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Abstract

Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including
organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for
preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during
early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells
constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in
human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines
that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype
and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP
expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in
cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively.
Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta
receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs
capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.
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Introduction

Recent studies have not only demonstrated the evolutionary

conservation of autophagy (Atg) gene function in vertebrates but

also highlighted the involvement of the autophagy machinery in

many aspects of tissue homeostasis. Despite its recognized roles in

homeostasis, cancer, degenerative diseases and organelle turnover,

and its essential role in preimplantation development of mouse

embryos and cavitation of embryoid bodies, little is known about

the role of autophagy in early human development Human em-

bryonic stem cells (hESC) offer a unique window on the earliest

differentiation events in early human development [1].

LC3 is currently the only molecular marker available for fo-

llowing the autophagosome in cells. GFP fused to LC3 is a well

accepted approach to monitor autophagy whereby the appearance

of green fluorescent puncta are indicative of the recruitment of

LC3 to the forming autophagosomes [2,3] We sought to estab-

lish and validate LC3-GFP reporter hESC lines. We used these

cell lines to identify a novel link between autophagy and early

differentiation of hESC.

Results and Discussion

Human Embryonic Stem Cell lines stably expressing GFP-LC3
Lentiviral transduction of an expression construct encoding

GFP fused to LC3 and under the control of the constitutive-

ly active E1A (BOS) promoter was used to generate HES3 and

HES4 hESCs (hereafter HES3-GFP-LC3 and HES4-GFP-LC3)

that stably and constitutively express GFP-LC3 [4,5]. After app-

lying a Blasticidin selection regime the majority of cells in a

population of HES3-GFP-LC3 (Fig. 1A) or HES4-GFP-LC3

(Fig. 1B) expressed GFP when viewed by fluorescence micros-

copy. Analysis by flow cytometry (Fig 1C) indicated that greater

than 85% of HES3-GFP-LC3 cells express both GFP and the

pluripotency marker TG30. At higher magnification (Fig. 1D) it

was evident that GFP-LC3 transduced hESC, in addition to low

GFP fluorescence in the cytosol, often display one or two bright

fluorescent puncta that correspond in terms of size and appear-

ance to autophagosomes (Fig. 1E) [3]. HES3-GFP-LC3 treated

with rapamycin to induce autophagy and immunostained with

an antibody against the lysosomal membrane protein LAMP-1

(Fig. 1F) showed green fluorescent puncta some of which co-

localized with LAMP-1 labelling. This result indicates that the

autophagosomes once formed are able to undergo fusion with

lysosomes as would be required during the course of autophagy.

Characterisation of HES3-GFP-LC3
HES3-GFP-LC3 displayed the typical small round and den-

sely packed morphology of undifferentiated hESCs with a high

nuclear-cytoplasm ratio and prominent nucleoli (Fig. 1G and 1H).

These cells robustly expressed, Oct4 (Fig. 1I; DAPI staining

for nuclei Fig 1J), TRA-181 (Fig. 1K), TRA-160 (Fig. 1L) and

TG30 (Fig 1 M). Isotype control stained hESC displayed no
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immunoreactivity (Fig 1N). Importantly, cells displayed a normal

karyotype (Fig. S1) indicating that lentiviral transduction and in

vitro culture had not induced any detectable chromosomal

rearrangements.

Six weeks after injection of HES3-GFP-LC3 into SCID mice

teratomas were formed that showed evidence of differentiation

into cell types representative of the three germlayers, including

cartilage and muscle (mesoderm), glandular epithelium (endo-

derm) and keratinocytes, neuroepithelium and primitive neuronal

cells (ectoderm) (Fig. 2A). GFP expression and fluorescent puncta

were present in the cytosol of most of the differentiated derivatives

of the teratomas (Fig. S2 A-D). The amount of GFP expressing

Figure 1. HES3 LC3-GFP cells are pluripotent. The majority of cells in an HES3-GFP-LC3 (A) or HES4-GFP-LC3 (B) colony express green
fluorescence distributed evenly throughout the cytosol. Flow cytometric analysis of HES3-GFP-LC3 shows greater than 85% of the cells express GFP
and the pluripotency marker TG30 (C). GFP-LC3 transduced hESC often show 1–2 bright fluorescent puncta (D) and the appearance of typical
autophagosomes (E and insert). A subset of autophagosomes co-localise, as indicated by arrow heads, with the lysosomal membrane marker LAMP-1
(F). GFP-LC3 transduced hESC are small and densely packed when viewed under transmitted light (G) and show a high nuclear to cytoplasm ratio (H,
cells stained for DNA with Hoechst). HES3-GFP-LC3 cells express the pluripotency markers Oct4 (I) and corresponding DAPI stained nuclei (J), TRA-181
(K), TRA-160 (L) and TG30 (M). No immunostaining was observed in isotype control stained cells (N).
doi:10.1371/journal.pone.0027485.g001
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tissue observed in these sections is consistent with the observation

