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The buckling and wrinkling of thin films has recently seen a surge
of interest among physicists, biologists, mathematicians, and engi-
neers. This activity has been triggered by the growing interest in
developing technologies at ever-decreasing scales and the result-
ing necessity to control the mechanics of tiny structures, as well
as by the realization that morphogenetic processes, such as the
tissue-shaping instabilities occurring in animal epithelia or plant
leaves, often emerge from mechanical instabilities of cell sheets.
Although the most basic buckling instability of uniaxially com-
pressed plates was understood by Euler more than two centuries
ago, recent experiments on nanometrically thin (ultrathin) films
have shown significant deviations from predictions of standard
buckling theory. Motivated by this puzzle, we introduce here a
theoretical model that allows for a systematic analysis of wrinkling
in sheets far from their instability threshold. We focus on the sim-
plest extension of Euler buckling that exhibits wrinkles of finite
length—a sheet under axisymmetric tensile loads. The first study
of this geometry, which is attributed to Lamé, allows us to con-
struct a phase diagram that demonstrates the dramatic variation
of wrinkling patterns from near-threshold to far-from-threshold
conditions. Theoretical arguments and comparison to experiments
show that the thinner the sheet is, the smaller is the compressive
load above which the far-from-threshold regime emerges. This
observation emphasizes the relevance of our analysis for nanome-
chanics applications.

pattern formation ∣ thin-film buckling

Thin films are among the ubiquitous examples of flexible struc-
tures that buckle under compressive loads. More interestingly,

these buckling instabilities usually develop into wrinkled patterns
that provide a dramatic display of the applied stress field (1, 2).
Wrinkles align perpendicularly to the compression direction,
depicting the principal lines of stress and providing a geometric
tool for mechanical characterization. Traditional buckling theory
is regularly used to understand these patterns in the near-thresh-
old (NT) regime, in which the deformations are small perturba-
tions of the initial flat state. However, it has been known since
Wagner (3, 4) that, when the exerted loads are well in excess of
those necessary to initiate buckling, the asymptotic state of the
plate is very different from the one observed under NT condi-
tions. In this far-from-threshold (FFT) regime, the stress nearly
vanishes in the compression direction and wrinkles mark the
region where the compressive stress has collapsed.

Two complementary approaches have provided some insight
into wrinkled sheets under FFT loading conditions. In a 1961
paper (5), Stein and Hedgepeth computed the asymptotic stress
field in infinitely thin sheets under compression by assuming a
vanishing component of the stress tensor along the compression
direction. They further showed how such an asymptotic stress field
yields the extent of wrinkles in several basic examples. A similar
formalism that builds on the same assumption was advanced later
by Pipkin (6). This approach (often referred to as “tension field” or
“relaxed energy” theory) correctly characterizes the stress distribu-

tion and the corresponding extent of the wrinkled region, but
cannot identify the fine features of the pattern, such as the wave-
length (or number) of wrinkles, their amplitude, and the sensitivity
to various boundary conditions (BCs). A second approach, which
does address the wavelength of wrinkled sheets in the FFTregime,
has been introduced recently by Cerda et al. (7, 8), who studied a
long rectangular strip under strong uniaxial tension T. Using the
simplicity of the stress tensor in this geometry (where the dominant
stress component is approximately T everywhere) and assuming a
balance of bending, compressive, and tensile forces, these authors
derived an asymptotic scaling law for the FFT wavelength and
amplitude of wrinkles. Although this idea has been very successful
in characterizing the asymptotic wrinkling pattern of tensed rectan-
gular sheets, its implementation in situations characterized by a
spatially varying stress distribution, with a wrinkled state spanning
a finite region, remains obscure.

The lack of a theoretical setup that enables a quantitative dis-
tinction between wrinkling patterns in the NT and FFT regimes
has led to confusion in interpreting experimental observations.
For instance, the length and number of wrinkles in nanofilms
have been measured in ref. 9 with high accuracy, suggesting that
these features could be used as an effective indicator for metrol-
ogy. In another experiment (10), the onset of wrinkling was
identified by slowly increasing the exerted loads or modifying the
setup geometry. These and other experiments have shown various
scaling laws for the length and number of wrinkles. However, it is
unclear how many independent parameters control wrinkling in
these systems, what is the structure of the “morphological phase
space” spanned by these parameters, and consequently, whether
the observed wrinkling patterns reflect NT or FFT conditions.

