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Abstract
This study uses instrumental variable (IV) models with genetic instruments to assess the effects of
maternal smoking on the child’s risk of orofacial clefts (OFC), a common birth defect. The study
uses genotypic variants in neurotransmitter and detoxification genes relateded to smoking as
instruments for cigarette smoking before and during pregnancy. Conditional maximum likelihood
and two-stage IV probit models are used to estimate the IV model. The data are from a population-
level sample of affected and unaffected children in Norway. The selected genetic instruments
generally fit the IV assumptions but may be considered “weak” in predicting cigarette smoking.
We find that smoking before and during pregnancy increases OFC risk substantially under the IV
model (by about 4–5 times at the sample average smoking rate). This effect is greater than that
found with classical analytic models. This may be because the usual models are not able to
consider self-selection into smoking based on unobserved confounders, or it may to some degree
reflect limitations of the instruments. Inference based on weak-instrument robust confidence
bounds is consistent with standard inference. Genetic instruments may provide a valuable
approach to estimate the “causal” effects of risk behaviors with genetic-predisposing factors (such
as smoking) on health and socioeconomic outcomes.
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1. INTRODUCTION
Risk behaviors such as smoking, alcohol use, drug use, poor nutrition/obesity, and others
have major impact on health, psychosocial and economic status. Studies of these effects are
common and span a wide range of outcomes and populations. A particular research area of
major public health and policy implications is the study of maternal risk behavior and its
effects on child health. Numerous studies have evaluated the impact of maternal smoking,
alcohol use, obesity and other risk behaviors on infant and child health outcomes such as
birth weight, infant mortality, birth defects and child development.

One major challenge in studying behavioral effects on health and other outcomes is non-
random self-selection into behaviors based on unobserved or inadequately measured
characteristics. Behaviors are a function of individual preferences for health and risk taking,
perceptions of health risks, expectations of health outcomes and biological predispositions to
behaviors (driven environmentally or genetically). In the case of maternal health behaviors,
the mother’s choice of prenatal risk behaviors is also a function of her preferences for child
health, her perceptions of extent of fetal health risk factors and expectations of infant and
child health outcomes. Preferences and risk perceptions are generally unobserved in data
sources used for studying behavioral effects. Furthermore, direct adjustment using proxy
measures is typically inadequate to account for such unobservable relevant factors.

When ignored, self-selection into behaviors based on unobserved factors can result in biased
estimation of behavioral effects. The unobserved factors that affect behaviors may also
affect the study outcomes through other pathways, resulting in classical omitted variable
(confounding) bias. Preferences and risk perceptions likely affect the choice of several
behaviors, some of which may not be adequately observed in available data. Furthermore,
risk perceptions may be correlated with actual risk factors that may not be adequately
observed and that affect the study outcomes. Therefore, standard regression models that
involve direct adjustment for observable confounders only may not adequately account for
the unobservable confounders.

Instrumental variable (IV) designs may be used to account for unobservable confounders
when studying behavioral effects on health or other outcomes. Several risk behaviors have
identified genetic risk factors that may serve as instruments. These genetic factors may serve
as instruments that provide a useful source of behavior variation for identifying the “causal”
behavioral effects on health and other outcomes. The paper proceeds as follows: Section 2
provides a background on instrumental variables, genetic instruments and study objectives;
section 3 describes the data sample and methods; section 4 provides the results; and section
5 includes discussion and conclusions.

2. BACKGROUND
Instrumental variables (IV) have been used extensively to study the effects of prenatal care
use, maternal smoking, alcohol use and other behaviors on infant health (Evans and Ringel
1999; Grossman and Joyce 1990; Lien 2005; Rosenzweig 1983; Wehby et al. 2009a). The
IV design uses instruments that are strongly correlated with endogenous variables
(behaviors), but are otherwise unrelated to the study outcomes either directly or indirectly
through unobserved confounders (Angrist, Imbens, and Rubin 1996). Under these
assumptions, the IV model uses variation in behaviors that is unrelated to the unobservable
confounders (and is, therefore, free from self-selection and confounding) to estimate the
behavioral effects on the outcomes.

