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The tracking and projection of emerging epidemics is hindered by
the disconnect between apparent epidemic dynamics, discernible
from noisy and incomplete surveillance data, and the underlying,
imperfectly observed, system. Behavior changes compound this,
altering both true dynamics and reporting patterns, particularly
for diseases with nonspecific symptoms, such as influenza. We dis-
entangle these effects to unravel the hidden dynamics of the 2009
influenza A/H1N1pdm pandemic in London, where surveillance
suggests an unusual dominant peak in the summer. We embed an
age-structured model into a Bayesian synthesis of multiple evi-
dence sources to reveal substantial changes in contact patterns and
health-seeking behavior throughout the epidemic, uncovering two
similar infection waves, despite large differences in the reported
levels of disease. We show how this approach, which allows for
real-time learning about model parameters as the epidemic pro-
gresses, is also able to provide a sequence of nested projections
that are capable of accurately reflecting the epidemic evolution.
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An emerging epidemic engenders an increased demand upon
health services. Resolving the extent to which this is due

to high levels of disease transmission as opposed to a heightened
public sensitivity is essential for determining the appropriate
public health response.

This was especially crucial when estimating the course of the
2009 influenza A/H1N1pdm outbreak in England, where, unu-
sually, the pandemic resulted in a summer peak in rates of
consultation at general practices (GPs) for influenza-like illness
(ILI). This is clearly demonstrated by data from the return service
of the Royal College of General Practitioners (RCGP) in Fig. 1A
where weekly GP consultation rates per 100,000 population over
the 2009 pandemic are compared with rates from the three pre-
vious years. Also shown is the proportion of swabbed individuals
whose swabs tested positive for the presence of any flu virus (SI
Data). Note that the GP consultation rate for 2009 is much higher
than the usual seasonal rate, whereas the corresponding positivity
is comparable to that observed in the preceding winters. This
suggests that a substantial proportion of the peak in consultations
was not directly attributable to A/H1N1pdm. Conversely, serolo-
gical studies (3) have shown a marked increase in the prevalence
of influenza antibodies among the population. Therefore, the
degree to which the increased demand upon GPs is due to high
levels of disease transmission as opposed to heightened public
sensitivity remains unclear (4). Fig. 1 B and C show GP consulta-
tion rates by region and age group: consultations in Greater
London and the West Midlands exhibit rapid early exponential
growth, but the peak in London is much higher; rates appear to
decrease markedly with age. Importantly, a first peak occurs im-
mediately prior to the summer school holiday and the launch
of the National Pandemic Flu Service (NPFS) phone line, ntro-

duced to relieve the pressure on GPs and expedite antiviral dis-
tribution (see SI Data); a second, much smaller peak, is observed
in the autumn. This evidence, supported by the work of ref. 5,
promotes the further hypothesis of a fluctuating propensity for
individuals with symptoms of ILI to seek medical attention,
perhaps induced by media coverage and changing governmental
advice, as well as the social distancing effects of school holidays.

Traditionally, transmission modeling is used to investigate epi-
demic development. In the area of infectious respiratory diseases,
many approaches have been proposed (6–13), including those
that account for the effects of behavioral changes upon transmis-
sion (14), explicitly model the impact of school closure (15), and
incorporate a temporally varying case-detection rate (16).

Here we model these aspects simultaneously while additionally
accounting for the time-varying noise in the data due to consulta-
tions for non-A/H1N1pdm ILI. This is achieved by developing
a model for integrating noisy GP consultation data, virological
positivity data, virologically confirmed case data, and information
from serological (seroprevalence) surveys (see SI Data). Each
dataset is available and used at daily intervals. An age-structured
transmission model is embedded within a Bayesian framework,
allowing incorporation of any a priori information about model
parameters from previous influenza strains via probability distri-
butions. These prior distributions are then updated by available
data to provide posterior statements about parameters of interest
and their uncertainty, presented here in the form of 95% credible
intervals (CrIs).

