ
depends on the (subjective) choice of X;Y, which makes it a not
necessarily “well-defined” or easily reproducible proxy for a
surface distance; (ii) the (relatively) small number of N land-
marks on each surface disregards a wealth of geometric data;
and (iii) identifying and recording the xn, yn is time consuming
and requires expertise.

We eliminate all these drawbacks by a landmark-free ap-
proach, introducing the continuous Procrustes distance. Instead
of relying on experts to identify “corresponding” discrete subsets
of S and S0, we consider a family of continuous maps a: S → S0
between the surfaces and rely on optimization to identify the
“best” a. The earlier exact correspondence of one point Yn to
one point Xn, and the (tacit) assumption that X ðYÞ collectively
represent all the noteworthy aspects of S ðS0Þ in a balanced way,
are recast as requiring that the “correspondence map” be area-
preserving (35)—that is, for every (measurable) subset Ω of S,
∫ ΩdAS ¼ ∫ aðΩÞdAS0 , where dAS and dAS0 are the area elements
on the surfaces induced by their embeddings in R3. We denote
AðS;S0Þ the set of all these area-preserving diffeomorphisms.
For each a in AðS;S0Þ, we set dðS;S0; aÞ2 ¼ minR rig:mot:

∫ SjRðxÞ − aðxÞj2dAS; the continuous Procrustes distance between
S and S0 is then

DPðS;S0Þ ¼ inf
a∈AðS;S0Þ

dðS;S0; aÞ: [3]

Formula 3 defines a metric distance on the space of surfaces
(up to rigid motions, for congruent surfaces the distance is 0)
(35). Minimizing over rigid motions is easy; there exist closed-
form formulas, as in the discrete case. But the second set over
which to minimize, AðS;S0Þ, is an unwieldy, formally infinite-
dimensional manifold, hard to explore.** For “reasonable”
surfaces (e.g., surfaces with uniformly bounded curvature), trans-

¶This distance is the geodesic distance on D induced by the hyperbolic Riemann metric
tensor dη on D. The geodesic from the origin to any point z in D is the straight line
connecting them, and edð0;zÞ ¼ ln½ð1þ jzjÞ∕ð1 − jzjÞ�.

∥It is interesting to note that in ref. 36, a Kantorovich version of dP was introduced, and its
equivalence to the Gromov–Wasserstein distance (when the shapes are endowed with
Euclidean distances) was proved.

**This manifold can be viewed as the continuous analog to the exponentially large group
of permutations.
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formations a close to optimal are close to conformal (35). This
crucial insight allows limiting the search to the much smaller
space of maps obtained by small deformations of conformal
maps. Concretely, we compose a conformal map (represented
as a Möbius transformation) m ∈ M with maps χ and ϱ, where
ϱ is a smooth map that roughly aligns high-density peaks, and
χ is a special deformation (following ref. 37) using local diffusion
to make χ ∘ ϱ ∘ m area preserving (up to approximation error).
For each choice of peaks p, p0 in the conformal factors of S,
S0, the algorithm (i) runs through the one-parameter family of
m that map p to p0; (ii) constructs a map ϱ that aligns the other
peaks, as best possible; and (iii) computes dðS;S0;ϱ ∘ mÞ. Repeat
for all choices of p, p0; the ϱ ∘ m that minimizes d is then
deformed to be area preserving, producing the map a ¼ χ ∘
ϱ ∘ m; dðS;S0;aÞ and a are our approximate DPðS;S0Þ and corre-
spondence map, respectively (more in SI Appendix, Materials).

3. Application to Anatomical Datasets
To test our approach, we used three independent datasets, re-
presenting three different regions of the skeletal anatomy, of
humans, other primates, and their close relatives. Digitized
surfaces were obtained from high-resolution X-ray computed
tomography (μCT) scans (see SI Appendix, Materials) of (A)
116 second mandibular molars of prosimian primates and nonpri-
mate close relatives, (B) 57 proximal first metatarsals of prosi-
mian primates, New and Old World monkeys, and (C) 45 distal
radii of apes and humans. For every pair of surfaces, the output of
our algorithms consists of (i) a correspondence map for the whole
surface (i.e., not just a few points), and (ii) a nonnegative number
giving their dissimilarity (where zero means they are isometric
or congruent). Typical running times for a pair of surfaces were
approximately 20 s for cP and approximately 5 min for cWn. To
evaluate the performance of the algorithms, we compared the
outcomes to those determined independently by morphologists.
Using the same set of digitized surfaces, geometric morphome-
tricians collected landmarks on each, in the conventional fashion
(7), choosing them to reflect correspondences considered biolo-
gically and evolutionarily meaningful (see SI Appendix, Materials).
These landmarks determine “discrete” Procrustes distances for
every two surfaces (see section 2), here called observer-deter-
mined landmarks Procrustes (ODLP) distances. For each of the
three distances, we obtain thus a (symmetric) matrix.