Previous IV studies of risk behaviors such as smoking or alcohol use have typically
employed prices/taxes or related policies such as state-level policies preventing public-area
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smoking. However, there are several disadvantages with these instruments. Such aggregate-
level instruments use area-level variation in risk behaviors and ignore behavioral variations
among individuals living in the same area. Furthermore, the individual’s self-selection into
area of residence may introduce correlations between these instruments and other potentially
relevant factors such as individual preferences and health risks. Finally, state-level policies
and prices/taxes may also be reversely affected by the population’s preferences and health
risks.

In this study, we evaluate the utility of employing genetic variants as instruments in IV
designs to assess risk behavior effects. This approach exploits variation in risk behaviors
that is generated by exogenously inherited genetic factors for estimating the behavior effects
on outcomes. The genetic variants are single nucleotide polymorphisms (SNPs), which are
DNA base-pair variants, each of which has two alleles (variants). The strength of genetic
variants as instruments is the “random” transmission of alleles from parents into their
children. Each of the two SNP alleles has an equal chance of being transmitted during
generation of germ cells (meiosis). This is the reason for describing the use of genetic
instruments as “Mendelian Randomization” in epidemiology (Lawlor et al. 2008). However,
the approach is a standard application of instrumental variables (Wehby, Ohsfeldt, and
Murray 2008b). The “random” assignment/inheritance of alleles into an individual’s genome
seems to support the IV condition of exogenous instruments and suggests that unobserved
confounders are unlikely to be correlated with genetic instruments when these do not affect
the unobserved confounders and are not correlated with genetic variants that affect these
confounders. (Smith et al. 2007) find that genetic variants are generally uncorrelated with
behavioral and social variables when such associations are not a-priori expected or
hypothesized.

“Random” inheritance does not mean that all individuals are at the same chance of inheriting
a certain allele. Furthermore, “genetic instruments” may predict variation in an individual’s
risk behavior not only through the direct genetic effects, but also through other pathways
that may or may not be correlated to the unobserved confounders. For example, consider a
genetic variant x that increases smoking risks. Parents who have (more copies of) variant x
are more likely to smoke and more likely to pass this variant to their children than parents
without this variant. If parental smoking causes family-level economic and psychosocial
effects that are also inherited either directly or indirectly through affecting their children’s
preferences, health risks, and other factors, and that may be related to the unobserved
confounders of interest when using the children’s genes as instruments for their own
behaviors (such as for studying the effects of smoking on health outcomes), then the genetic
instruments may no longer be endogenous. While it may be unlikely that smoking has such
effects, such bias is theoretically possible. Therefore, it is important to evaluate the
“assumption” of instrument exogeneity with the available tests described below. However,
one clear-cut advantage in using genetic instruments is that they cannot be affected by risk
behaviors – unlike other individual-level instruments such as income or distance to
providers/supplies, or area-level instruments such as prices/taxes and policies. Health
economic studies have begun to utilize genetic factors as instruments to identify health risk
and behavior effects (Ding et al. 2009; Fletcher 2009a; Fletcher 2009b; von Hinke Kessler
Scholder 2010)

2.1 Study Objectives and Significance
We evaluate the utility of genetic instruments for studying maternal smoking effects on the
child’s risk of being born with orofacial clefts (OFC). OFC are common birth defects
occurring in about 1 per 700 births and are among the most prevalent birth defects in the US
(about 20,400 births in 1999–2001) (Centers for Disease Control and Prevention 2006).
OFC, including cleft lip with/without palate and cleft palate only, have a complex etiology
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of genetic, environmental and behavioral risk factors (Mossey et al. 2009). OFC impose
significant burdens on individual and family health and economic wellbeing due to the need
for surgical, speech and behavioral treatments. These may significantly reduce individual
and family quality of life (Wehby and Cassell 2010; Wehby, Ohsfeldt, and Murray 2006).
OFC increase child hospitalization costs by more than five times (Boulet et al. 2009;
Cassell, Meyer, and Daniels 2008), and may increase the risk of long term health problems
including certain cancers (Bille et al. 2005), mental health problems (Christensen and
Mortensen 2002), and mortality and suicide risks (Christensen et al. 2004).