Results
Fig. 2 is a schematic representation of the model used to describe
the data-generating process. Three different components are
knitted together: an age-structured transmission-governing com-
ponent, a disease component, and a third component describing
the mechanisms through which infected individuals report their
symptoms to the health-care system. In the transmission compo-
nent, susceptible individuals (S) become exposed (E) through
an effective contact with infectious (I) individuals and become
infective themselves after a short latent period, to be then re-
moved (R) from the pool of infectious individuals after a further
period. Transmission is governed both by a time- and age-varying
force of infection λðt;aÞ, depending on the transmissibility of
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the virus and the mixing patterns in the population and by the
transition rates among the S, E, I, and R states (see Material
and Methods). Only a proportion, θ, of the newly exposed indi-
viduals develop febrile symptoms, from which further proportions
pGPðt;aÞ and pCC consult their GP or have their illness virologi-
cally confirmed. Note that pGPðt;aÞ is calendar time and age-spe-
cific to accommodate potential fluctuations in consultation
behavior. There are no direct data on transmission. However, ser-
ological surveys (see SI Data), carried out before and during the
epidemic, provide data on indicators, Zðt;aÞ (see Material and
Methods), informing the level of susceptibility within the popula-
tion at the epidemic onset and over time. We make direct obser-
vation of XCCðt;aÞ, the symptomatic cases that are virologically
confirmed, though this is limited to the early stages of the epi-
demic (see SI Data). Only indirect information is available on the
number of symptomatic cases consulting GPs, XGPðt;aÞ, in the
form of routine surveillance (see SI Data, section 1.1) counts
of GP consultations for all ILI. This includes a background

component, Bðt;aÞ, of non-A/H1N1pdm ILI. To identify these
two components we use the total number of ILI consultations
Y ðt;aÞ ¼ XGPðt;aÞ þ Bðt;aÞ and information on the virological po-
sitivity XGPðt;aÞ∕ðXGPðt;aÞ þ Bðt;aÞÞ (see Material and Methods).
By combining direct, indirect, and prior information, we produce
posterior distributions for the process governing parameters (see
Material and Methods) and other quantities of interest.

Reconstructing the Epidemic. Fig. 3A shows the posterior median
and pointwise 95% CrI for the total number of weekly incident
infections of A/H1N1pdm in Greater London, using 245 d of
epidemic data covering May 1 to December 31 (i.e., from week
18 to week 53) of 2009. Additionally, Fig. 3A also shows the
estimated age-specific incidences. Much like the GP consultation
data, the epidemic occurs in two waves: a summer first wave
(May to end-August) and an autumn second wave (September
to December). The first wave rises sharply to a peak of 109,000
(81,000–146,000) new infections in the week immediately prior
to the school holidays. The second wave has a smaller peak with
posterior probability 0.885. Conversely, as can be seen from
Table 1, which reports estimates of the infection attack rate (i.e.,
the cumulative incidence expressed as a proportion of the total
population), there is slightly larger cumulative incidence in the
second wave, a phenomenon not at all evident from the GP con-
sultation data (Fig. 1 B and C). The discrepancy between the GP
consultation data and the estimated infection pattern is clarified
in Fig. 3B, which compares the cumulative consultations with the
estimated cumulative infections, both calculated as proportions
of their corresponding total. In this plot, a steep gradient iden-
tifies points in time during the pandemic when a relatively high
density of GP consultations (or infections) occur. From the steep
gradient in the GP consultations curve over weeks 27 and 28, it
can be seen that the consultations were highly localized around
this time. The separation between the two lines and the smaller

Fig. 2. Model schematic diagram representing the data-generating
process. The shaded boxes represent the quantities upon which we make
observation.
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Fig. 1. (A) Time series of GP consultation rate for ILI and virological positivity
within the RCGP surveillance scheme in England andWales (1), by week, from
end-2005 to end-2009. The positivity is given by the proportion of each bar
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each group (see ref. 2 and SI Data, section 1.1) by region (Greater London,
West Midlands, and Rest of England) and (C) by age group, over the weeks
18–53, 2009.
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gradient of the infection curve showed that, unlike the GP con-
sultations, infection is shared out more evenly over the two waves.

