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Abstract 
Lung cancer is currently the leading cause of cancer 
death in Western nations. Non-small cell lung cancer 
(NSCLC) represents 80% of all lung cancers, and ad-
enocarcinoma is the predominant histological type. 
Despite the intensive research carried out on this field 
and therapeutic advances, the overall prognosis of 
these patients remains unsatisfactory, with a 5-year 
overall survival rate of less than 15%. Nowadays, phar-
macogenetics and pharmacogenomics represent the 
key to successful treatment. Recent studies suggest 
the existence of two distinct molecular pathways in the 
carcinogenesis of lung adenocarcinoma: one associated 
with smoking and activation of the K-Ras  oncogene and 
the other not associated with smoking and activation of 
the epidermal growth factor receptor (EGFR). The K-ras  

mutation is mainly responsible for primary resistance to 
new molecules which inhibit tyrosine kinase EGFR (er-
lotinib and gefitinib) and most of the EGFR mutations 
are responsible for increased tumor sensitivity to these 
drugs. This article aims to conduct a systematic review 
of the literature regarding the molecular pathways in-
volving the EGFR, K-Ras  and EGFR targeted therapies 
in NSCLC tumor behavior. 
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INTRODUCTION 
Recently, it was estimated that about 11 million people 
presently have cancer worldwide[1,2]. In the United States, 
lung cancer (LC) is the main cause of  cancer death, in 
both genders, and it has a global incidence of  about 
70 cases per 100 000 inhabitants[3-5]. In Europe, LC 
incidence is about 52.5 cases per 100 000 inhabitants 
(82.5/100 000 in males and 23.9/100 000 in females) and 
mortality is approximately 48.7/100 000 (77/100 000 in 
males and 23.9/100 000 in females)[3,6]. Smoking status 
was demonstrated in previous reports to be an important 
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prognostic factor due to its influence on overall survival 
(OS) regardless of  the treatment received[7]. Histology[8, 9], 
co-morbidity using the Charlson score[10] and admission 
performance status[11] also have an impact on OS and pa-
tient outcome.

Non-small cell lung cancer (NSCLC) corresponds to 
80%-85% of  LC and, although there is progression in the 
development of  new chemotherapeutics, NSCLC prog-
nosis remains unsatisfactory with a 5-year OS of  less than 
15%[12,13]. Surgery is the best curative therapeutic approach 
in the early stages (ⅠandⅡ). However, even in these pa-
tients, the mean 5-year OS is less than 70%. Thus, most 
NSCLC patients will be candidates for adjuvant, neoad-
juvant or palliative chemotherapy and/or radiotherapy at 
any time of  the disease evolution. Although patients with 
metastatic disease benefit from standard chemotherapy, its 
impact on OS is not more than two months. This is why 
knowledge of  the molecular pathways involved in cancer 
progression is very important[1, 6,14-16]. 

The aim of  this study was to conduct a systematic 
review of  the literature regarding the molecular pathways 
involving the epidermal growth factor receptor (EGFR) 
and K-Ras in NSCLC behavior and to address some issues 
on EGFR targeted therapies. 

NSCLC PHARMACOGENOMIC 
CONTRIBUTION
Molecular pathway model  
In the last few years, knowledge about molecular mecha-
nisms and cellular transformation in association with can-
cer behavior has increased[17-19]. More interest has been 
generated since the development of  specific targeted 
therapies against the processes involved in the carcino-
genesis of  many types of  cancers[20-22]. During the 1990s 
it was discovered that the EGFR[23] played an important 
role in tumoral biology and behavior[14]. As summarized 
in Figure 1, EGFR stimulation activates intracellular sig-
naling and cascades that influence cellular proliferation 
and mobilization, angiogenesis and other mechanisms. 
Normal cells are influenced by external factors, in tumor 
cells it was found that the activation of  cell proliferation 
mediated by this receptor would no longer need exter-
nal stimuli, but act independently and autonomously[14, 