In this paper, we present an FFT theory of wrinkling in very thin
sheets that connects the tension field theory (5, 6) to the study
of the wrinkle wavelength (7, 8). The essence of our theory is
an expansion of the Föppl–von Kármán (FvK) equations around
the singular limit of a sheet with vanishing bending modulus (the
so-called membrane limit; ref. 4). We show that the extent of the
wrinkled region (5) comes from the leading order of that expan-
sion, whereas the wavelength and amplitude of wrinkles (7, 8)
result from the subleading order. Furthermore, through a quanti-
tative analysis of the FvK equations, our approach enables a clear
identification of the NT and FFT regimes of wrinkling patterns
and exposes the subtleties in interpretation of experimental obser-
vations. In order to elucidate the basic principles of the theory,
we focus on a model problem of fundamental interest: a very
thin annular sheet under planar axisymmetric loading (Fig. 1). This
system, which was apparently first studied by Lamé (11), possesses
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the highest possible symmetry of a 2D sheet. The instability of such
a sheet, which leads to wrinkles of finite extent, may therefore be
considered as the simplest extension of Euler’s instability (which
describes sheets confined in a 1D geometry). Our main findings
are summarized in Fig. 2, which presents a schematic phase dia-
gram of wrinkling patterns, ranging from NT to FFT conditions.

We commence by reviewing the classical Lamé solution for the
planar state of stretched axisymmetric sheets, and define the
bendability and confinement parameters: ϵ and τ, respectively.
Focusing on the high bendability limit (ϵ ≪ 1), we show how
the Lamé solution gives rise to scaling laws for the threshold con-
finement τcðϵÞ, at which wrinkling first occurs, and for the extent
and number of wrinkles in the NT regime. We then turn to
the FFTregime and introduce the “collapsed compressive stress”
assumption that yields the asymptotic FFT stress field. We show
how the resulting stress field leads to scaling laws for the extent
and number of wrinkles, which are markedly different from the

NT behavior. In Discussion, we describe the general structure of
the ðϵ;τÞ phase diagram predicted by our results and address the
subtleties of the FvK equations in the FFTregime. We emphasize
insights provided by our model, explain experimental observa-
tions, and conclude with open questions and future directions.

Near-Threshold Wrinkling
We study the essential differences between the NT and FFT re-
gimes by focusing on the configuration shown in Fig. 1, where an
annular film of inner radius Rin and outer radius Rout is stretched
differentially by radial forces per unit length Tout at r ¼ Rout and
T in > Tout at r ¼ Rin. Similar geometries have been used to study
wrinkling under different types of central loads, such as the im-
pact of fast projectiles (12), the de-adhesion and wrinkling of
a thin sheet loaded at a point (13), and the wrinkling and folding
of floating membranes (9, 14). However, Fig. 1 exhibits the sim-
plest load distribution that leads to wrinkling with finite extent
and wavelength.

The Planar State. The equilibrium force balance equations are as
follows:

∂rðrσrrÞ − σθθ þ ∂θσrθ ¼ 0; [1]

∂rðrσrθÞ þ σrθ þ ∂θσθθ ¼ 0. [2]

The stresses are connected to the radial, hoop, and shear strains
by Hooke’s law εij ¼ ½ð1þ νÞσij − νσkkδij�∕Y . Here, Y ¼ Et is the
stretching modulus, E is the Young’s modulus, t is the film thick-
ness, and ν is the Poisson ratio. The expressions for the strains in
the large deflection, small slope limit (4) are

εrr ¼ ∂rur þ
1

2
ð∂rζÞ2; [3]

εθθ ¼
ur
r
þ 1

r
∂θuθ þ

1

2r2
ð∂θζÞ2; [4]

εrθ ¼
1

2r
∂θur þ

1

2
∂ruθ −

1

2r
uθ þ

1

2r
∂θζ∂rζ; [5]

where ur , uθ, and ζ are, respectively, the radial, azimuthal, and
out-of-plane displacements. We included here the shear compo-
nents, although they will not be required for our analysis. It is a
classical problem of linear elasticity (11) to obtain the stress field
of the planar, axisymmetric state: uθ ¼ ζ ¼ ∂θur ¼ 0, where
εrr ¼ ∂rur , εθθ ¼ ur∕r, and εrθ ¼ 0. Focusing for simplicity on
the limit Rout ≫ Rin, one finds

σrr ¼ ðTout þ ΔTR2
in∕r

2Þ; σθθ ¼ ðTout − ΔTR2
in∕r

2Þ; [6]

where ΔT ¼ T in − Tout. In this solution (due to Lamé), the radial
stress is tensile everywhere, but if T in∕Tout > 2, the hoop stress
becomes compressive for Rin < r < LNT, where

LNT ¼ Rin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T in∕Tout − 1

p
: [7]

The existence of compression leads to buckling if the film is thin
enough that it becomes energetically favorable to relieve the
compressive stress by bending. The Lamé problem is thus char-
acterized by two independent dimensionless groups, confinement
(τ) and bendability (ϵ−1), where

τ ≡ T in∕Tout; ϵ≡ B∕ðR2
inToutÞ; [8]

where B ¼ Et3∕12ð1 − ν2Þ is the bending modulus. For a given ϵ,
buckling is expected if τ > τcðϵÞ > 2, where τcðϵÞ is the critical
loads ratio. As the sheet gets thinner, the energetic cost of bend-

Fig. 1. The Lamé configuration: A mismatch between the inner and outer
stresses yields a compression, which is relieved by wrinkling, in the region
Rin < r < L.