Returning to Table 1, children, i.e., individuals younger than
15 y old, acquired the most disease: approximately 52% of 5–14,
40% of 1–4, and 30% of under 1 y-old children are estimated to
have contracted the virus, substantially higher than the overall
infection attack rate of 19%. Note that Fig. 1 shows that GP con-
sultation rates decline with age. In contrast, the estimated attack
rates peak in the 5–14 age group, indicating a greater component
of background consultation in the <5 s. The precipitous decline
in the infections brought about by the school holidays (both peaks
of Fig. 3A occur in the same week as the start of a school holiday)
highlights the key role that children play as agents of transmis-
sion, as seen in estimates of scaling factors that modify contact
rates (parameters mi in Table 2). Compared to school term time,
we estimate a reduction in the rate of contact within the 5–14 age
group of 72%(52%–97%) in the summer holiday (1 −m3) and of
48%(22%–72%) in the half-term school holidays (1 −m5). See
Materials and Methods for further details. The data are, however,
unable to identify a similar effect among the 1–4 y-olds (see the
wide CrI attached to parametersm2 andm4). We further estimate
that child-to-child infectious contacts are 2.13(1.86–2.47)
(¼1∕m1, Table 2) times as likely to result in transmission than
those involving at least one adult. The effect of this estimated fall
in contact rates in the summer holiday and the contribution of
children to transmission translates into a reduction of 35.2%
(30.2%–40.2%) in the effective reproductive number: the average
number of secondary infections induced by a primary infection at

a given time. In a fully susceptible population this reduction
would be similar: 36.4%(30.9%–41.6%).

Also from Table 2 we can see that the proportion of infections
that develop into symptomatic cases, θ, which has an informative
prior (see Fig. 4B), is estimated to be 0.33(0.21–0.47). This
corresponds to around 35,000 incident symptomatic cases at
the peak of the first wave. The posterior median for the basic
reproductive number, R0, is 1.65(1.56–1.75). As with θ, R0 shows
considerable prior to posterior divergence, whereas the posterior
for the mean infectious period, dI , is nearly identical to the prior
(see Fig. 4B).

At NPFS launch, the propensity for adults to consult is esti-
mated to fall from 16% to 1.8% (Fig. 3C). Only a small increase
follows at a second breakpoint in early September, but by a third

Table 1. Posterior median and 95% CrI for cumulative incidence of
infections and cases and age-specific attack rates

End-August September–December

Infections 672,362 784,934
(544,466, 826,014) (612,369, 981,410)

Cases 217,003 257,105
(133,434, 324,027) (160,860, 385,760)

Attack rates, %
(Overall) 8.9 10.4

(7.2, 10.9) (8.1, 13.0)
<1 y 15.3 14.9

(12.4, 18.9) (12.1, 18.2)
1–4 y 19.5 20.8

(15.1, 26.1) (16.9, 25.4)
5–14 y 22.1 29.8

(18.0, 26.7) (24.1, 35.3)
15–24 y 7.9 8.6

(5.9, 10.5) (6.3, 11.4)
25–44 y 8.0 9.0

(6.2, 10.4) (6.7, 11.7)
45–64 y 4.1 4.7

(3.1, 5.5) (3.4, 6.3)
65+ y 2.5 3.0

(1.9, 3.3) (2.2, 4.0)

Table 2. Posterior median and 95% CrI for key parameters

Parameter Estimate (95% CrI)

R0 1.65 (1.56, 1.75)
dI 3.45 (3.32, 3.57)
m1 0.469 (0.405, 0.539)
m2 0.535 (0.0395, 0.970)
m3 0.279 (0.0323, 0.481)
m4 0.295 (0.0115, 0.919)
m5 0.522 (0.276, 0.784)
θ 0.328 (0.211, 0.468)

Key parameters are R0, the basic reproductive number; dI , the average
infectious period (in days); θ, the proportion symptomatic; mi , scaling
factors applied to the mixing matrices to account for relative infectivity
(m1) and school holiday effects
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breakpoint, in late October, the propensity returns to a value
close to 10%. Similar results are obtained for this parameter
in children. These estimates are similar to values expected during
seasonal influenza epidemics (17, 18), but lower than estimates
from the Internet-based Flusurvey (see Fig. 3C and SI Data), pos-
sibly reflecting biases in the population captured by the survey.

Predicting the Epidemic. The above results are related to an epi-
demic that is now over. A crucial question is whether the model
can be used as a tool for inferences and predictions while an epi-
demic is ongoing. To assess this, further analyses were conducted
based on 83, 143, and 192 d of epidemic surveillance data. The
83-d analysis contains no serological data except those used to
inform the baseline prevalence of antibodies, whereas the 143-
and 192-d analyses incorporate serological data collected during
the epidemic (see ref. 3 and SI Data).