24]. In the case of  NSCLC, it was shown that the over-
expression of  this receptor, as well as specific somatic 
mutations occurred in their intracellular domain with 
tyrosine kinase activity (between exons 18 and 21), which 
may influence prognosis, being significantly related to 
stage, survival and chemotherapy response [14, 25, 26]. These 
data led to the development and study of  various sub-
stances, including monoclonal antibodies directed to the 
extracellular domain of  EGFR (e.g., cetuximab, Erbitux
®) and small molecules that inhibit the tyrosine kinase 
intracellular domain (tyrosine kinase inhibitors, TKIs) of  
EGFR (e.g., gefitinib and erlotinib)[14,26-30]. Preliminary 
results of  randomized clinical trials conducted with these 
TKIs have shown that their use in patients with advanced 

disease is effective, significantly increasing the survival of  
these patients, especially if  they harbor mutations in the 
EGFR which are more frequently found in a subgroup 
of  non-smoking, female patients, of  Asian ethnicity and 
with adenocarcinoma histological sub-type (especially in 
the presence of  bronchioloalveolar carcinoma). Some of  
these results were so impressive that this phenomenon 
was designated, the Lazarus effect, and led to the ap-
proval, in the United States and Europe, of  erlotinib for 
the second- and third-line treatment of  NSCLC patients; 
and gefitinib in Europe, for patients harboring the EGFR 
mutation[25,27-29,31].  

Other molecular biomarkers have been investigated 
in NSCLC, such as COX-2, p53 and K-Ras[1,32]. Among 
these biomarkers, K-Ras was shown to be important in 
NSCLC carcinogenesis. This biomarker is mutated in 
about 20% to 40% of  these tumors[26,33-35] and over 95% 
of  the mutations described are located at codons 12 and 
13, rarely at codons 59 and 61[33]. Several environmental 
factors are associated with the K-Ras mutation, such as 
smoking (there is a relationship between the number of  
cigarettes smoked and the prevalence of  mutations) and 
exposure to asbestos[33,36]. Mutation of  K-Ras appears to 
be an early phenomenon in NSCLC carcinogenesis and it 
is often associated with other molecular aberrations such 
as p53 mutation, p16 methylation, Bcl-2, RASSF1 inactiva-
tion and increased expression of  several growth factors, 
among them vascular endothelial growth factor, thereby 
promoting cell proliferation, suppression of  apoptosis 
and angiogenesis[26,33]. Although there is no consensus be-
tween the studies, K-Ras mutation seems to be the main 
poor prognostic factor in LC adenocarcinoma patients 
in stageⅠ, and possibly stageⅡ, associated with signifi-
cantly lower survival rates regardless of  other involved 
factors such as the number of  treatment regimens[26,33,35]. 
Similar conclusions can be drawn from the analysis of  
studies regarding its predictive value in response to cur-
rently recommended treatments, targeted chemotherapy 
and radiation therapy; furthermore, it may be a factor in 
resistance to therapy in the early stages (Ⅰ andⅡ), but 
not in advanced stages[26,33].

Several studies have found an inverse association 
between K-Ras mutations and mutations in the EGFR 
tyrosine-kinase domain[20,33]. These data suggest the pos-
sible existence of  two distinct molecular pathways in lung 
carcinogenesis: one associated with smoking and activa-
tion of  K-Ras; and another not associated with smoking 
and activation of  EGFR[28,29,36,37]. When combined, K-Ras 
mutation[38] is mainly responsible for primary resistance 
to new molecules which inhibit tyrosine kinase EGFR (e.g. 
erlotinib and gefitinib)[20,25,26,33,39,40]. 

EPIDERMAL GROWTH FACTOR 
RECEPTOR
C-erbB family 
EGFR (or ErbB1) is a transmembrane glycoprotein en-
coded by a gene located on chromosome 7 (7p12.1-12.3). 
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It comprises 1186 amino acids (a.a.) and 26 exons[41]. 
Exons 1-14 encode the extracellular domain, exon 15 
encodes the transmembrane region and exons 16-26 
the intracellular domain. This glycoprotein belongs to 
the ErbB receptor family, which also consists of: ErbB2 
(HER2/neu), ErbB3 (HER3) and ErbB4 (HER4). Each 
of  these proteins is structurally composed of  an extracel-
lular domain, a hydrophobic transmembrane domain and 
an intracellular domain with intrinsic tyrosine kinase (TK) 
activity (except ErbB3). These receptors exist as inactive 
monomers, being activated by their interaction, through 
the extracellular domain, with growth factors of  the EGF 
family. The binding of  ErbB receptor molecules to one of  
these ligands leads to its interaction with other monomers 
of  the same family (receptor dimerization). This dimeriza-
tion can occur between two identical receptors (homodi-
merization, e.g., ErbB1-ErbB1) or between two different 
receptors (heterodimerization, e.g., ErbB1-ErbB3). The 
stimulation caused by a specific ligand triggers a unique 
pattern of  dimerization, which is also specific to the tis-
sue/tumor in which the phenomenon occurs. Dimeriza-
tion of  the receptors leads to their autophosphorylation 
with activation of  TK and activation of  a cascade of  in-
tracellular biochemical processes that regulate such diverse 

activities, like proliferation, differentiation, apoptosis and 
cell migration[14,40] as shown in Figure 1.