Fig. 2. A schematic phase diagram of wrinkling patterns in the Lamé geo-
metry. The dimensionless parameters ϵ−1, τ represent, respectively, bendabil-
ity and confinement (see Eq. 8). Radial wrinkles emerge for ϵ, τ > τcðϵÞ, where
the threshold curve τcðϵÞ, computed similarly to ref. 15, is marked with a black
solid line. The NTanalysis is valid below the blue dashed line (see text). After a
cross-over region (purple), the sheet is under FFT conditions (red). The evolu-
tion of the hoop stress as τ increases is shown in the inset for ϵ−1 ¼ 105 using
three curves corresponding to points in the ðϵ;τÞ phase space indicated in
the main figure. Curves a and b show the stress profile as predicted by
Eq. 6. However, curve c, which is well within the FFT region, shows that the
hoop stress has collapsed in a manner compatible with Eq. 17. To emphasize
the collapse of compressive stress, the red dashed line in the inset shows the
hoop stress given by Eq. 6 for the same value of τ.
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ing becomes smaller, hence we expect τcðϵÞ → 2 as ϵ → 0 (see
Fig. 2).* Our prime interest is in the high bendability regime,
ϵ ≪ 1, that describes very thin sheets. For a given ϵ ≪ 1, we first
consider the NTregime, assuming a loads ratio τ sufficiently close
to τcðϵÞ.†

Threshold, Extent, and Number of Wrinkles. Standard buckling the-
ory in the NTregime consists of a stability analysis of the first FvK
equation (4):

B
�
1

r
d
dr

�
r
d
dr

�
−
m2

r2

�
2

f ¼ σθθ

�
−
m2

r2
þ 1

r
d
dr

�
f þ σrr

d2f
dr2

; [9]

where the out-of-plane displacement is assumed to be
ζ ¼ f ðrÞ cosðmθÞ, and σrr , σθθ assume their Lamé form [6].
Whereas the energy and wrinkled extent in the NT regime are
determined by Eqs. 6 and 7, bifurcation analysis [assuming
f ðrÞ is infinitesimal†] yields the value of τcðϵÞ and the number of
wrinkles mcðϵÞ of the emerging pattern (15, 16).

Focusing on the high bendability regime (ϵ ≪ 1), a force
balance argument yields the NT scaling of τcðϵÞ and mcðϵÞ.
The forces in Eq. 9 are estimated by using the Lamé solution
[6] to approximate the stress in the NT regime: σrr ≈ 2Tout,
σθθ ≈ −~τcðϵÞTout, where we employed the fact that ~τc ≡ τcðϵÞ−
2 → 0 in this limit.† Furthermore, the characteristic (radial) scale
over which the amplitude f ðrÞ varies is LNT − Rin ≈ Rin ~τcðϵÞ∕2
(see Eq. 7). These relations allow us to estimate by inspection
the different terms in Eq. 9, thus finding that the three dominant
forces are associated with azimuthal bending (≈Bm4

c f∕R4
in),

azimuthal compression (≈Tout ~τcm2
c f∕R2

in), and radial tension
(≈2Toutf∕~τ2cR2

in). Balancing these forces yields the NT scalings:

~τcðϵÞ ∼ ϵ1∕4; mcðϵÞ ∼ ϵ−3∕8; [10]

LNT∕Rin − 1 ≈
1

2
~τcðϵÞ ∼ ϵ1∕4: [11]

These scaling relations were obtained in ref. 15 by using numer-
ical and asymptotic analysis (15), but to our knowledge the above
force balance argument has not been noted before.‡

Far-From-Threshold Wrinkling
Let us turn now to the main focus of our paper: the FFT regime
for very thin sheets (ϵ ≪ 1). Expecting the NT behavior to char-
acterize a zone in the parameter space ðϵ;τÞ above the curve τcðϵÞ
(see Fig. 2), we assume a fixed value of τ sufficiently above this
strip and consider the asymptotic process ϵ → 0, keeping τ fixed.*
We will start by finding the asymptotic FFT stress field, and then
show how this stress leads to predictions for the extent LFFT and
number mFFT of wrinkles in this regime.

