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SUMMARY
Activation of Sir2-orthologs is proposed to increase lifespan downstream of dietary restriction
(DR). Here we describe an examination of the effect of 32 different lifespan-extending mutations
and four methods of dietary restriction on replicative lifespan (RLS) in the short-lived sir2Δ yeast
strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was
restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not
directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan
defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce
rapidly by a mechanism distinct from that of wild-type cells. They also demonstrate that failure to
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observe life span extension in a short-lived background, such as cells or animals lacking sirtuins,
should be interpreted with caution.
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Combining two or more longevity-altering interventions and determining the resulting effect
on lifespan is a common method for examining the relationship between such interventions.
An important subset of this type of analysis occurs when one of the factors under study
promotes longevity, such as daf-16 in Caenorhabditis elegans or SIR2 in Saccharomyces
cerevisiae. For both of these genes, several studies have combined a lifespan shortening null
allele with an intervention that extends lifespan. A resulting lifespan similar to that of the
short-lived single mutant has generally been interpreted as suggesting that the factors act in
the same pathway. In contrast, an intervention extending the lifespan of the short-lived
mutant has been interpreted as suggesting that the factors act in genetically distinct
pathways. Specific examples of this type of comparison are studies in which DR fails to
extend lifespan in yeast (Lin et al. 2000), invertebrates (Rogina & Helfand 2004; Wang &
Tissenbaum 2006), and mice (Li et al. 2008) when Sir2-orthologs are mutated. These data
have been, and continue to be, interpreted by some to support a model in which DR
promotes longevity and healthspan through activation of sirtuins (Baur et al. 2010).

It has been previously reported that deletion of SIR2 blocks RLS extension from DR by
reduction of glucose and in strains lacking GPA2 or HXK2, two genetic mimics of DR, but
not in a strain lacking the rDNA replication fork block protein, FOB1 (Kaeberlein et al.
2004). In order to examine the influence of deleting SIR2 on RLS extension more generally,
we generated 30 additional double mutant strains in which a RLS extending deletion was
combined with deletion of SIR2. We also tested three additional methods of DR involving
growth on alternative carbon sources (ethanol, glycerol, or raffinose). Strikingly, none of
these interventions resulted in a significant RLS extension relative to sir2Δ cells (Figure 1;
Figure S2; Table S1).

One possible interpretation of these data is that each of the RLS-extending interventions acts
upstream of Sir2, perhaps by promoting Sir2 activity. Two observations are inconsistent
with this model. First, at least eight single-gene deletions that increase wild type RLS, and
all four forms of DR, significantly extend the RLS of sir2Δ fob1Δ cells (Figure S1A; Figure
S2; Table S1), demonstrating that SIR2 is not absolutely required for RLS extension in these
cases. Second, at least five long-lived deletion mutants show no indication of enhanced Sir2
activity in vivo, as measured by rDNA recombination or rDNA silencing (Figure S3). A
similar lack of increased Sir2 activity has been previously reported in cells subjected to DR
(Kaeberlein et al. 2005; Riesen & Morgan 2009; Smith et al. 2009). Interestingly, deletion
of TOR1 caused a significant decrease in rDNA recombination, but this effect was
independent of SIR2 (Figure S3A).

An alternative explanation for these data is that loss of SIR2 alters aging such that molecular
processes that do not limit RLS in wild-type cells become limiting in sir2Δ cells. Sir2 has
multiple functions, including repression of extrachromosomal rDNA circle formation
(Kaeberlein et al. 1999), enhancing global rDNA stability and silencing (Gottlieb &
Esposito 1989; Smith & Boeke 1997), promoting asymmetric inheritance of damaged
proteins (Aguilaniu et al. 2003), and maintaining telomeric chromatin during aging (Dang et
al. 2009). Our observation that only deletion of FOB1 is sufficient to suppress the short RLS
of sir2Δ cells suggests that (1) the primary RLS-limiting defect in sir2Δ cells is likely related
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to rDNA instability and (2) none of the 32 deletions tested that slow aging in wild-type cells
is able to overcome this defect. One prior study reported that overexpression of Hsp104
could also suppress the short RLS of sir2Δ cells (Erjavec et al. 2007), raising the possibility
that accumulation of damaged proteins in sir2Δ mother cells may also contribute to the
reduced longevity.

While it is likely that many of the genes examined in this study do not require Sir2 for their
effect on RLS, we do not believe that all of the 32 long-lived single gene deletion mutants
examined here necessarily act via Sir2-independent mechanisms. For example, deletion of
SAS2, a histone acetyltransferase known to antagonize Sir2 effects on chromatin (Dang et al.
2009), extends wild-type RLS but fails to extend the RLS of sir2Δ fob1Δ cells (FigureS2b).
Thus, both functional and genetic evidence suggest that Sas1 likely acts in the same
longevity pathway as Sir2.

This study provides a clear demonstration of the challenges associated with interpreting
longevity epistasis data. In particular, the failure of a longevity-intervention to extend
lifespan in a short-lived background may not be informative regarding the mechanism of
lifespan extension in the wild-type context. In the absence of strong evidence indicating that
the lifespan shortening is caused by acceleration of the wild-type aging process, caution is
warranted when interpreting these types of data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single-gene deletions that extend RLS in wild-type cells do not extend RLS of sir2Δ
cells
Replicative survival curves are provided for 33 double mutant strains combining a known
long-lived gene deletion with deletion of SIR2.

Delaney et al. Page 5

Aging Cell. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