Fig. 4A illustrates how the predictions evolve as data accumu-
late. Fig. 4B shows how the estimated posterior densities for the
parameters R0,m1, θ, and pGPð1;1Þ, the consultation propensity in
children in the first 83 d (see SI Materials and Methods), evolve
over time, starting with their prior distributions. From the 143-d
analysis onward, credible intervals for the future number of infec-
tions appear to enclose the estimated numbers in the subsequent
analysis. However, this is not so in moving from the 83- to the 143-
d analysis. This is due to the lack of serological data in the 83-d
analysis. Given the large degree of dispersion, the GP consulta-
tion data are too weakly informative to overcome the informative
priors placed, partly for the sake of identifiability, upon para-
meters such as θ and pGPð· ; ·Þ (see SI Materials and Methods).
The densities of Fig. 4B show that, in the earliest analysis with
no serological data, the posterior distributions for these para-
meters are near identical to the priors, centered on values far
larger than the posteriors obtained from the subsequent analyses.
The inclusion of the serological data in the 143-d analysis pro-
vides a clear indication of the level of cumulative incidence, which
is higher than the 83-d results might suggest. With stronger infor-
mation on the incidence, the data become sufficiently informative
to overcome the prior distributions for θ and pGP, and this is re-
flected in a shifting of the posterior distributions to values that
remain consistent across the 143-, 192-, and 245-d analyses.

Discussion
Our approach allows reconstruction and projection of the trajec-
tory of an epidemic by disentangling epidemic and behavioral
dynamics. Combining data from different sources is crucial, as
each plays an important role: virological data partition consulta-
tions between A/H1N1pdm and other ILI, GP consultations
determine the temporal trend, and the serological data give the
scale of the epidemic.

Our estimates of attack rates are lower than has been obtained
elsewhere (19), importantly providing improved understanding
of how a third wave of A/H1N1pdm infection occurred in late
2010. Although our estimate of R0 is consistent with that obtained
by others (13, 16), the estimate that only a third of infections are
symptomatic is much lower than corresponding estimates from
Mexico and Hong Kong [0.86 and 0.64, (13, 20)] but comparable
to estimates from New Zealand [0.45 (21)] and France [0.20 (22)]
and in broad agreement with the systematic review of ref. 23. Our
estimate of 0.47ð¼ 1∕2.13Þ for the relative risk of transmission in
infectious contacts involving at least one adult is in direct agree-
ment with a previous estimate of 0.485 (95% CrI 0.302–0.625)
(13). By combining our estimated θ and attack rates, we obtain
a number of symptomatic cases, which is a fourfold increase on
the central and a twofold increase on the upper bound of the
official estimates for the two waves (24). Previous work (10) uses
these central estimates as data, multiplying them by a factor of 10
in order to achieve a good model fit. This factor can be inter-
preted as a product of two components: one that accounts for

the asymptomatic infections (1∕θ) and one that accounts for un-
derascertainment in the symptomatic case number estimates.
Here, these two components multiply to give a factor of approxi-
mately 12.

In its transmission component, the model is similar to that used
elsewhere (16), where data on laboratory-confirmed cases, mod-
eled using a time-varying reporting rate, have been considered.
Here, in addition to some lab-confirmed cases, other sources
of information are used, notably noisy GP consultation data. This
enables us to advance earlier efforts to model the epidemic in
England. Using a hybrid of estimation approaches, ref. 10 treats
estimated weekly incident cases of A/H1N1pdm (24) as data, with
no propagation of the error inherent in the estimation process.
We employ a more rigorous, statistical approach, which utilizes
a richer array of raw data. For the same pandemic in Singapore,
ref. 25 implements an algorithm for online updating of estimates
arising from an S, E, I, R transmission model fitted to GP con-
sultation data alone. This approach, which makes no stratification
by age, suffers similarly from a lack of nesting in the early stages
and masks the interage group transmission dynamics. In the same
vein, ref. 18 develops a methodology for real-time inference, but
this offers little opportunity to make any learning about many key
model parameters. Our model also allows for the quantification
of the impact of school holidays, the level of non-A/H1N1pdm
consultation, and obtains estimates for the propensity for patients
affected by the A/H1N1pdm virus to seek consultation.