that 85% of undifferentiated HES3-GFP-LC3 express GFP. An

example of hESC differentiated into ganglia is shown in Fig. 2B

where at higher magnification autophagosomes could be clear-

ly observed. Collectively these data suggest that hESCs over-

expressing GFP-LC3 are pluripotent and that the persistence of

transgene expression following long term differentiation in vivo will

allow these cells to be used for investigating autophagy in most

human cell types that can be differentiated from human em-

bryonic stem cells. The LC3-GFP transgene is a commonly used

reporter for the autophagosome and its expression in mice does

not interfere with normal mouse development. We did not observe

any evidence for the abnormal differentiation or proliferation of

the hESC autophagy reporter lines generated in this study.

Regulation of autophagy in HES3-GFP-LC3
Rapamycin, an inhibitor of mTOR, and wortmannin, a PI3-

kinase inhibitor, are commonly used to induce or inhibit auto-

phagy, respectively [6,7]. The numbers of fluorescent puncta

increased 4-fold from 6 to 23 per cell when feeder-free cultured

Figure 2. Teratoma sections derived from HES3 LC3-GFP cells and persistence of LC3-GFP transgene expression. (A), Representative
sections of a 6 week old teratoma derived from HES3-LC3-GFP cells showed cell types representative of the three germlayers with each section shown
magnified at right. (B), GFP fluorescence persists in teratomas of HES3-LC3-GFP cells. Representative images showing haemtoxylin/eosin staining and
GFP fluorescence of two immediately adjacent serial sections of a HES3-LC3-GFP teratoma are shown. Brightfield and DAPI staining images
corresponding to the GFP-fluorescence panel are shown. Arrow heads highlight autophagosomes in themagnified section (inset).
doi:10.1371/journal.pone.0027485.g002
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HES3-GFP-LC3 cells were treated with rapamycin (200 nM) for

2 h (Fig. 3A & B). The average number of puncta was reduced to 2

per cell in cell treated with wortmannin (150 nM) (Fig. 3B). In

agreement with these data the median number of puncta in HES3-

GFP-LC3 cells treated with rapamycin was found to increase 4-

fold from 1 (with a range from 1–7) to 4 (with a range from 1–27)

puncta per cell when cell populations were analysed using imaging

flow cytometry (Fig. 3A & D), a validated approach to quantify

autophagy in large populations of cells [8].

The cytosolic precursor LC3 protein is rapidly converted to

LC3-I by specific protease action [9], and upon induction of auto-

phagy is recruited to the phagophore as the lipidated form, LC3-

II. [3]. The LC3-I to LC3-II conversion can be used to monitor

autophagy. SDS-PAGE immunoblot analysis of HES3-GFP-LC3

cell lysates showed the presence of LC3 immuno-reactive material

with mobilities corresponding to GFP-LC3-I (Mr 45,000) and

endogenous LC3-I (Mr 18,000) together with smaller amounts of

GFP-LC3-II (Mr 40,000) and endogenous LC3-II (Mr 13,000)

(Fig. 3E). Cells treated with rapamycin showed a significant

increase in both the GFP-LC3-I/GFP-LC3-II and endogenous

LC3-I/LC3-II ratios. Treatment of cells with wortmannin reduced

these ratios. We conclude that autophagy occurs at a basal level in

undifferentiated hESC and is subject to mTOR and PI3-kinase

control, similar to other cell types [10,11].