The Asymptotic Stress Field. Motivated by experiments (9, 10) and
following the formalism developed in refs. 3, 5, and 6, we assume
that the sheet is composed of two parts: a wrinkled region in
Rin < r < L with collapsed hoop and shear stresses σθθ,
σrθ → 0, and an outer annulus L < r < Rout in which the sheet
remains planar with stresses following the Lamé form [6] appro-
priately modified. We shall prove that for ϵ ≪ 1, a state with

L > Rin is energetically favorable compared to the Lamé state,
which corresponds to L ¼ Rin. Thus, wrinkling appears as a me-
chanism for releasing elastic energy in the film. For Rin < r < L,
Eq. 1 and Hooke’s law yield

σrr ¼ T in
Rin

r
; εrr ¼

σrr
Y

; εθθ ¼ −νεrr : [12]

Continuity of the radial stress shows that the stresses in the
outer annulus have the Lamé form [6] with Rin → L and
ΔT → ΔTðLÞ ¼ T inRin∕L − Tout. For a given wrinkle extent L,
the FFT stresses are now fully characterized by Eqs. 6 and 12.
Moreover, the radial displacement urðLÞ must also be continu-
ous, and because the Lamé solution at r ≥ L implies a link
between urðLÞ and σrrðLÞ, one obtains for r < L,

urðrÞ ¼ RinðT in∕Y Þ log
�
r
L

�
þ urðLÞ; [13]

with urðLÞ ¼ ½2LðTout∕Y Þ − ð1þ νÞRinðT in∕Y Þ�. The wrinkle ex-
tent will be determined by minimizing the energy over L.

Before turning to energy calculations, let us highlight some im-
portant aspects of the FFT solution. First, as Eq. 12 indicates,
there is pure traction along the radial direction, producing a
Poisson effect εθθ ¼ −νεrr < 0 in the azimuthal direction and re-
ducing the perimeter at radius r by a total length −2πrνT in∕Y .
This local contraction shows that, for ν ≠ 0, the film is not inex-
tensible in the azimuthal direction as was assumed in refs. 7 and 8.
However, a similar constraint arises: There is an excess in length
when this contraction is not compatible with the geometrical
shortening of the perimeter length 2πurðrÞ that is generated
by the inwardly radial displacement ur < 0. In order to reduce
stretching energy, this excess of length is relieved by out-of-plane
displacement that is highly oscillatory in the azimuthal direction.
Using the strain-displacement relations, [3] and [4], and the re-
lation εθθ ¼ −νεrr , we obtain

Z
2π

0

rdθ½ur∕r þ ð∂θζÞ2∕ð2r2Þ� ¼ −
Z

2π

0

rdθνεrr: [14]

Assuming again that ζ ¼ f ðrÞ cosðmθÞ,§ one finds

m2f 2∕4r2 ¼ −ur∕r − νεrr

¼ 2ðTout∕rY ÞðRinT in∕2Tout − LÞ
þ RinðT in∕rY Þ lnðL∕rÞ: [15]

The positivity of the left-hand side of Eq. 15 shows that wrinkling
is possible only if there is an excess of length of the circle peri-
meter. An analysis of the right-hand side of Eq. 15 shows that
wrinkling is possible for Rin < r < L only if L ≤ RinT in∕2Tout,
thus providing an upper bound for the wrinkled extent.

Finally, let us make two related observations. First, Eq. 15
indicates that the product mf ðrÞ remains finite in the FFT limit,
in contrast to the NT regime where f ðrÞ is infinitesimal. Second,
Eqs. 4, 12, and 13 imply that the azimuthal variations of the dis-
placement (∂θuθ) are also finite in the FFT limit.¶ These observa-
tions underlie the difference between the singular FFT analysis
and the NT behavior, which reflects a regular expansion around

*The requirement T in, Tout ≪ Y , necessary to ensure a Hookean (linear elastic) response,
implies that the limit ϵ → 0 is to be taken maintaining the constraint ðt∕RinÞ2 ≪ ϵ ≪ 1.

†We assume that the wrinkling instability in the Lamé geometry is supercritical (amplitude
vanishes at threshold). This assumption implies that limϵ→0τcðϵÞ ¼ 2 and dictates our NT
analysis.

‡While the scaling relations for the threshold loads ratio and critical wrinkles number (our
Eq. 10) appear in ref. 15 (their Eq. 19), their expression (Eq. 29) corresponding to the NT
extent of wrinkles (our Eq. 11) seems to be wrong because it yields a diverging extent of
wrinkles as Rout∕Rin → ∞.

§Assuming a single-mode shape in the FFT regime is motivated by experiments (9, 10) and
simplifies the analysis. There are indications (9) that this assumption fails near a clamped
boundary [e.g., f ðr ¼ RinÞ ¼ 0], where a wrinkling cascade may emerge, but this does not
seem to affect the basic results of our FFT analysis, Eqs. 17 and 18. Hence, we proceed by
assuming a BCs at r ¼ Rin that are compatible with Eq. 15. Cascade effects will be briefly
mentioned later.

¶The fact that ∂θuθ remains finite in the FFT limit explains why the nonlinear model of
ref. 10, which assumes negligibility of this and similar terms, cannot describe this regime.
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a planar, axisymmetric state. Indeed, our FFTanalysis is based on
an asymptotic series in which the expansion parameter is ϵ,
in contrast to the NT regime, where the small parameter is the
wrinkle amplitude [or equivalently, the distance to threshold
τ − τcðϵÞ].