Assumptions. One key strength of any model used to predict or
assess epidemic impact is a robustness to (often unavoidable)
modeling assumptions. In SI Sensitivity Analyses we investigate
the impact of dropping, or changing, a number of the assumptions
made in producing the epidemic estimates obtained here. Our
results are generally robust to reasonable deviations from mod-
eling assumptions, yet also suggest avenues for further investiga-
tion. Specifically, we examine three modeling components: the
performance of the virological testing procedure, the assumed
contact patterns, and the assumed functional form of the propen-
sity to consult, pGPðt;aÞ.

Test Sensitivity. Thus far, it has been assumed that the virological
testing procedure has a sensitivity of 1; i.e., there are no false
negatives. If we relax this assumption to reasonable values for
the test sensitivity, say 0.8 and 0.9, the key results change very
little. As expected, there is a small increase in the estimated
symptomatic attack rates, as a lower sensitivity allows for more
A/H1N1pdm cases among the GP consultations, but there is neg-
ligible impact on the total infection attack rates. Of the values
investigated, a test sensitivity of 0.8 had larger values for the like-
lihood in its posterior distribution.

Mixing Matrices. The mixing matrices used to describe rates of
contact between the different age groups are based upon United
Kingdom (UK) data from the POLYMOD (Improving Public
Health Policy in Europe through Modeling and Economic Eva-
luation of Interventions for the Control of Infectious Diseases)
study (see ref. 26). Results are robust to small changes in both
parameterization of the mixing matrices (see Materials and Meth-
ods) and the rates of contact themselves. More interestingly,
a preliminary attempt to estimate the entire mixing matrices
(SI Sensitivity Analyses), using the POLYMOD data only as prior
information, indicates that contacts among the 5–14 age group
are particularly important, while also suggesting that contacts
between this age group and the 15–24 age group may be more
influential than previously thought. Adopting these estimates
results in a slight fall in the estimated R0, while increasing the
total infection attack rate. This is due to a shift in the infection
profile from small children to the bigger pool of susceptibles in
the 15–24 age group. Developing a more rigorous approach to
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estimation of contact patterns, and in particular the choices of
the informative priors, constitutes a promising avenue for future
work.

Propensity to Consult. A piecewise linear parameterization for
pGPðt;aÞ in the post-NPFS era gave results not materially different
from those featured here. Attempts to adopt this piecewise linear
parameterization over the entire epidemic period resulted in lack
of identifiability and undue influence of prior distributions (see
SI Sensitivity Analyses).

Further Applicability. Our modeling approach has focused on the
reconstruction of the epidemic in a globally prominent metropo-
litan region. However, the general methodology presented here is
highly applicable to any influenza epidemic within any similar
health-care network. Although it is unreasonable to carry out this
modeling exercise on England as a whole, due to the unrepresen-
tativeness of the pooled virological and serological data, we have
repeated the analyses in three other disjoint regions, which, to-
gether with London cover the whole of England (see SI Further
Applicability). London andWest Midlands experience very similar
epidemics, whereas the remainder of the country is split into two
regions, North and South, neither of which had a substantial first
wave of infection. There is mostly nonsignificant variation in the
estimated parameters across the four regions, with the exception
of R0, which suggests a possible link between the reproductive
number of the epidemic and the population density within the
affected region (London and West Midlands are England’s
two most densely populated areas).

Serological Data. As epidemic surveillance data accumulate over
time, the model is capable of producing sequential epidemic
estimates that converge (in the sense that successive credible in-
tervals are nested) and could be used for real-time modeling and
prediction. However, we have shown surveillance data alone are
insufficient unless or until the epidemic is very far progressed. In
general, to generate reliable projections early in the epidemic, the
timely availability of relevant data on cumulative incidence and/
or the proportion of infections reported in surveillance (a role
originally envisaged for the Flusurvey during England’s 2009
A/H1N1pdm outbreak; see SI Data) is required. Serological data,
in particular, are shown in this paper to be vital to ensure con-
vergence of sequentially obtained estimates, given our choice of
priors. Analysis conducted in the absence of serological data (see
SI Serological Studies) shows that with surveillance data alone, a
realistic epidemic reconstruction is still impossible at 192 d, i.e.,
after the peak of the second wave. As a result, any online infer-
ence is rendered highly infeasible. This highlights the critical im-
portance of the timely availability of serological information in an
emergent epidemic, when information on key parameters may be
lacking and/or priors may be misspecified, as here. This is clearly
a challenge, given current limitations on test developments, facil-
ities, and recruitment of appropriately representative populations
(3, 19), but one that is very important to meet.