Several studies suggest that maternal smoking moderately increases OFC risk, with some
variation across studies in the magnitude of the effects and the affected cleft type (Bille et al.
2007; Chung et al. 2000; Honein et al. 2007; Khoury, Gomez-Farias, and Mulinare 1989;
Lie et al. 2008; Lieff et al. 1999; Little et al. 2004a; MacLehose et al. 2009; Shaw et al.
2009; Werler et al. 1990). Two meta-analyses of earlier studies estimated 1.3 times
increased odds for OFC (Little, Cardy, and Munger 2004b; Wyszynski, Duffy, and Beaty
1997).

Some variation in the smoking effect estimates may be due to self-selection bias. All
previous studies of maternal smoking effects on OFC have assumed random maternal self-
selection into risk behaviors after adjusting for observed/measured confounders. These
studies use designs that cannot account for self-selection bias due to unobserved factors and
therefore, may suffer from confounding bias.

Behavioral theories and empirical evidence for infant health outcomes strongly indicate that
maternal behaviors during pregnancy are in part determined by unobserved factors that are
also related to infant health (Mullahy 1997; Rosenzweig and Schultz 1983; Wehby et al.
2009a). Available data sources for studying maternal behavioral effects on infant health lack
valid measures of the relevant unobserved factors such as preferences and risk perceptions
described above. Also, good proxies for these unobservable confounders are usually
unavailable. Therefore, it is virtually impossible to fully account for these unobservable
factors using only direct adjustment multivariate methods.

Maternal risk behaviors prior to and during pregnancy are “endogenous” to infant health
outcomes, including OFC status. The assumption of ignorable self-selection bias in previous
studies of smoking effects on OFC is strong and unsupported. Further, the direction of bias
(i.e. over- or underestimation) in estimates that ignore self-selection is theoretically
ambiguous due to the potential role of several unobserved factors. Obtaining accurate
estimates of smoking effects on OFC is important for developing effective counseling and
prevention programs for OFC. If smoking effects are underestimated in classical models,
identifying the real smoking effects may improve counseling of women of childbearing age
and make it more effective for preventing OFC. Similarly, if smoking effects are
overestimated in classical models, smoking-focused approaches may not be effective in
preventing OFC. Therefore, identifying the causal smoking effects of OFC has important
implications for improving child health outcomes and reducing birth defects.

This paper reports the results of a novel application of the genetic IV model to estimate
maternal smoking effects on OFC. The IV analysis simultaneously models 1) smoking as a
function of relevant observed characteristics and genetic variants that influence smoking,
and 2) OFC risk as a function of smoking and relevant observed factors. The goal is to
exploit variation in smoking that is generated only by the genetic instruments and to account
for non-random self-selection and unobserved confounders that have been a common
limitation of previous studies of the effects of maternal smoking on OFC. By doing this, we
will evaluate the utility of employing genetic variants as instruments to study maternal
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behavior effects on child health. This is one of the first studies to apply the genetic IV model
to evaluate the effects of maternal risk behaviors on child health. This paper is also one of
the first to apply genetic instrumental variables to data collected with case-cohort or case-
control designs, and illustrates approaches for estimating and interpreting the behavior
effects in such applications, which do not provide directly interpretable effect estimates,
unlike classical models (such as standard logistic regression) that assume exogenous
behaviors.

2.2 Genetics of Smoking
Smoking behaviors are well known to involve a complex etiology that involves genetic and
environmental factors (Li 2006; Tyndale 2003), and there is a convergent evidence of strong
links between specific genes and cigarette smoking. Twin and adoption studies find that
genetic heritability is at least 50% for both smoking initiation and persistence (Carmelli et
al. 1992; Heath and Martin 1993; Lessov et al. 2004; Maes et al. 2004).