The Extent Of Wrinkles. In order to determine the wrinkled extent
L, we compute the elastic energy UE ¼ 1

2
∫ AdAðσrrεrr þ σθθεθθÞ of

the FFT stress field. A straightforward calculation using Eqs. 6
and 12 yields to Oð1∕R2

outÞ:

UE ¼ ðπ∕Y Þfð1 − νÞðRoutToutÞ2 þ ðRinT inÞ2 lnðL∕RinÞ
þ 2ðLTout − RinT inÞ2 − ð1 − νÞðRinT inÞ2g: [16]

Note that this energy does not include the costs of bending and
out-of-plane stretching of the sheet. We will show below that, in
the FFT limit, these are higher-order contributions in ϵ but are
nevertheless crucial for obtaining the number of wrinkles m. Be-
cause our problem involves constant applied forces at r ¼ Rin,
Rout, we must minimize the mechanical energy U ¼ UE −W ,
where W ¼ 2π½ToutRouturðRoutÞ − T inRinurðRinÞ� is the exerted
work. Minimizing U as a function of wrinkle extent is analogous
to fracture mechanics problems, in which the mechanical energy
is minimized as a function of crack length under constant load
conditions (17). Like cracks, wrinkles provide a route for the
release of elastic energy. Using a general result from elasticity
theory for bodies under constant external loads (17), we find that
W ¼ 2UE, and hence U ¼ −UE. In order to minimize U, we note
that its first derivative ∂LU ¼ −πð2LTout − RinT inÞ2∕ðYLÞ ≤ 0 is
zero for

LFFT ¼ RinðT in∕2ToutÞ: [17]

Interestingly, this result coincides with the upper bound implied
by the positivity of [15] and also ensures continuity of the hoop
stress at r ¼ LFFT. Thus, energy minimization naturally yields a
value for the stress at the tip of the wrinkles that smoothly
matches the flat region in the film to the wrinkled one. Fig. 3
shows that Eq. 17 corresponds to an inflection point of U, but
the upper bound found above guarantees that Eq. 17 provides
the actual length in the FFT limit. Fig. 3 also indicates that, in
the FFT limit, the energy at the inflection point UðLFFTÞ is lower
than the Lamé valueUðRinÞ. Thus, for τ > 2 and sufficiently small
ϵ, there is indeed an energy gain in the FFT regime, with respect
to the planar state (Lamé value). Eq. 17 is one of the central
results of our analysis. It reflects a linear scaling of the extent

of the wrinkles in the FFTregime with the ratio T in∕Tout, in sharp
contrast to the square-root scaling that characterizes the NT
limit, Eq. 7.

Number of Wrinkles. As noted already, our FFT theory amounts
to an asymptotic expansion of the FvK equations around the
“membrane limit.”We determined above the wrinkle extent from
the leading order in this expansion, whose energetic contribution
[16] does not depend on ϵ. This leading order is insensitive, how-
ever, to the fine features of the pattern, most importantly the
number of wrinkles. In order to determine the number of wrin-
kles, we turn now to the next (subdominant) order in the expan-
sion, whose energetic contribution will be shown to scale as

ffiffiffi
ϵ

p
.

Whereas Eq. 15 reveals that the product mf ðrÞ must remain
finite, we expect jf j to become smaller and hence m to diverge
as ϵ → 0,* which agrees with experimental observations (7–9).
It is also correlated with the fact (similar to the NT regime) that
the out-of-plane forces dominating the first FvK Eq. 9 in the FFT
regime are azimuthal bending (≈Bm4f∕L4

FFT), azimuthal com-
pression (≈σθθm2f∕L2

FFT), and radial stretching (≈σrr f∕L2
FFT, with

σrr given by [12]). Notice that, in contrast to the NTanalysis, the
FFT force estimates assume the limit ϵ → 0 while keeping the
loads ratio τ at a fixed value (and hence, by Eq. 17, fixing
LFFT∕Rin), and allowing the value of σθθ to vary. Balance of these
three forces implies the hoop stress scaling σθθ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
BTout

p
∕Rin.

This result can be expressed as σθθ∕Tout ∼ ϵ1∕2, whereas the
NT result, Eq. 10, yields σθθ∕Tout ∼ ϵ1∕4. Both scalings show that,
for small ϵ, small compressive loads are sufficient to buckle the
film. More interestingly, they express the essence of the transition
from NT to FFT conditions: a rapid collapse of the compressive
stress as the loads ratio is increased beyond threshold (for a fixed,
small ϵ). The same force balance implies the FFT scaling of the
number of wrinkles:

m ∼ kðτÞðR2
inTout∕BÞ1∕4 ∼ ϵ−1∕4 [18]

for some kðτÞ, in sharp contrast to the NT scaling [10]. This scal-
ing has already been predicted in refs. 7 and 8 and is supported by
experiments on ultrathin sheets, where ϵ is estimated to be below
10−6 (9). Computing the value of the prefactor kðτÞ introduces
complexities that will be explained later on.