Regulating the activity of tyrosine kinase  
Usually, TK activity is regulated by the conformational 
state of  the catalytic domain of  the molecule. The con-
formation of  the catalytic domain, either active or inac-
tive, governs the ability of  a kinase to transfer phosphate 
from adenosine triphosphate to a peptic substrate, there-
by regulating the intracellular signaling pathways. There 
are several mechanisms that regulate this balance of  
active-inactive protein kinase at the atomic level. First, a.a. 
residues should be properly oriented in order to facilitate 
the transfer of  phosphate and, second, the peptide sub-
strate binding site should not be occluded. There are two 
important regions of  the catalytic domain able to regulate 
these mechanisms according to their spatial orientation: 
the activation loop and the helix-C[41].  

In the active conformational state, the activation han-
dle extends outside the catalytic cleft of  the molecule in 
order to allow the substrate to bind to it, while the cata-
lytic glutamate residue (C-helix) forms ionic interactions 
with a lysine residue that coordinate α and β phosphates 
of  ATP. In the inactive conformation, the activation loop 
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Figure 1  Molecular mechanisms through the Epidermal Growth Factor Receptor pathway. This figure shows EGFR ligands binding with their receptor and trig-
gering mechanisms toward downstream intracellular signaling throughout the PLCγ, PI3K, Ras/Raf/MEK/ERK, STATs pathways leading to proliferation, metastasis, 
autocrine feedback, and survival (Adapted from reference 7 with permission). EGFR: Epidermal growth factor receptor; Shc: Src homologous and collagen protein; 
PCL-γ: Phospholipase Cγ; PI3K: Phosphatidylinositol 3-kinase; STATs: Signal transducer and activator of transcriptions; PKC: Protein kinase C; Grb2: Growth factor 
receptor bound protein 2; SOS: Guanine nucleotide exchange factor sos; MAPK:mitogen-activated protein kinase 
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changes its conformation drastically and hinders bonding 
of  the peptide substrate to the catalytic domain of  the 
molecule, while the C-helix wheel drags the residue of  
glutamate clear of  the lysine residue[41]. 

Current approaches in EGFR assessment 
Mutations occurring in these TK molecule catalytic do-
mains lead to conformational changes that promote per-
manent active status independent of  external factors. The 
most common, accounting for about 85% of  the muta-
tions described, include deletions in exon 19 and substi-
tution of  a.a. leucine-858 by arginine in exon 21. These 
mutations increase the sensitivity to TKIs, probably by 
promoting conformational changes of  the molecule so 
that the fit of  the TK catalytic cleft simulates the inactive 
conformational status[25,41].  

On the other hand, the substitution of  threonine-790 
by methionine in exon 20 is a factor in resistance to TK, 
probably because the conformational change of  the mol-
ecule caused by it does not allow the same type of  effect 
observed for other mutations. This mutation may be ac-
quired, having been described in patients with progressive 
disease after effective treatment with erlotinib and gefi-
tinib, or innate, resulting in increased susceptibility to LC 
and primary resistance to molecules that inhibit TK[25,39-42].  

EGFR amplification and/or over-expression are 
also predictors of  response to TKI treatment[43]. The 
EGFR over-expression accounts for about 43%-83% of  
NSCLC, being more common in squamous cell carci-
noma (70%), followed by adenocarcinoma (50%) and to 
a lesser extent, in large cell carcinoma. This phenomenon 
is very rare in small cell lung cancer patients[14,39,42].

