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Abstract
Low oxygen levels are a defining characteristic of solid tumors, and responses to hypoxia
contribute substantially to the malignant phenotype. Hypoxia-induced gene transcription promotes
characteristic tumor behaviors including angiogenesis, invasion, metastasis, de-differentiation and
enhanced glycolytic metabolism. These effects are mediated, at least in part, by targets of the
Hypoxia Inducible Factors (HIFs). The HIFs function as heterodimers, made up of an oxygen-
labile α-subunit and a stable (β-subunit, also referred to as ARNT. HIF-1α and HIF-2α stimulate
the expression of overlapping as well as unique transcriptional targets, and their induction can
have distinct biological effects. New targets and novel mechanisms of dysregulation place the
HIFs in an ever more central role in tumor biology, and have led to development of
pharmacological inhibitors of their activity.

Introduction
Hypoxia occurs when available oxygen falls below 5%, triggering a complex cellular and
systemic adaptation mediated primarily through HIF transcription. HIF-1α was first
identified as a critical regulator of erythropoietin expression in response to low oxygen [1].
HIF-2α and HIF-3α have also been described, with HIF-3α (also known as IPAS)
functioning as an inhibitor of transcription [2,3]. More than 100 HIF targets have been
identified in a variety of systems. These include promoters of angiogenesis, such as Vascular
Endothelial Growth Factor (VEGF) and Platelet Derived Growth Factor, glycolytic enzymes
such as Aldolase A and Phosphoglycerate Kinase, and cell cycle regulators such as p21 and
p27, as well as genes involved in extracellular matrix remodeling, differentiation and
apoptosis [4–7]. HIF-1α and HIF-2α bind hypoxia response elements (HREs) in a complex
with the (β-subunits, ARNT and (more rarely) ARNT2 [8,9]. The biological significance and
transcriptional effects of HIF-3α remain somewhat obscure, and only HIF-1α and HIF-2α
will be discussed further in this review.

HIF-α subunits are continuously transcribed and translated, and their stability is regulated by
oxygen availability. Under normoxic conditions, two prolines (402 and 564 in human
HIF-1α and 405 and 531 in human HIF-2α) in the HIF-α oxygen-dependant degradation
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domain (ODD) are hydroxylated by a family of oxygen dependant proline hydroxylases
(PHD1–3) [10–13], allowing binding and ubiquitylation by the von Hippel-Lindau (VHL)
tumor suppressor, a component of an E3 ubiquitin ligase complex [14]. HIF-α interaction
with the transcriptional co-activator p300 is also regulated by oxygen levels, with binding
inhibited by oxygen-dependent asparaginyl hydroxylation (asparagines 803 in human
HIF-1α and 851 in human HIF-2α) of the HIF transactivation domain by Factor Inhibiting
HIF (FIH) [15,16].

VHL disease is a hereditary cancer syndrome marked by clear cell renal carcinoma (RCC),
pheochromocytoma, and hemangioblastoma. The VHL tumor suppressor protein (pVHL) is
required for normoxic degradation of the HIF-α subunits and can also target atypical protein
kinase C λ and some subunits of RNA polymerase for degradation [17]. Of the VHL-
associated malignancies, RCC and hemangioblastoma result from normoxic HIF-2α
stabilization [18–21], whereas pheochromocytoma results from a HIF-independent effect of
pVHL on JunB [22]. The HIFs also play an important role in non-inherited malignancies.
There is substantial clinical data associating HIF-α protein expression with poor outcomes in
patients with a broad range of sporadic cancers. These include adenocarcinoma of the breast,
lung, and GI tract, as well as CNS malignancies and squamous cell tumors of the cervix and
head and neck [5]. Data from mouse allograft studies have been less consistent. In some
cases, disruption of Hif-1α inhibited allograft growth [23,24], but in others it promoted it
[25,26]. Consistent inhibition of tumor growth has been observed following normoxic
stabilization of HIF-1α due to Vhl loss [20,27–29] and the overexpression of HIF-1α or
HIF-2α in glioma [25,30].