Discussion
The Phase Space Structure. Focusing on highly bendable sheets
(ϵ ≪ 1), our analysis of the NTand FFT regimes yields the sche-
matic phase diagram, Fig. 2. Once the external loads induce
sufficient compressive hoop stress, a wrinkled shape will emerge.
Here the threshold line was obtained from a linear analysis simi-
lar to ref. 15 (albeit with a free edge BC at r ¼ Rin to eliminate a
spurious boundary layer near r ¼ Rin).

The stress field and pattern features must change markedly as
the loads ratio τ is increased above threshold. Most importantly,
the compressive hoop stress decreases [from Oðϵ1∕4Þ to Oðϵ1∕2Þ],
the extent of wrinkles increases [from Oðϵ1∕4RinÞ to Rinτ∕2], and
the number of wrinkles decreases [from Oðϵ−3∕8Þ to Oðϵ−1∕4Þ].
It is interesting that this rather nontrivial (and arguably, nonin-
tuitive) behavior follows directly from the force balance (FvK)
equations for thin sheets supplemented by two rather intuitive
assumptions. First, we assume the collapse of the compressive
stress in the FFT regime. Second, we assume that the normal
force balance (first FvK equation) in highly bendable sheets is
dominated by three forces: bending and compression in the azi-
muthal (transverse to wrinkles) direction and stretching in the
radial (along wrinkles) direction. This balance, which explicitly
requires the shape to be curved in both spatial directions (and
hence precludes translation invariance), underlies the morpholo-
gical complexity of the planar, axisymmetric Lamé problem, a

1 2 3 4 5
-300

-290

-280

-270

-260

-250

Unphysical Region

Fig. 3. Themechanical energyU in the FFT limit (normalized by R2
inT

2
out∕Y) as

a function of the wrinkle extent L (normalized by Rin) for τ ¼ 5, Rout ¼ 10Rin,
and ν ¼ 1∕3. An inflection point exists at LFFT ¼ τ∕2 ¼ 2.5. ΔU is the energy
gain for ϵ → 0 of the FFT energy (inflection point) with respect to the planar,
Lamé solution (upper dashed line).
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complexity that is absent in the simpler classical Euler buckling of
a sheet confined in 1D geometry.

The existence of clearly distinguished NT and FFT patterns
prompts a very practical question: How large is the NT regime
that is described by traditional postbuckling theory? Specifically,
consider a sheet with fixed thickness, geometry, and external load
(hence fixed ϵ) and assume the loads ratio τ is increased above the
threshold value τcðϵÞ. We ask two related but distinct questions:
First, at what value of τ should we expect to observe significant
deviations from the NT behavior (Eqs. 10 and 11)? Second, at
what value of τ should we begin to observe features of the FFT
pattern (Eqs. 17 and 18)? The first question can be addressed
through a perturbation theory (in the amplitude jf j) by estimating
the characteristic value of τ, where the perturbed stress values
become comparable to the prebuckled Lamé stresses (Eq. 6).
We find that the width of the NT region shrinks at a rate that
scales as ϵ1∕2 (dashed blue curve in Fig. 2). The second question
is more subtle. Our asymptotic analysis of the FFTregime, which
considers the limit ϵ → 0 for a fixed value τ > 2, shows that FFT
behavior is expected to emerge above a cross-over regime whose
size shrinks with ϵ (the purple region in Fig. 2). However, our
analysis is insufficient to predict the actual size of the cross-over
zone, nor can it reveal the exact nature of the NT–FFT transition.
The above discussion motivates the search for a nonlinear model
that will simplify the full FvK equations and will capture the be-
havior of wrinkling patterns for all values of ϵ and τ > τcðϵÞ. The
predicted narrowing of the NTregime (and transition to FFT) for
ϵ ≪ 1, indicates that experiments would need to be constructed
extremely carefully in order to observe the NT regime for highly
bendable sheets.