Intracellular signaling pathways 
There are four main intracellular signaling pathways 
involved in the activation of  EGFR (Figure 1): Ras/mi-
togen-activated protein kinase (MAPK), phosphatidylino-
sitol 3-kinase (PI3K)/Akt, phospholipase Cγ (PLCγ), 
protein kinase C and signal transducer and activator of  
transcription (STAT)[14,42]. Activation of  PI3K leads to 
activation of  Akt. This is translocated to the cell nucleus 
and mediates the transcription of  many genes while other 
cytosolic proteins are activated simultaneously (such as 
mTOR and Bad), resulting in the ultimate expression of  
several anti-apoptotic proteins. PLCγ hydrolyzes phos-
phatidylinositol 4, 5-bisphosphate into diacylglycerol 
and inositol triphosphate with subsequent activation 
of  protein kinase C, resulting in cell cycle progression. 
STAT proteins are translocated to the active nucleus and 
regulate transcription of  genes essential for survival and 
proliferation, mediating cellular transformation and pro-
gression to carcinoma[33,42]. The Ras/MAPK pathway is 
described in detail below. 

Ⅳ–K-RAS
Ras family  
The Ras family (Rat sarcoma viral oncogene), or p21ras 

(so designated by the molecular weight common to the 
various elements that constitute the 21Kd), belongs to 
the super-family of  small guanosine triphosphatases (GT-
Pases) and is composed of  several members (the most 
studied are H-Ras, K-Ras and N-ras)[33,44-50].  

Unlike the classic G proteins which are heterotrimeric, 
they remain in the form of  monomeric units of  connec-
tion (similar to the α subunit of  classic G proteins), func-
tioning as a small switch that toggles between the inactive 
monomer bound to guanosine diphosphate (GDP) and 
actively linked to guanosine triphosphate (GTP)[33,44,47, 

49,50]. Different stimuli from the cell surface, mediated by 
several types of  transmembrane receptors, activate these 
proteins, leading to a cascade of  intracellular biochemical 
processes that regulate such diverse activities as prolifera-
tion, differentiation, apoptosis and cell migration[33, 45-50]. 
The most studied members of  this family share high 
structural and functional homology (although encoded 
by different genes); they are expressed in all tissues (there 
are variations in the level of  subtypes expressed); and they 
are implicated in the carcinogenesis of  various types of  
tumors[33,44-50]. 

Activation of K-Ras protein through the EGFR pathway  
Stimulation of  EGFR protein activates both K-Ras 4B 
and H-Ras in different ways. These are preferentially lo-
cated in areas of  dense cell membrane (e.g., K-Ras 4B), 
and this is the Ras protein primarily activated[35]. The 
binding of  EGF to its receptor causes dimerization of  α 
and β subunits and subsequent activation of  this intrin-
sic TK receptor, which autophosphorylates the tyrosine 
residues and thus allows the receptor to bind to proteins 
such as Shc adaptation or Grb2. These proteins serve as 
the link between the EGFR and a set of  proteins that are 
able to stimulate the dissociation of  guanine (GNEFs 
- Guanine Nucleotide Exchange Factors). GNEFs pro-
mote the dissociation of  polymer Ras-GDP, releasing the 
Ras to bind to GTP and thus causing its activation[33,44,46, 

48]. In this particular case, the first class of  GNEFs to be 
activated is the Son of  sevenless (Sos), which promotes 
the dissociation and activation of  K-Ras 4B at the inner 
surface of  the cell membrane. Secondly, through mecha-
nisms that involve the formation of  diacylglycerol , a sec-
ond class of  GNEFs, also called RasGRPs, promote the 
activation of  H-Ras in the Golgi apparatus, by mecha-
nisms not yet completely clarified[44,46].  

Generally, the Ras-GTP complex is active only tran-
siently, since each Ras molecule has intrinsic GTPase ac-
tivity that, when stimulated by GAPs, hydrolyzes rapidly 
to Ras-GTP binding and promotes its return to inactive 
baseline status and binds to GDP (GAPs increase the 
activity of  intrinsic Ras-GTPase proteins approximately 
10 000 times)[33,44-50]. 

Once activated, Ras protein promotes the initiation 
of  several distinct signaling cascades, which are reflected 
at the nuclear transcription of  several genes and the pro-
duction of  factors that induce proliferation, differentia-
tion, migration, apoptosis/cell anti-apoptosis and angio-
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genesis by VEGF secretion[33,44-51]. In the case of  K-Ras 
4B, the main intracellular signaling pathways activated are 
the Raf/MEK/ERK (which promotes cell proliferation) 
and PI3K/Akt (which promotes cell survival by inhibit-
ing apoptosis)[33,44,46,48]. A comparison of  the molecular 
structure of  the active form (bound to GTP) and inactive 
form (bound to GDP) of  the Ras protein showed that 
the transition from an active to inactive form is accom-
panied by changes in the conformation of  the molecule 
into two regions, designated switchⅠ(residues 30 to 38, 
the same effectors region in the center) and switch II 
(residues 60-76). The blockade of  residues 63 to 73 using 
a directed antibody inhibits change of  the protein bind-
ing of  Ras GTP to GDP, proving that this region of  the 
molecule is essential for conformational change of  the 
molecule that allows the passage of  the inactive and ac-
tive state[32,48,52].  