Regulation of HIF Stability and Expression
The normoxic degradation of the HIF-α subunits is well characterized, but its inhibition
under hypoxia is an area of active investigation, and remains controversial. As oxygen is
required for hydroxylation, it is a limiting substrate under anoxic (0% O2) conditions.
However, HIF-α’s are stabilized in a reactive oxygen species (ROS)-dependent fashion well
above this threshold. Early evidence showed that inhibitors of mitochondrial ROS
generation were able to block hypoxic HIF-α stabilization [31]. However, such drugs may
have toxic or off target effects on HIF-α regulation. It has also been suggested that these
drugs may cause redistribution of oxygen away from the mitochondrion, leaving more
available for PHD activity and thus maintaining it under moderate hypoxia [32,33].
However, genetic studies have shown that disruption of electron transport chain (ETC)
Complex III, cytochrome c and Rieske iron-sulfur protein also block hypoxic HIF
stabilization [34,35], while disruption of ETC Complex IV did not [36]. These data suggest
that respiration is not required for HIF-α stabilization but the delivery of electrons to
cytochrome c is, supporting a requirement for ROS (but not oxygen consumption) in
hypoxic HIF-α stabilization. Further evidence comes from the analysis of junD−/− mice,
which show enhanced ROS production and normoxic HIF-α expression. In this case,
enhanced intracellular H2O2 levels were shown to inhibit PHD activity by altering the
reduction of Fe3+ to Fe2+, which is required for PHD activity [37]. This is also a plausible
mechanism for PHD regulation in hypoxic cells.

Normoxic HIF-α stabilization is both necessary and sufficient for RCC development
following VHL inactivation. pVHL can also be inhibited by the E2-EPF ubiquitin carrier
protein, which targets pVHL for proteasome mediated degradation [38]. Overexpression of
this protein occurs in breast, lung, ovarian and CNS cancers, and correlates strongly with
tumor grade and poor patient outcomes [39]. The alteration of metabolic pathways
impinging on PHD activity can also promote normoxic HIF-α stabilization and tumor
formation. In addition to oxygen and Fe2+, the PHDs require 2-oxoglutarate as a substrate
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and ascorbic acid as a co-factor to catalyze HIF-α hydroxylation, and produce succinate and
carbon dioxide in addition to hydroxylated proline residues. Inactivation of fumarate
hydratase, a rare cause of inherited RCC, promotes HIF-α stabilization due to inhibition of
the PHDs by fumarate, which competes with 2-oxoglutarate for active site binding [40].
Similarly, inactivation of succinate dehydrogenase, which occurs in some renal, thyroid and
colon cancers, leads to succinate accumulation and product inhibition of the PHDs [41].

Control of HIF-α translation
The mTOR kinase responds to nutrient and growth factor availability to regulate translation.
Normoxic HIF-α expression is promoted by disruption of mTOR regulation, resulting from
increased HIF-α translation rates despite unaltered levels of degradation. This is likely to
occur in many tumors which show hyperactivation of receptor tyrosine kinases, and thus
translation [42], but is also seen in several inherited tumor syndromes. Loss of the TSC2
tumor suppressor gene, an inhibitor of mTOR activity, causes normoxic stabilization of the
HIF-α subunits by enhancing their translation rate, leading to the formation of highly
vascular tumors [43]. Enhancement of HIF-α translation under hypoxia by disruption of the
promyelocytic leukemia tumor suppressor (PML) can also promote tumor growth.
Originally identified as part of a leukemogenic fusion protein, PML has since been
appreciated to have a tumor suppressive effect, and is lost in multiple sporadic tumors [44].
Genetic disruption of Pml correlates with increased VEGF and HIF-α expression through
attenuation of the hypoxic inhibition of mTOR, normally effected by the sequestration of
mTOR in PML containing nuclear subdomains [45]. Thus, the regulation of HIF-α
translation is likely to have a contributing role in a broad range of tumor types.

HIF-1α vs. HIF-2α
Discovered first and expressed ubiquitously, HIF-1α is by far the best characterized α-
subunit. HIF-2α expression is limited to endothelium, kidney, heart, lung and
gastrointestinal epithelium, and some cells of the CNS [3,46,47]. Differences exist in their
targets, with HIF-1α uniquely activating glycolytic enzyme genes and HIF-2α preferentially
activating VEGF, transforming growth factor-α (TGFα), lysyl oxidase, Oct4 and Cyclin D1
[7,48–52]. Similarly, the effects of Hif-1α and Hif-2α gene disruption are substantially
different, with Hif-1α knockout leading to impaired cardiac and vascular development and
E10.5 lethality [23,26,53] while Hif-2α loss leads to a broad range of phenotypes including
embryonic lethality due to bradycardia and vascular defects, perinatal lethality due to
impaired lung maturation, and embryonic and post-natal lethality caused by multi-organ
failure and mitochondrial dysfunction [54–57].