FFTAnalysis of the FvK Equations.Whereas the NTanalysis amounts
to a regular perturbation around the planar state (15, 16), our
FFT analysis introduces an expansion of the FvK equations
around the singular membrane limit ϵ ¼ 0. The singular nature
of the FFT expansion is further clarified by considering the en-
ergy. The leading energy U ∼ ðRinToutÞ2∕Y , Eq. 16, approaches
a (τ-dependent) value that is independent of ϵ and determines
the extent of wrinkles but does not involve their number. By con-
trast, the subleading energy involves terms such as the bending
energy UB ¼ 2πðB∕4Þ∫ L

Rin
drm4f 2ðrÞ∕r3 which scale as ϵ1∕2U and

hence vanish as ϵ → 0.* However, despite its apparent negligibil-
ity, the subdominant energy involves m, and hence it selects the
number of wrinkles. In this respect, our FFT theory joins two
apparently distinct ideas: the approach of refs. 4–6, which yields
the asymptotic stress field with collapsed compressive stress and
consequently the extent of the wrinkles [17], and the approach of
refs. 7 and 8, which yields the asymptotic scaling of the number of
wrinkles [18]. Our asymptotic expansion of the FvK equations,
which considers the high bendability limit ϵ → 0 for a fixed
τ > τcðϵÞ, shows that these two approaches are complementary:
The first results from the leading order, whereas the second ema-
nates from the next (subleading) order of the expansion. The
unusual link between the leading and subleading orders is man-
ifested in Eq. 15, which expresses a constraint on fine features of
the pattern [i.e., the product mf ðrÞ] imposed by the FFT stress
field. One should notice that phenomena, in which macroscale
features are dominated by a leading energy and fine features
are governed by a subleading energy, are not unique to elastic
sheets. A representative example is the domain structure in the
intermediate state of a type-I superconductor (18).

An important consequence of the above discussion pertains
to the robustness of patterns in the FFT regime. The small ratio
ϵ1∕2 between the subleading and leading energies suggests that
the wrinkle extent is more robust than the wavelength. This prop-
erty is manifested when studying the effect of clamped BCs
[f ðr ¼ RinÞ ¼ 0] on the wrinkling pattern.§ Although the domi-
nant energy and hence the extent of wrinkles, Eq. 17, are indif-

ferent to this effect, similar arguments to those underlying Eq. 18
show that a smooth (tension-dominated) wrinkling cascade that
emerges near the clamped edge (19) may strongly modify the pre-
factor kðτÞ in Eq. 18.

Another manifestation of the subtlety of our FFT expansion
is found when attempting to compute the prefactor kðτÞ in the
scaling law [18]. To this end (regardless of the assumed BCs
at r ¼ Rin), we must use Eqs. 12, 13, and 15 to compute the
bending energy UB and the out-of-plane stretching energy
US ¼ 2πð1∕4Þ∫ L

Rin
drrσrrðrÞf 0ðrÞ2 as functions of m, and determine

m as the minimizer of these subdominant energies. We find,
however, a divergence of f 0ðrÞ and US as L → LFFT for all m.
Initially, this observation can raise doubts to the validity of our
theory. However, careful consideration reveals the source of this
divergence: Our matching conditions at r ¼ L assume a direct
transition from the planar state at r > L to the collapsed compres-
sive stress region at r < L. The divergence of US can be remedied
if the unphysical “pointwise” matching is replaced by a smooth
matching of the two regions. The subtle aspects of our analytic
approach emphasize once more the necessity of developing mod-
el equations that will enable effective and accurate numerical
study of wrinkling patterns in the whole ðϵ;τÞ phase space.

Comparison to Previous Experiments. There are many papers that
describe wrinkling phenomena under various geometries and
load configurations. The distinction we have drawn here between
wrinkling in the NT and FFT regimes is crucial for obtaining
a proper understanding of these experiments. We restrict the
following discussion to two papers that address thin sheets in
configurations similar to the Lamé geometry.

In the experiments of ref. 9, a very thin circular sheet (t ranging
from 30–300 nm) floats on water and hence is subject to a surface
tension Tout ¼ γ at its perimeter r ¼ Rout. A liquid drop is placed
at the center, deforming the sheet beneath it, and exerting an
in-plane tensile force T in at the contact line r ¼ Rin. The problem
is thus analogous to the Lamé problem, but determining T in is a
subtle problem that has not yet been fully resolved (20). Typical
values of ϵ are less then 10−6, and hence our high bendability ana-
lysis seems relevant. The number of wrinkles (figure 2 of ref. 9)
shows excellent agreement with the FFT scaling [18], indicating
that the experiment corresponds to FFT conditions and that the
prefactor kðτÞ in Eq. 18 is nearly constant within the range of
loads ratios studied. Because T in is unknown, our result [17] can-
not be directly compared to the experiments of ref. 9. Neverthe-
less, it does resolve a puzzle raised by their empirical observation
that the length of wrinkles is approximately CL

ffiffiffiffiffiffiffiffiffi
Y∕γ

p
Rin, with CL

a numerical constant. The authors of ref. 9 assumed the NT scal-
ing, Eq. 7, and concluded that their results indicate that T in is
“independent of surface tension, which is implausible.”However,
the FFTscaling, Eq. 17, shows that the empirical law is consistent
with T in ∼

ffiffiffiffiffiffi
Y γ

p
, suggesting instead that the in-plane tension ex-

erted by the drop at the contact line is affected “equally” by the
surface tension and the stretching modulus.