As previously mentioned, Ras protein is rapidly inac-
tivated after initial stimulation, remaining as the inactive 
form most of  the time[45]. However, when mutations oc-
cur, especially at codons 12, 13, 59, 61, 63, 116, 117, 119 
or 146, its structure is altered by binding sites for guanine, 
affecting its normal function. The effects of  these muta-
tions can be translated either in a reduction of  the activity 
of  oncoprotein GTPases, blocking it into the active form 
bound to GTP (especially if  they involve the a.a. 12, 13, 
59, 61 and 63) or in decreased binding affinity and increas-
ing the change in GDP by GTP attachment (especially if  
they involve the a.a. 116, 117, 119 and 146)[35]. The ineffi-
cient deactivation of  oncoprotein is intensified by the fact 
that GAPs have reduced ability to promote the return to 
the disabled state (Ras-GDP). All mutations thus facilitate 
accumulation of  the active form (Ras-GTP), contributing 
to the malignant cell phenotypic change[44,48,53]. 

The modified molecule is independent of  stimulation 
by the activation of  cell membrane receptors. Thus, it is 
understandable that patients with NSCLC who have a 
mutated K-Ras do not respond to treatment with TKI[25]. 
Brugger et al[54] demonstrated that K-Ras works as a prog-
nostic factor for reduced progression-free survival (PFS) 

regardless of  the treatment for advanced NSCLC. 
The search for new targeted therapies able to inacti-

vate K-Ras has led to the discovery of  farnesyltransferase 
inhibitors[42]. These inhibitors act at a protein level by 
blocking K-Ras farnesylation and preventing their anchor 
to the cell membrane. The K-Ras molecule, thus trapped 
in the cytoplasm, is not able to activate effectors of  intra-
cellular signaling pathways. Several farnesyltransferase in-
hibitors have been investigated in LC with unsatisfactory 
results. Tipifarnib, although capable of  effectively block-
ing this enzyme, did not result in clinical response. More-
over, preliminary clinical trials conducted with lonafarbin 
(in combination with paclitaxel in patients with NSCLC 
resistant to taxanes) showed that this combination thera-
py was effective in controlling some 50% of  patients and 
is currently under further Phase Ⅲ clinical trials[42]. 

V-CURRENT AND FUTURE ANTI-EGFR 
TARGETED THERAPIES 
Over the few last decades, the platinum-based treat-
ment of  NSCLC has remained unsatisfactory[55]. Many 
researchers have tried to identify biomarkers of  response 
to chemotherapy such as ERCC1 (excision repair cross 
complementing 1) and platinum response[56], ribonucleo-
tide reductase subunit M1 (RRM1) and gemcitabine 
resistance[57], K-Ras mutation and EGFR status[38,58]. At 
the moment, some studies such as those shown in Table 
1, have demonstrated that personalized therapy through 
the EGFR pathway have the potential to improve the 
survival of  advanced NSCLC patients[22,27,59-65]. However, 
the results are not linear. Many factors influence OS, PFS 
and response rate, such as EGFR mutation status, clinical 
TNM stage, gender and ethnicity[66].

Erlotinib: current trends 
Since 2005, based on the study by Shepherd et al[27], er-
lotinib has been used for second/third-line therapy[63] 
to prolong survival in refractory NSCLC IIIb and IV 
patients irrespective of  EGFR status. This drug showed 
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Table 1  Summary of studies which assessed the current main epidermal growth factor receptor targeted drugs for non small cell 
lung cancer

  Study Molecule Place of study EGFR positive 
selected 

mutations 

No. of 
patients 

Clinical stage Response 
rate (%) 

Median OS
 (mo) 

Median PFS
 (mo) 

  Kris et al, 2003 Gefitinib United States  No          221 ⅢB and Ⅳ        22            6-7 - 
  Perez-Soler et al,
  2004 