Comparing the Distance (Dissimilarity) Matrices. We compare
cWn and cP with ODLP matrices in two different ways. Sets of
distances are far from independent, and it is traditional to
assess the relationship between distance matrices by a Mantel
correlation analysis (38): First correlate the entries in the two
square arrays, and then compute the fraction, among all possible
relabelings of the rows/columns for one of them, that leads to a
larger correlation coefficient; this Mantel significance is a stron-
ger indicator than the correlation coefficient itself. Table 1 gives
the results for our datasets.

In all cases, the Mantel significance between ODLP and
cP distances is higher than that between ODLP and cWn, indi-
cating that distances computed using cP match those determined
by morphometricians better than those using cWn.

Fig. 1 illustrates the relationship of cP, cWn, and ODLP dis-
tances in a different way. In each of the two square matrices

(corresponding to cP and cWn, each vs. ODLP), the color of each
pixel indicates the value of the entry (using a red-blue colormap,
with deep blue representing 0, and saturated red the largest
value); upper right triangular halves correspond to cP or cWn;
(identical) lower left halves to ODLP. The same ordering of
samples is used in the three cases, with samples ordered so that
nearby samples typically have smaller distances. This type of
display is especially good to compare the structure of two distance
matrices for small distances, often the most reliable.†† Note the
better symmetry along the diagonal for ODLP/cP comparison
on the left: In this comparison, as in the previous one, cP
outperforms cWn.

Comparing Scores in Taxonomic Classification. Accurately placed
ODL usually result in smaller ODLP distances between speci-
mens representing individuals of the same species/genus than be-
tween individuals of different species/genera. To assess whether
this result holds as well for the algorithmic cP and cWn distances,
we run three taxonomic classification analyses on each dataset,
one using ODLP distances, and two using cP and cWn distances,‡‡

with a “leave one out” procedure: Each specimen (treated as un-
known) is assigned to the taxonomic group of its nearest neighbor
among the remainder of the specimens in the dataset (treated
as known). Table 2 lists success rates (in percentage) for three
different classification queries for the three datasets. For each
dataset and for each query, N is the number of objects and
“No.” is the number of groups. Classifications based on the cP
distances are similar in accuracy to those based on the ODLP
distances, outperforming the cWn distances for all three of
our anatomic datasets.

Note: A similar classification based on topographic variables is
less accurate; for the 99 teeth belonging to 24 genera, only 54
(54%) were classified correctly with a classification based on
the four topographic variables, energy, shearing quotient, relief

Table 1. Results of Mantel correlation analysis for cP and cWN
versus ODLP distances

Obs. 1/cP Obs. 2/cP Obs. 1/cWn Obs. 2/cWn

Dataset r P r P r P r P

Teeth 0.690 0.0001 not applicable 0.373 0.0001 not applicable
First metatarsal 0.640 0.0001 0.620 0.0001 0.365 0.0001 0.392 0.0001
Radius 0.240 0.0001 not applicable 0.075 0.166 not applicable

Fig. 1. For small distances, the structures of the matrices with cP, cWn dis-
tances and distances based on observer landmarks (ODLP) are very similar,
with cP (on the right) the most similar to ODLP. The dataset illustrated here
is dataset (A).

††In somemodern data analysis methods, such as diffusion-based or graph-Laplacian-based
methods, only the small distances are retained, to be used in spectral methods that “knit”
the larger scale distances of the dataset together more reliably.

‡‡We do not claim this method as an alternative for automatic species or genus
identification. Reliable automatic species recognition uses, in addition, auditory,
chemical, nongeometric morphological, and other data, analyzed by a range of
methods; see, e.g., refs. 17, 39, and 40 and references therein. Comparison of taxonomic
classification based on human-expert generated vs. algorithm-computed distances is
meant only as a quantitative evaluation based on biology rather than mathematics.
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index, and orientation patch count (details in SI Appendix,
Materials).

Comparing the Correspondence Maps. Morphometric analyses are
based on the identification of corresponding landmark points
on each of S and S0; the cP algorithm constructs a correspon-
dence map a from S to S0. (The correspondence induced by
cWn is less smooth and will not be considered here.) For each
landmark point L on S, we can compare the location on S0 of
its images aðLÞ with the location of the corresponding landmark
points L0. Fig. 2 shows that the “propagated” landmarks aðLÞ
typically turn out to be very close to those of the observer-deter-
mined landmarks L0 (more in SI Appendix, Materials).