Several nicotine, detoxification, and neurotransmitter genes have been implicated with
smoking behaviors. Some of the main implicated genes are dopamine 2 receptor (DRD2)
(Comings DE 1996; Noble et al. 1994; Spitz et al. 1998), dopamine beta hydroxylase (DBH)
(McKinney et al. 2000), DOPA decarboxylase (DDC) (Ma et al. 2005; Yu et al. 2006),
Cholecystokinin (CCK) (Comings et al. 2001), Tryptophan Hydroxylase (TPH) (Lerman et
al. 2001; Sullivan 2001), gamma-aminobutyric acid type B receptor subunit 2 gene
(GABAB2) (Beuten 2005; Li et al. 2009), nicotinic acetylcholine receptor a4 subunit
(CHRNA4) (Li et al. 2005) and a3 subunit (rs1051730 in CHRNA3, (Thorgeirsson et al.
2008)) and Cytochrome P450 2A6 (CYP2A6; (Pianezza, Sellers, and Tyndale 1998; Sellers,
Kaplan, and Tyndale 2000)).1 Recent studies have found significant associations between
smoking and SNPs in GABRA4, GABRA2 and GABRE (Agrawal et al. 2008). Two recent
Genome Wide Association Studies (GWAS) have identified correlations between various
nicotine dependence measures and SNPs in CHRNA3 and CHRNA5 (Berrettini et al. 2008;
Caporaso et al. 2009) and in MAOA and ACTN1 (Caporaso et al. 2009). Recently, a large
meta-analysis confirmed the previously reported CHRNA3 and CHRNA5 effects and
identified two new SNPs within these genes (rs55853698 and rs6495308) that explain most
of the locus 15q2 effects on smoking quantity (Liu et al. 2010).

3. METHODS
3.1 Data Source and Study Measures

This paper employs a sample from a study of oral clefts in Norway. The study is a
population-level survey of infants born with OFC in Norway in 1996 through 2001 and their
parents as well as a randomly selected control sample of infants born without birth defects in
the same period (NIEHS. 2009). The main study sample includes 574 children with OFC
who represent 88% of the total eligible OFC population and 763 unaffected children who
represent 76% of the randomly selected 1,006 eligible live births. DNA samples were
collected from parents and children, and extensive data on maternal behaviors and
household factors and socioeconomics were provided by the mothers. Data on maternal
behaviors and characteristics was completed through self-administered surveys and most
variables have complete data for more than 97% of the survey sample. The sample in this
paper includes 856 mother-child pairs with available maternal genotypic data on the
employed instruments and all model variables -- 363 mothers of children with isolated oral
clefts and 493 mothers of unaffected children. There are no significant differences in
smoking and other relevant model variables between the analytical sample and those

1The variant rs1051730 is also related to quitting and intensity of smoking during pregnancy (Freathy et al. 2009).
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excluded due to incomplete data on genetic instruments or other variables. All study models
include these 856 persons except for the additional models that exclude cases with cleft
palate only, as described below.

The study outcome is isolated OFC without other malformations. Some of the previous
studies summarized above report differences in smoking effects between cleft lip with/
without palate and cleft palate only. In order to evaluate the potential heterogeneity in
smoking effects by cleft type, we estimate an additional specification that excludes cleft
palate only from the sample (106 affected children), leaving 257 cases and 493 controls. 2

We measure maternal smoking by the average number of cigarettes smoked per day during
the 12 months before pregnancy and alternatively during the first trimester, for which we
identify instruments for the IV analysis as described below. Women were asked about
whether they smoked at all during the last 12 months before pregnancy and during the first
pregnancy trimester, and if so how much they smoked “on average” per day or month.3
Smoking during the first trimester is the more biologically relevant and preferred measure of
exposure for fetal development of OFC. However, we also evaluate smoking before
pregnancy as a complementary measure given that some women may not become aware of
their pregnancy and modify their smoking status until a few weeks after conception. OFC
occur by the 9th gestational week (Sperber 2002) and in many cases before the mother
becomes aware of the pregnancy, as several pregnancies are unplanned.4 This raises the
possibility that the report of quitting smoking right before pregnancy (i.e. reporting smoking
before pregnancy but not during the first trimester) may not always be accurate, causing the
embryo to be exposed to cigarette smoking. For these cases, smoking before pregnancy (as
measured in this study) may also represent smoking during the early stages of pregnancy.
About 47% of the sample mothers smoked during the last 12 months before pregnancy and
about 37% reported smoking during the first pregnancy trimester (i.e. about 23% of the
women who smoked before pregnancy quit smoking in the first trimester).