Gefitinib United States  No            57 ⅢB and Ⅳ        12.3            8.4 - 

  Maemondo et al, 2010 Gefitinib Asia Yes          230 ⅢB and Ⅳ        73.7          30.5         10.8
  Mok et al, 2009 Gefitinib Asia No          609  Ⅲ and Ⅳ        71.2          18.6           5.7
  Mitsudomi et al, 2010 Gefitinib Japan   yes          177 ⅢB and Ⅳ        62.1          30.9           9.2
  Shepherd et al, 
  2005 

Erlotinib America, Europe 
and Asia 

No          731 ⅢB and Ⅳ          8.9            6.7            2.2

  Herbst et al, 2005   Erlotinib United States No          526 ⅢB and Ⅳ        30          10.6           6
  Capuzzo et al, 2010 Erlotinib Italy yes          437 ⅢB and Ⅳ        11.9          12.3          12.3

EGFR: Epidermal growth factor receptor; OS: Overall survival; PFS: Progression-free survival. 
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improvements in response rate, OS and 1-year-survival 
when added to carboplatin and paclitaxel in a recent 
evaluation[67]. Furthermore, as showed in the TRIBUNE 
phase Ⅲ trial, it was first studied in United States, Asia 
and Europe, but did not have consistent results follow-
ing approval by the US Food and Drug Administration 
(FDA) and European Medicine Agency (EMEA) in first-
line chemotherapy patients[27,30,61,62,68]. The genetic muta-
tion of  EGFR in exons 19 and 21 of  chromosome 7 
demonstrated an association with response to erlotinib 
[40, 68]. Therefore, erlotinib is approved for the treatment 
of  patients with refractory disease. In April 2010, based 
on the SATURN phase Ⅲ trial conducted by Capuzzo 
et al[63], erlotinib was also approved for maintenance 
treatment in patients with locally advanced or metastatic 
NSCLC without progression after four chemotherapy 
cycles in the first-line setting. In 2011, an American 
Society of  Clinical Oncology provisional opinion panel 
started to consider erlotinib as first-line therapy for 
advanced NSCLC[69]. A recent Chinese phase 3 trial 
(OPTIMAL, CTONG 0802), enrolled 83 patients with 
advanced NSCLC and mutations of  the EGFR gene 
(exon 19 and 21) from 22 centers in China[70]. This study 
was conducted in order to compare the efficacy and 
tolerability of  the TKI erlotinib versus standard chemo-
therapy, in this case gemcitabine plus carboplatin. They 
showed significantly higher PFS in patients treated with 
erlotinib compared with those treated with standard che-
motherapy: 13.1 mo (95% CI 10.58-16.53) vs 4.6 months 
(95% CI 4.21-5.42). Furthermore, grade Ⅲ and Ⅳ tox-
icities, mainly neutropenia and thrombocytopenia, were 
more frequent in the chemotherapy arm. Thus, these 
findings suggested that erlotinib might be an important 
agent in the first-line treatment of  advanced NSCLC 
patients with positive EGFR mutations (mainly in exon 
21).  Based on these results, erlotinib was approved in 
Europe in September 2011, as first-line therapy in pa-
tients with locally advanced or metastatic NSCLC har-
boring EGFR activating mutations. Currently, erlotinib is 
also recommended as second- and third-line therapy in a 
subset of  advanced NSCLC patients irrespective of  their 
EGFR status, due to its impressive results described in 
the above studies[27,63,70].  

Gefitinib  
Gefitinib did not initially show significant clinical benefit 
on OS, PSF and tumor response in Western patients with 
NSCLC IIIB and IV stages[59,61]. The iressa survival evalu-
ation in lung cancer (ISEL) trial showed disappointing 
results when no improvement in OS was observed in pa-
tients treated with gefitinib in either the overall or adeno-
carcinoma population[60]. However, others studies (IPASS) 
reported the superiority of  gefitinib when compared with 
platinum-taxane-based therapy protocols mainly in pa-
tients with EGFR mutations, adenocarcinoma histology,  
nonsmokers or former light smokers in East Asia[64,65]. 
Subsequently, it was also confirmed that EGFR muta-
tions had a predictive role in the response of  lung ad-

enocarcinoma to gefitinib as compared with carboplatin-
paclitaxel treatment[43,64,70,71]. These findings resulted in the 
approval of  gefitinib by EMEA for use in the first-line 
treatment of  patients with advanced metastatic NSCLC 
EGFR mutation positive tumors[65]. 