A novel link between autophagy and differentiation of
hESC

Depriving hESC of MEF secreted factors is known to lead to

differentiation [12,13]. HES3-GFP-LC3 cells cultured for 3 days

under feeder-free conditions in unconditioned medium display an

Figure 3. Regulation of autophagy in HES3 LC3-GFP cells. The number of fluorescent puncta observed by fluorescence microscopy in HES3
LC3-GFP cells under control conditions increased after incubation with rapamycin (200 nM) for 2 h (A). Numbers of fluorescent puncta in cells were
determined in control cells and after treatment with rapamycin (200 nM), or wortmannin (150 nM) for 2 h (B). Using fluorescence microscopy over
100 cells were observed in 3 independent experiments. Cells with and without treatment with rapamycin (200 nM) for 2 h analysed by imaging flow
cytometry (C). Numbers of fluorescent puncta in 10,000 individual cells from each sample were determined. Representative bright-field and
fluorescence emission images for two individual cells from each sample are shown. The fluorescent puncta inside each cell are clearly visible (D). Cell
lysates were prepared, subjected to SDS-PAGE and blots probed with a monoclonal antibody against LC3 (top and middle) or actin (lower panel) (E).
Conditioned medium (CM) lane 1; CM + rapamycin for 2 h (200 nM), lane 2; unconditioned medium 3 days, lane 3; CM + SB431542 for 3 h (10 mM),
lane 4; CM + wortmannin for 3 h (150 nM), lane 5.
doi:10.1371/journal.pone.0027485.g003
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increase in both the number of fluorescent puncta (Fig. 4 D)

as compared to HES3-GFP-LC3 cells in conditioned medium

(Fig. 3C), and LC3-II processing (Fig. 3E, lane 2 and Fig. 4G).

This increase in autophagy is most likely related to the cellular

remodelling events that accompany spontaneous differentiation of

hESC. Remarkably, acute induction of hESC differentiation with

10 mM SB431542, a TGF b rec II inhibitor [14,15], leads to a

rapid increase in the number of fluorescent puncta (Fig. 4 E & F)

as early as 2 hours after addition of the inhibitor and increased

LC3-II (Fig. 3E, lane 4), after 3 hours. SB431542 treatment did

not result in autophagy induction in differentiated hESC, mu-

rine fibroblasts or RAW264.7 macrophages indicating this is not

due to TGF-b receptor inhibition per se (data not shown). Our data

therefore suggest a link between autophagy and early small

molecule-enforced differentiation of hESC. To our knowledge an

increase in autophagy in human embryonic stem cells during these

earliest steps of differentiation has thus far not been reported.

mTOR signaling was previously shown to be important for

Figure 4. Spontaneous and induced differentiation promotes autophagy in HES3 LC3-GFP cells. Cells were maintained in either
conditioned medium (CM, panels A, C) or unconditioned medium (B, D). Bright field images of an individual colony at low magnification (A, B) and
fluorescence images are shown. Cells maintained in CM supplemented with SB431542 (10 mM) were imaged after 3 hours incubation (E). Fluorescent
puncta were counted in cells for three independent experiments after h and 7 days of incubation in the presence of SB431542 (F). Analysis of western
blot data (see Fig 3) was used to calculate the GFP-LC3II/Actin and LC3II/Actin ratios after 3 day culture in unconditioned medium (UCM) and
SB431542 treatment for 3 hours (G).
doi:10.1371/journal.pone.0027485.g004
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proliferation of undifferentiated embryonic stem cells [16–18], and

to enhance osteoblastic differentiation of hESC following a 5–7

day exposure to rapamycin. However, the focus in those studies

was on the mTOR-S6 kinase axis rather than the autophagy

inducing effect of rapamycin. Gene knock out studies in mice have

demonstrated that autophagy plays a role in visceral endoderm

and neural tube differentiation [19,20] and is a major route for

lysosomal protein degradation [21]. Murine ES cells (mESC) were

found to display an increase in LC3I to LC3II conversion, in-

dicative of autophagy, 3 to 6 days after differentiation as embryoid

bodies. Indeed, mESC in which the gene for Beclin1, a regulator

of autophagy, was inactivated display a failure in embryoid body

cavitation and an accumulation of apoptotic cells in 3 to 6 day old

Beclin1 null murine embryoid bodies [20]. These data showed that

autophagy is involved in the cellular remodelling events following

lineage specification and acquisition of morphological and fun-

ctional differences of differentiated cell types. In contrast our data

show an increase in LC3 processing as early as 3 hours after

addition of SB431542 (Fig 3E) to human ESC, suggesting that

autophagy induction and early differentiation events in hESC may

be functionally linked. Despite our observation that no increase in

autophagy in fibroblasts, macrophages or differentiated hESC is

observed following SB431542 exposure and the published data

indicate that TGFb-receptor activation by TGFb leads to in-

creased autophagy [22,23], we cannot formally exclude the possi-

bility that TGF b rec II inhibition somehow leads to mTOR

inhibition in a pluripotent hESC specific manner.