Differences in gene targets and knockout phenotypes suggest that HIF-2α may promote a
distinct phenotype in tumors expressing it. This has been observed in CNS, colorectal, non-
small cell lung and head and neck tumors, where expression of HIF-2α is more strongly
associated with poor patient outcomes than expression of HIF-1α [5,58]. Data from genetic
models suggest that HIF-2α may preferentially promote tumorigenesis, where ES cell
derived teratomas with HIF-2α “knocked in” to the Hif-1α locus exhibiting a four-fold
increase in mass over HIF-1α expressing controls, largely due to increased proliferation
[59]. Enhanced proliferation likely results from increased expression of TGFα and Cyclin
Dl. Additional effects on the tumor phenotype may result from HIF-2α mediated induction
of the stem cell factor Oct4 and activation of c-Myc transcription, as described below
[49,60].
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HIF transcriptional targets
A series of microarray studies have defined HIF target gene families [6,7,50,61–64].
Erythropoeisis, angiogenesis, and glycolytic metabolism are controlled through multiple
gene targets, with differential activation based on cell type and which HIF-α subunit is
expressed. Continued analysis is expanding our understanding of how some of these
responses are mediated. HIF-1α induction of glycolytic metabolism has been well
appreciated, but the inhibition of aerobic metabolism through the induction of pyruvate
dehydrogenase kinase (PDK1) was only recently described. PDK1 phosphorylates pyruvate
dehydrogenase, inhibiting the conversion of pyruvate to acetyl-CoA. The inhibition of
aerobic metabolism at moderate levels of hypoxia may free limited oxygen supplies for
other cellular processes and avoid the accumulation of toxic metabolites [65,66].

Metastasis is a defining characteristic of cancer, and is also promoted by tumor hypoxia.
Metastasis is a coordinated process, where chemokines direct cell migration, adhesion
molecules mediate attachment in distant organs, and proteases and other secreted enzymes
degrade or alter the extracellular matrix. Studies in breast cancer and RCC demonstrated that
the chemokine receptor CXCR4, a major metastatic mediator, is upregulated by HIF [67],
while analysis of lung epithelium further showed matrix metalloproteinases (MMPs) 2 and 9
are regulated by hypoxia [68]. Another key mediator of metastasis is the HIF target lysyl
oxidase, which is strongly associated with hypoxia and poor patient outcome in several
tumor types. Lysyl oxidase alters extracellular matrix components such as elastin and
collagen and its inhibition blocks in vitro migration and in vivo metastasis from
subcutaneous xenografts or after tail vein injection [52].

HIF targets known to be important in development also have a substantial role in tumor
biology. Oct4, a POU-domain transcription factor and HIF-2α target, is a key regulator of
stem cell behavior. Well known for a role in embryonic stem cells, Oct4 has more recently
been observed in some adult stem cell populations [69]. In studies of a knock-in model
where HIF-2α was expressed from the Hif-1α promoter, a dramatic disruption of embryonic
development was observed, correlating with an enhancement of TGF-α, VEGF and Oct4
expression. In vitro models of these developmental phenotypes were mostly reversed by
shRNA knockdown of Oct4 [49]. Interestingly, Oct4 knockdown also substantially reversed
the growth advantage seen in subcutaneous teratomas derived from the knock-in ES cells
compared to teratomas from Hif-1α WT ES cells [49]. The mechanism by which Oct4
modulates tumor behavior is not yet clear, but one intriguing possibility is that it promotes
the growth of a ‘cancer stem cell’ population, and thus self-renewal and chemotherapy
resistance.