Materials and Methods
Our approach integrates data from a number of sources, combining informa-
tion from GP surveillance networks with epidemic specific data. The SI Data
section provides an in-depth description of the available data on GP consul-
tations for ILI, virological positivity, virological confirmed cases, and serolo-
gical surveys.

An Integrated Model. The proposed model in Fig. 2 comprises a transmission
model and a disease and reporting model. The model dynamics are determi-
nistic and discrete. We model from the period May 1 to December 31, 2009,
and for the following age groups: <1 y, 1–4, 5–14, 15–24, 25–44, 45–64, and
65+ y. The epidemic is initiated with a small number of infectious individuals
and a pool of susceptible individuals. At each subsequent time point the
transmission model generates a number of newly infected individuals, which

enter the disease and reporting model, while the pool of susceptible indivi-
duals diminishes. The disease and reporting models then govern the propor-
tion of these incident infections that appear in the GP consultation and
confirmed case datasets and the delay inherent in doing so.

In the age-structured S, E, I, R model, transmission is dictated by a time-
and age-varying force of infection λðt;aÞ and transition rates σ and γ, which
describe the rates of transition between states E → I and I → R, respectively.
These rates are functions of the mean latent period, dL, and the mean infec-
tious period, dI , the expected times spent in states E and I, respectively. The
force of infection depends on two key quantities: the basic reproduction
number of the virus, R0, and the relative rates of contact between the dif-
ferent age groups, introduced through the time-varying matrix,MðtÞ. Details
of how these quantities combine to give the incident number of infections
can be found in SI Materials and Methods, Eq. 7. A proportion, θ, of the ex-
posed individuals become clinical cases, with further fractions pGPðt;aÞ and
pCC of these symptomatic individuals consulting their GP or being virologi-
cally confirmed, respectively. Typically, there will also be a time lag from in-
fection to either of these events. This delay is assumed to be distributed as a
gamma random variable and arises from three independent processes: the
incubation time until symptom onset, the delay in reporting the GP consulta-
tion or having illness virologically ascertained, and the subsequent reporting
delay. These component delays are assumed to have known mean and var-
iances, which are summed to give the mean and variance of the distribution
governing the overall time from infection to each event. This is discussed in
more detail in SI Materials and Methods. The size of the initially susceptible
population within an age group, Sð0;aÞ, is informed by baseline serological
data from 2008 (3). Subsequently, for serological data taken at time t, the
expected seropositivity is given by 1 − ðSðt;aÞ∕NaÞ, where Na is the size of
the population in age group a.

Modeling Challenges. Consultation Behavior. The propensity of individuals to
consult with their GP given symptomatic ILI varied significantly over the
course of the study period. Initially, this propensity was high, as seen from
the marked increase in the consultation rates during the first wave, with only
a modest increase in the accompanying virological positivity. However, gov-
ernment advice that patients were to consult through the NPFS, rather than
their GP, drastically reduced this propensity. The model has to be sufficiently
flexible to account for this, as well as permitting some temporal variation in
the levels of adherence to the governmental guidelines over time. This im-
pacts upon our model in two ways: (i) through the propensity to consult with
a GP conditional upon symptomatic infection with A/H1N1pdm, pGPðt;aÞ; this
is modeled as a piecewise function over time, with differing rates for children
and adults, the details of which can be found in SI Materials and Methods; (ii)
through the “background” consultation of non-A/H1N1pdm patients with ILI
symptoms. The background component of the consultation, Bðt;aÞ, is para-
meterized as a piecewise constant function over time, with varying rates
for each age group, thus allowing for temporal fluctuation in the behavior
and prevalence of individuals with non-A/H1N1pdm ILI. See SI Materials and
Methods for further details of the model and the estimation of these back-
ground rates of consultation, using informative priors derived on the basis of
pandemic data heralding from other regions of England.