In contrast to ref. 9, the Lamé geometry was studied in ref. 10
by mechanically stretching an annular sheet in an axisymmetric
fashion.∥ We find that the parameter values reported in ref. 10
correspond to a small characteristic value of ϵ≲ 10−3, but note
that the studied range of logðϵÞ is significantly narrower than in
ref. 9, and therefore comparison to the predicted scaling laws is
less conclusive. Let us discuss first figure 8 of ref. 10, which pro-
vides a striking insight into a subtle aspect of wrinkling patterns.

∥The control parameters in ref. 10 were Rin (their r0), urðRoutÞ (their β), and the “access”
radial displacement at Rin (their δi). Hence, the tensions T in and Tout are proportional to
the thickness. Using Eqs. 3 and 6 and Hooke’s law, we find ϵ ¼ t2Rout∕12ð1þ νÞR2

inβ

and τ ¼ δiRoutð1 − νÞ∕βRinð1þ νÞ. The last relation corresponds to the NT regime, which
is sufficient for our discussion, but is different in the FFT regime. The sheet thickness
in ref. 10 was t ¼ 0.2 mm, and Rout∕Rin ≥ 6.
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The pattern amplitude is plotted there as a function of the control
parameter δi (which is proportional to τ¶) and exhibits a square-
root dependence, jf j ∼ ffiffiffiffiffiffiffiffiffiffiffiffi

τ − τc
p

, which is a universal feature of
patterns in the NT regime†. However, analysis of our Eq. 15
for L ¼ LFFT and small values of τ − 2 shows that, surprisingly,
the same square-root dependence characterizes the FFT regime.
Thus, although the stress distribution, as well as the extent and
number of wrinkles strongly vary between the NT and FFT re-
gimes, the pattern amplitude does not disclose this dramatic
change. Another central result of ref. 10 is presented in their fig-
ure 7, where the number of wrinkles m is shown to scale linearly
with Rin, in apparent contradiction with both the NT (m ∼ ϵ−3∕8,
[11]) and the FFT (m ∼ ϵ−1∕4, [18]) scalings. However, replotting
the data on a log–log scale, we find the relation m ∼ ϵ−c, where c
ranges from 0.25 to 0.4. This large uncertainty does not allow a
clear distinction between NT and FFT behaviors, and it empha-
sizes the necessity of a large interval of logðϵÞ values for analyzing
wrinkling patterns in thin sheets.

Conclusions
Our paper carries two central messages: First, wrinkles in very
thin sheets may appear as two distinct types of patterns, near-
threshold and far-from-threshold. In each of these regimes, dif-
ferent asymptotic relations characterize the morphology and
stress field. Second, whereas the NTregime can be described with
the standard postbuckling approach, analysis of the FFT regime
requires a nonstandard perturbation theory around the singular
membrane limit. This analysis makes direct use of the collapse of
compressive stress in this limit. Our FFT theory unifies the stress
field analysis of ref. 5 and the scaling ideas of refs. 7 and 8. We
have demonstrated the FFT theory for the Lamé problem—a
sheet of axisymmetric geometry and loads, which is the simplest
extension of the classical Euler buckling of sheets confined in a
1D geometry. Our analysis makes use of the high degree of sym-
metry of the Lamé problem, which implies dependence of the
patterns on two dimensionless parameters ðϵ;τÞ only. Neverthe-
less, we anticipate that the method introduced here will lead to

insights on wrinkling phenomena in setups with a lower level of
symmetry (for instance, the indentation experiments of ref. 14).

Our analysis substantiates the analogy discovered by Mansfield
between crumpling and wrinkling (4, 21). Similar to our wrinkling
pattern, the macroscale features of a crumpled shape are deter-
mined by minimizing a dominant energy (22). However, although
the dominant energy of a wrinkling pattern consists of stretching
[Eq. 16], a crumpling pattern is dominated by a bending energy,
whose minimization leads to a stress-focusing shape: line or point
singularities that connect strainless regions. Furthermore, in both
cases, the subdominant energies consist of a mixture of stretching
and bending terms that determine small-scale features of the
pattern: wavelength (wrinkling) and the size of stress-focusing
zones (crumpling). Recent experiments (23, 24) have shown
that this mixture of subdominant energies leads to the complex
shapes of curtains: multiscale, hierarchical patterns that interpo-
late between crumpling- and wrinkling-like shapes.

The classification of wrinkling patterns into NT and FFT
regimes provides previously undiscovered insights into the beha-
vior of elastic sheets. Our results raise some interesting problems
concerning the nature of the transition between the NTand FFT
regimes and crucial aspects of the FFTanalysis, such as the com-
putation of the exact wrinkle number, and how it is influenced
by boundary conditions. We hope that the ideas introduced in
this paper will inspire theoretical and experimental works that
will further elucidate the subtleties of wrinkling phenomena and
other types of deformations of thin compressed sheets.
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