In addition to its direct gene targets, HIF can regulate the transcription factors Notch and c-
Myc [70,71]. HIF-1α was found to require Notch and its target genes in models of hypoxia-
induced muscle and neural cell de-differentiation. In fact, HIF-1α interacts directly with the
intracellular domain of Notch1, increasing its half-life and transcriptional activity [72]. The
in vivo implications of this interaction remain to be understood, but given Notch’s role in
development and tumor biology they are likely to be significant [73]. The implications of
HIF-1α inhibition of c-Myc are somewhat clearer. Though HIF-1α has long been connected
with cell cycle arrest, the mechanism by which this occurs has not been well understood.
HIF-1α directly inhibits c-Myc, causing de-repression of its targets p21 and p27 [70]. c-Myc
targets involved in mismatch repair are also modulated by HIF-1α, suggested a role for HIF
in hypoxia induced genetic instability [71]. In assessing the effects of HIF-2α on c-Myc, we
have observed that HIF-2α promotes c-Myc transcriptional activity, which may also
contribute to HIF-2α mediated tumor progression [60].
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HIF and Cancer Therapy
Pharmacologic inhibition of the HIF target VEGF has proven efficacy as a cancer
therapeutic [74], and has generated interest in targeting global HIF activity. Direct
approaches, such as inhibition of p300-mediated co-activation [75] and DNA binding [76],
are being explored as is HIF inhibition through repression of its translation. HIF-α subunits
appear to be particularly sensitive to translational regulation as the use of pharmacological
mTOR inhibitors can block HIF-α expression even following VHL loss [77]. In fact, the
mTOR inhibitor CCI-779 resulted in a statistically significant survival advantage in patients
with metastatic renal cancer [78].

Mouse models have shown that HIF can have a substantial impact on the response to
cytotoxic cancer therapies. Ionizing radiation (IR) treatment in subcutaneous tumor models
causes HIF-1α stabilization through ROS induction. HIF-1α induction leads to release of
cytokines including VEGF that promote endothelial cell survival, and thus blunt the
therapeutic effect of IR [79]. The stabilization of HIF-1α in endothelial cells is also likely to
occur following IR, and can substantially promote tumor growth [80]. On the other hand,
HIF-1α enhances the effect of IR on tumor cells themselves. In a similar model, induction of
HIF-1α promotes p53 phosphorylation and stabilization, as well as cell death following IR.
These effects, combined with HIF effects on the endothelium, suggest a particular advantage
to combination treatments using IR followed at a later point by HIF inhibition [81]. Thus,
the inhibition of the HIFs, either at the level of protein expression or transcriptional activity,
should be consider on a case-by-case basis, depending on tumor type and other therapies
used concurrently.

Conclusion
In addition to important roles in development, hematopoeisis, and ischemic disease the HIFs
also have a broad range of effects on tumor biology. They are directly responsible for tumor
angiogenesis and metastasis, and contribute substantially to metabolic changes, the evasion
of apoptosis, and genomic instability. Despite the appreciation of their relevance to tumor
biology, novel targets and mechanisms are reported frequently. Their pharmacological
inhibition represents an opportunity and a challenge, and an important area for future study.
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Figure 1. HIF-1α and HIF-2α activate overlapping but distinct genes
HIF-1α and HIF-2α share the regulation of target genes involved in angiogenesis, invasion
and metastasis, while HIF-1α alone activates genes involved in glycolysis and apoptosis.
HIF-2α uniquely activates the stem cell factor Oct4 and Cyclin D1, while it preferentially
regulates the growth factor TGFα. Abbreviations: Platelet derived growth factor (PDGF),
fms- related tyrosine kinase 1 (Flt1), Tunica internal endothelial cell kinase 2 (Tie2),
Plasminogen activator inhibitor 1 (PAI-1), Lactate dehydrogenase A (LDHA), BCL2/
adenovirus E1B 19kDa interacting protein 3 (BNIP3), Cyclin D1 (CCD1).
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Figure 2.
Regulation of HIF-α stability: continuously transcribed and translated, the HIF-α subunits
are degraded under normoxic conditions. Two prolines in the ODD are hydroxylated by
PHD1, 2 or 3, allowing recognition by an E3 ubiquitin ligase complex including the VHL
tumor suppressor protein. Following pVHL-mediated ubiquitylation, the HIF-α subunits are
degraded in a proteasome-dependent fashion. When oxygen levels fall below ~5%, the
PHDs are no longer active and the HIF-α subunits can translocate to the nucleus, where they
bind co-factors including ARNT and p300 and transactivate hypoxia response genes, such as
VEGF and PGK.
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