An Application. These comparisons show our algorithms capture
biologically informative shape variation. But scientists are inter-
ested in more than overall shape! We illustrate how correspon-
dence maps could be used to analyze more specific features. In
comparative morphological and phylogenetic studies, anatomical
identification of certain features (e.g., particular cusps on teeth)

is controversial in some cases; an example of this is the distolin-
gual corner of sportive lemur (Lepilemur) lower molars in Dataset
(A) (2, 41), illustrated in Fig. 3.

In such controversial cases, transformational homology (42)
hypotheses are usually supported by a specific comparative sam-
ple or inferred morphocline (2, 43, 44). Lepilemur is thought by
some researchers to lack a cusp known as an entoconid (Fig. 3)
but to have a hypertrophied metastylid cusp that “takes the place”
of the entoconid (2) in other taxa. Yet, in comparing a Lepilemur
tooth to a more “standard” primate tooth, like that ofMicrocebus,
both seem to have the same basic cusps; alternatives to the view-
point of ref. 2 have therefore also been argued in the literature
(41). However, another lemur, Megaladapis (now extinct), argu-
ably a closer relative of Lepilemur than Microcebus, has an
entoconid that is very small and a metastylid that is rather large,
thus providing an evolutionary argument supporting the original
hypothesis. (For more details, see SI Appendix, Materials.) Such
arguments can now be made more precise. We can propagate
(as in Fig. 2) landmarks from the Microcebus to the Lepilemur
molar; this direct propagation matches the entoconid cusp of
Microcebus with the controversial cusp of Lepilemur (Fig. 3,
path 1), supporting ref. 41. In contrast, when we propagate land-
marks in different steps, either from Microcebus to Megaladapis
and then to Lepilemur (Fig. 3, path 2), or through the extinct
Adapis and extant Lemur (Fig. 3, path 3), the Lepilemur metas-
tylid takes the place of the Microcebus entoconid, supporting
ref. 2. Automatic propagation of landmarks via mathematical
algorithms recenters the controversy on the (different) discussion
of which propagation channel is most suitable.

Summary and Conclusion. New distances between 2D surfaces,
with fast numerical implementations, were shown to lead to fast,
landmark-free algorithms that map anatomical surfaces automa-
tically to other instances of anatomically equivalent surfaces, in a

Table 2. Success rates (percentage) of leave-one-out classification, based on the cP, cWn, and ODLP distances

Dataset Teeth First metatarsal Radius

Classification No. N cP Obs. 1 cWn No. N Obs. 1 cP Obs. 2 cWn No. N cP Obs. 1 cWn

Genera 24 99 90.9 91.9 68 13 59 76.3 79.9 88.1 50.8 4 45 84.4 77.8 68.9
Family 17 106 92.5 94.3 75.1 9 61 83.6 91.8 93.4 68.9 not applicable
Above family 5 116 94.8 95.7 83.3 2 61 100 100 100 98.4 not applicable

Fig. 2. Observer-placed landmarks can be propagated from structure S (I)
using cP-determined correspondence maps (II) to another specimen S0 (III).
The similarity between propagated landmarks in III and observer placed land-
marks in IV on S0 shows the success of the method and makes explicit the
geometric basis for the observer determinations.

Fig. 3. Observer-placed landmarks on a tooth ofMicrocebus are propagated
using cP-determined correspondence maps to a tooth of Lepilemur. Path 1 is
direct, paths 2 and 3 have intermediate steps, representing stepwise propa-
gation between teeth of other taxa.
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way that mimics accurately the detailed feature-point correspon-
dences recognized qualitatively by scientists, and that preserves
information on taxonomic structure as well as observer-deter-
mined landmark distances. Moreover, the correspondence maps
thus generated can incorporate, in their tracking of point
features, evolutionary relationships inferred to link different taxa
together.

Our approach makes morphology more accessible to non-
specialists and allows the documentation of anatomical variation
and quantitative traits with previously unmatched comprehen-
siveness and objectivity. More frequent, rapid, objective, and
comprehensive construction of morphological datasets will allow
the study of morphological diversity’s evolutionary significance
to be better synchronized with studies incorporating genetic
and developmental information, leading to a better understand-

ing of anatomical form and its genetic basis, as well as the evolu-
tionary processes that have contributed to their diversity among
living things on Earth.
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