There is a decreased variation in smoking participation and intensity in the first pregnancy
trimester compared to before pregnancy. In addition to decreasing participation, the average
cigarettes smoked per day among smokers decreases from about 9 to 6 cigarettes. This
decreases the power for observing significant instrument effects on cigarette smoking.
Furthermore, women who choose to continue to smoke during pregnancy may be different
from those who quit smoking during pregnancy based on their genetic risk factors for
smoking. Some genetic variants that predict smoking during a more ordinary time (e.g.,
before pregnancy) may not have significant effects on smoking during pregnancy. We find
most of the genetic instruments for smoking before pregnancy to have significant yet
“weaker” effects on smoking during the first trimester, as described below.

3.2 Genetic Instruments and Instrument Validation
In this study, we use SNPs that had been genotyped as part of a large-scale genotyping
project through the Center for Inherited Disease Research (CIDR) for studies of OFC. SNPs
were selected to study the effects of smoking on OFC. We employ SNPs rs1435252,
rs1930139 and rs1547272 in the gamma-aminobutyric acid type B receptor subunit 2 gene
(GABAB2) and SNP rs2743467 in cytochrome P450 gene CYP2D6 as instruments for

2Cleft lip only and cleft lip with palate are commonly grouped in the literature given their similarities in development and recurrence
risks.
3The specific questions on smoking and other survey questions can be found on
http://www.niehs.nih.gov/research/atniehs/labs/epi/studies/ncl/question.cfm. ). We do not have direct data on changes in smoking
amounts within these periods, but these may be partly reflected in the responses to average smoking intensity as described above. We
focus on estimating the overall average effects of cigarette quantity per day for the days when the women smoked in these periods.
4About 27% of the mothers in the study sample reported that the pregnancy was unplanned.
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average cigarettes per day during the 12 months before pregnancy5. None of these genes is
considered to be a candidate gene for OFC or is known to affect OFC through unobserved
behaviors. There are numerous neurotransmitter and detoxification pathways with multiple
genes that have different and specialized functions. The fact that a gene plays a role in one
pathway and affects a certain risk behavior does not necessarily mean that it plays a role in
all risky behaviors as many of the genetic effects are specific to certain behaviors and
pathways. We use the same GABAB2 SNPs (rs1435252, rs1930139 and rs1547272) as
instruments for cigarette smoking during the first trimester and before pregnancy. The
CYP2D6 SNP has an insignificant effect on first trimester cigarette smoking, and is
therefore not used as an instrument for cigarettes in the first trimester of pregnancy. Previous
studies have reported variants in GABAB2 and CYP2D6 to be associated with smoking
behaviors (Beuten 2005; Li et al. 2009; Saarikoski et al. 2000).

Table S1 in the Supplementary Material summarizes the various instrument specifications
that we employ. The main instrument specification for cigarettes before pregnancy includes,
for each SNP, two indicators for the minor allele homozygote genotype and for the
heterozygote genotype – the reference category is the major allele homozygote genotype.
This does not impose the restriction that these two genotypes have the same effect. As
sensitivity analysis, we evaluate alternative instrument specifications to gauge the sensitivity
of the IV cigarette effect estimates to various instruments and to assumptions about gene-
dosage instrument effects. These alternative specifications include one indicator per SNP
that combines the minor allele homozygote and heterozygote genotypes.6 Further, for
smoking before pregnancy, we evaluate additional instrument specifications excluding the
CYP2D6 SNP as an instrument given that there is generally less evidence from previous
studies for CYP2D6 involvement in smoking dependence than GABAB2.7