The role of MET targeted inhibition  
Recently, the MET proto-oncogene was discovered which 
encodes for the high affinity cell surface receptor for he-
patocyte growth factor (HGF) and also control the main 
steps of  carcinogenesis: cell growth, invasion, prolifera-
tion and apoptosis[72,74]. Thus, MET inhibitors emerged 
as a promising new class of  targeted drugs in patients 
with MET-mediated resistance to EGFR inhibitors[66,74]. 
Nowadays, dual MET-EGFR multi-target TKI therapies 
may be considered a good approach for MET-mediated 
resistance to EGFR inhibitors to improve NSCLC pa-
tient outcome. In 2010, a recent multi-target of  MET, 
VEGFR2 and RET, called XL 184, in association with 
erlotinib in NSCLC EGFR T790M and MET amplified 
patients was presented at the American Society of  Clinical 
Oncology annual meeting as a promising choice in these 
patients[75]. Another drug, ARQ197, which is a selective 
non ATP competitive inhibitor of  c-MET, when com-
bined with erlotinib in the second/third-line treatment of  
EGFR inhibition naïve NSCLC patients showed increased 
PSF, mainly among patients with non-squamous histology, 
K-Ras mutations, and EGFR wild-type status[73]. Other 
drugs targeting MET pathways, such as AMG102[74], a 
monoclonal antibody against HGF, and MetMab (Genen-
tech)[77], a human recombinant agonist of  the HGF-Met 
signaling pathway, are still in phaseⅠstudies and show 
promise in the treatment of  NSCLC patients[76-78].  

EML4-ALK mutation and the role of crizotinib in EGFR 
TKI resistant patients  
In the last few years, the echinoderm microtubule-associ-
ated protein-like 4-anaplastic lymphoma kinase (EML4-
ALK) fusion gene has been identified by Fluorecence in 
Situ Hybridization (FISH) Assay as an oncogene in about 
11.3% of  patients with NSCLC[79]. These patients are re-
sistant to EGFR TKI therapies and should be directed to 
ALK-targeted agents[80]. FISH and real time polymerase 
chain reaction represent two primary methods to assess 
ALK fusions[81]. Recently, crizotinib, was identified as a 
potent inhibitor of  ALK and MET tyrosine kinases[82,83]. 
It was demonstrated in previous studies that this drug 
was well tolerated and resulted in important tumor 
shrinkage in NSCLC EML-4ALK positive patients [84, 

85]. Crizotinib has been shown to significantly control 
disease when used in NSCLC patients with EML4-ALK 
mutation fusion who were refractory to EGFR TKI 
treatment[82,86]. However, some patients have resistance 
to crizotinib and other EML4-ALK inhibitors are in de-
velopment[87]. Other studies[88] showed that EML4-ALK 
mutation prolonged PSF in patients treated with preme-
trexed. Thus, this should be considered in trials involving 
patients treated with this drug. Recently, it was reported 
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that crizotinib does not cross the blood brain barrier and 
thus its cerebrospinal fluid levels are insufficient to con-
trol brain metastases[89]. Further studies are warranted to 
assess this situation.

CONCLUSION
In recent decades, therapeutic advances in LC studies, 
with the use of  combined platinum-based chemotherapy 
strategies, radiotherapy or surgery, have not been com-
pletely satisfactory in terms of  overall survival; and thus 
the prognosis associated with this disease remains very 
poor[54,90-95]. The need to find new targeted agents has 
renewed interest in the study and understanding of  the 
molecular pathways involved in lung carcinogenesis[3,9,17, 

18,58,91,92], and several targeted therapeutic molecules have 
been synthesized[22,96-99]. However, it has also became evi-
dent that there are multiple pathogenic mechanisms in 
lung cancer working in parallel or with several loops of  
activation/inhibition, thus therapeutic exploration with 
the goal of  disease control can not be based on the study 
of  a single mechanism[22,97-99]. Through experience with 
molecules such as gefitinib and erlotinib, it is now under-
stood that the benefit of  EGFR TKIs depend on several 
biological characteristics in individual patients[30,59,100-103]. 
The study of  new targeted agents and their combination 
in order to optimize therapy should therefore take into 
account the individual characteristics of  each patient[55,58]. 
This is currently a promising field of  cancer research in 
which genetics, tumor molecular biology and clinical ex-
perience interact to achieve more effective combination 
therapies adjusted to the patient profile. 
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