It is unlikely that the observed increase in autophagy during

early differentiation of hESC is due to a starvation response as the

culture medium on differentiating hESC cultures was changed

daily. Although our data do not allow us to determine whether

autophagy is upstream, concomitant with, or downstream of di-

fferentiation we speculate that autophagy may play an upstream

regulatory role in hESC differentiation through degradation of

pluripotency regulating protein complexes.

Summary
In this study we have established hESCs expressing the GFP-

LC3 reporter and for the first time demonstrate the occurrence

of autophagy in hESCs. Using the hESC autophagy reporter li-

nes generated in this study we provide preliminary evidence for

a previously unrecognized link between autophagy and early

differentiation of hESC.

Materials and Methods

Cell culture
Human ES cell lines HES-3 or HES-4 stock cultures were main-

tained and expanded as described [24–26] Feeder-free cultures

were maintained as described [27].

Lentiviral transduction
Lentivirus containing pLenti BOS-LC3-IRES-GFP vector was

produced as described [28]. Feeder-free cultured HES-3 or HES-4

hESCs were transduced with BOS-LC3-IRES-GFP lentivirus

(M.O.I. = 5) in the presence of polybrene (6 mg/ml). Selection with

blasticidin (5 mg/ml) was maintained for 10 days and stably

transduced blasticidin resistant hESC colonies expanded and

propagated as described [28].

Western Blotting
Polypeptides were separated on 12% SDS-polyacrylamide gels.

Western blots were probed with mouse monoclonal antibodies

against LC3 (NanoTools) (1:500) or Actin (1:1000) and visualized

using AlexaFluor 488-conjugated goat-anti-mouse IgG (Molecular

Probes) (1:2000) [29].

Flow cytometry
hESC’s were harvested by collagenase digestion and single cell

suspensions prepared using Cell Dissociation Solution (Sigma).

Conventional flow analysis of CD9/TG30 expression was per-

formed using a Cytomics FC 500 series flow cytometer (Beckman

Coulter) [28].

For imaging flow analysis images of single cells were acquired

using an ImageStream multispectral imaging flow cytometer

(Amnis Corporation, Seattle, WA) with 488nm laser light ex-

citation. Cell populations were gated for both GFP emission and

single cells, and image data processed for counting of fluorescent

puncta. Using IDEAS v3.0 software (Amnis Corporation, Seattle,

WA) the threshold parameters were applied to the default mask of

the representative cells according to the manufacturer’s instruc-

tions. At least 10,000 cells were analysed in duplicate for each

sample.

Immunofluorescence staining
Immunostaining using antisera against TRA-1–60 (1:100,

Millipore MAB4360), TRA-181 (1:100, Millipore), Oct3/4 (1:50,

Santa Cruz sc-5279) or LAMP-1 (1:250, Development Studies

Hybridoma Bank, University of Iowa, IA) was performed as

described [29]. Images were acquired using wide-field fluorescence

microscopy and processed using Volocity software (Olympus).

Teratoma formation
Analyses of teratomas formed by GFP-LC3 transduced hESC

lines were performed as described [29] with the exception that

freshly harvested teratomas were embedded in OCT compound

for cryosectioning. Adjacent serial sections were either: (i) fixed

with formaldehyde and stained with Heamatoxilin/Eosin, (ii) ima-

ged for GFP expression, or (iii) fixed with paraformaldehyde, stain-

ed with antibodies against GFP and imaged for the fluorescent

conjugated secondary antibody.

Supporting Information

Figure S1 Karyotype analysis of HES3 LC3-GFP cells
and HES4 LC3-GFP cells. HES3 LC3-GFP cells and HES4

LC3-GFP hESC show normal karyotypes and G-banding.

(TIF)

Figure S2 H&E staining and GFP fluorescence in adja-
cent sections of a teratoma derived from HES3 LC3-GFP
cells. Representative pairs of serial cryosections (A,B; C,D) of a 6

week old teratoma derived from HES3-LC3-GFP cells were either

fixed and stained with haemtoxylin and eosin (A and C) or imaged

directly for fluorescence due to GFP (B and D). Portions of A and

B section are shown enlarged in C and D.

(TIF)
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