Mixing Rates and School Holidays. Estimated contact rates based on UK week-
day data from within the POLYMOD study (26) formed the basis of the con-
tact matricesMðtÞ used in our analysis. In school term times, these POLYMOD
matrices were modified through the introduction of a scaling factor, m1, ap-
plied to all matrix elements representing a contact rate involving adults. This
confers an interpretation upon m1 of a relative infectivity of adult infectious
contacts in comparison to those solely involving children. Effects of school
holidays upon disease transmission were accounted for by introducing
further factors, m2 and m3, which describe the proportionate reduction in
rates of contact among 1–4 and 5–14 y-olds, respectively, during the summer
holiday. During the shorter half-term holidays, additional multipliers,m4 and
m5, were applied to the same contact rates to permit differing effects of so-
cial distancing brought about by the two types of holiday. See SI Materials
and Methods for further details.

Inference. Parameters. Inference is carried out within the Bayesian frame-
work, based upon the posterior distributions of parameters and derived
quantities of interest, obtained through the combination of the prior distri-
butions and the likelihood function. We estimate posterior distributions for
parameters R0, dI ,mi (i ¼ 1;…;5), and the size of the initial spark of infection.
Conversely, the mean latent period dL is assumed to be known. Preliminary
attempts to estimate both dL and dI highlighted that only their sum, not
the individual components, is easily identified and these findings have been
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formalized elsewhere (27). For the disease and reporting models, we
estimate θ, pCC, and the parameters describing pGPðt;aÞ. Furthermore, we
estimate the nuisance parameters used to model Bðt;aÞ.

Likelihood. If we denote the collection of all model parameters by the vector
φ, and

i. wta is a realization of Wðt;aÞ, the virological positivity at time t in age
group a, based on a sample of size mv

ta.
ii. xCCta is a realization of XCCðt;aÞ, the number of lab-confirmed cases at time

t in age group a.
iii. yta is a realization of Yðt;aÞ, the number of GP consultations at time t in

age group a.
iv. zta is a realization of Zðt;aÞ, the seropositivity at time t in age group a,

based on a sample of size ms
ta.

Then, treating the above as independent data, the likelihood is given by

LðφÞ ¼
Ynt

t¼1

Yna

a¼1

¼ fLðwtajφÞ × LðxCCta jφÞ × Lðytajmv
ta;φÞ × Lðztajms

ta;φÞg;

where nt and na are the number of time points (245) and age groups (7),
respectively. The third term in the product gives the likelihood of the GP con-
sultation data. This is modeled through a negative binomial distribution to
account for the overdispersion in the count data. This overdispersion is in part
due to the within-week pattern of consultation characterized by very few
consultations on weekends or bank holidays and a higher rate of reported
consultations on Mondays, gradually declining through the week until a
small increase on Fridays. The negative binomial distribution is parameter-
ized in terms of the mean number of consultations (as found in SI
Materials and Methods, Eq. 8) and a piecewise constant dispersion para-
meter, with one breakpoint at the time of NPFS launch. Otherwise, the
confirmed cases, xCC, are modeled as Poisson count data, and the positivity

and serological data are both treated as realizations of binomial random
variables with known denominators.

Priors. A list of the model parameters comprising φ can be found in SI
Materials and Methods, section 2.3.2. Where possible, parameters have been
included as stochastic quantities; i.e., we have placed a prior upon them, so
that we can learn about them through the data and so that the modeling
procedure incorporates as much a priori knowledge/uncertainty as possible.
Some parameters, due to reasons of identifiability, are held to fixed values.
Fixed values and the majority of prior distributions are taken from the litera-
ture (see SI Materials and Methods for details). Such information is deemed
to be unknown or unavailable for the parameters of the mixing matrices,mi ,
and the overdispersion parameters, and so we place priors that are reason-
ably uninformative upon them.

Implementation. Posterior distributions for the unknown parameters are
evaluated throughMarkov chainMonte Carlo methods, using a randomwalk
Metropolis algorithm (28, 29). The algorithm was implemented using a be-
spoke C++ code specifically generated for this class of models. Two separate
chains, each consisting of 450,000 iterations, were run in parallel, with the
results presented based on a thinned subsample of the final 250,000 itera-
tions from the two chains.
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