We evaluate the extent to which the instruments fit the first IV assumption by testing the
joint significance of their effects on the number of cigarettes adjusting for the other model
variables. There is no statistical test to fully evaluate the second IV assumption – that
instruments influence OFC only through smoking and observed variables – due to the role of
unobservable factors (Wooldridge 2002). Therefore, it is important to select the instruments
based on the theoretical (and in the case of genetic instruments biological) justification for
their excludability from the outcome function (Wehby, Ohsfeldt, and Murray 2008a). To our
knowledge, there is no evidence that the specific employed instruments or their genes are
involved in the biological/genetic pathways for OFC other than through smoking (Jugessur,
Farlie, and Kilpatrick 2009; Lidral, Moreno, and Bullard 2008). We evaluate the second IV
assumption using the standard over-identification test (Baum 2007; Lee 1992), which is a
partial test of the second IV assumption and evaluates whether the additional instruments
used to identify the IV model (i.e. the over-identification restrictions) have no effects on
OFC independent of smoking and are, therefore, excludable from the OFC function (a
minimum of one instrument is needed to identify the effect of one endogenous variable).8

5These SNPs pass the Hardy-Weinberg Equilibrium (HWE) test at p=0.34–0.9. The HWE test evaluates whether the genotypic
proportions at each SNP express deviations from an equilibrium/constant distribution due to non-random mating and other factors that
may result in such deviations. Higher p values suggest more confidence in not rejecting the random mating hypothesis and in lack of
deviation from the HWE equilibrium.
6We include one indicator because we find that the effects of the two indicators for each SNP are in the same direction and generally
insignificant from each other, except for SNP rs1435252, for which these two effects are significantly different at p<0.05. Therefore,
we keep two indicators for SNP rs1435252. Another advantage of reducing the number of instruments is that in the presence of “weak
instruments”, which is the case for these instruments as described below, the bias in the IV estimate increases with the number of
instruments (Hahn and Hausman 2003).
7The Norway sample had also been genotyped independently of the CIDR project for several other variants in GABAB2 as well as
DDC, and CHRNA4, which are genes that have also been implicated in smoking behaviors (Ma et al. 2005; (Li et al. 2005). However,
these variants had insignificant effects on smoking during the first pregnancy trimester. Supplementary Table S2 reports the results for
the relationship between these additional variants and first trimester smoking.
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3.3 Model Estimation
We estimate the following function for OFC status:

(1)

For child i, OFC status is a function of maternal cigarettes smoked before pregnancy or
alternatively in the first trimester (CIGARETTES), maternal socioeconomic and
demographic factors that are relevant for OFC including age, education and income
(SOCIOECONOMIC), and other risk and health behaviors (OTHER_BEHAVIOR) that may
affect OFC. We include the following in OTHER_BEHAVIOR: participation in and intensity
of alcohol drinking during the first pregnancy trimester, multivitamin intake in the first
trimester, body weight indicators at pregnancy, average number of daily calories during the
first trimester, and pregnancy intendedness. 9 Table 1 includes a description of the model
variables.

As described above, we estimate this function using an IV model in order to account for the
correlation between CIGARETTES and v (i.e. the correlation between CIGARETTES and
the unobserved confounders that also affect OFC), which if ignored, may lead to a biased
estimation of the effect (β) of CIGARETTES on OFC. The IV model involves an additional
function for CIGARETTES which we specify as follows:

(2)

where GENES include the genetic instruments for cigarettes as described above.

We estimate the IV model using conditional maximum likelihood (CML) which
simultaneously estimates equations (1) and (2) with equation (1) estimated as a probit
functional form. The model has several advantages over other estimation approaches
(Wooldridge 2002). First, CML provides the most efficient estimator if the distributional
assumptions are correctly specified. Second, the average partial effects of the model
variables can be directly estimated without retransformation. Third, the hypothesis of
exogenous cigarette selection (i.e. no confounding bias when ignoring unobserved factors)
can be directly evaluated by testing the correlations between the error terms v and e. A
significant correlation indicates that cigarettes are endogenous and that standard probit
estimates may be biased.

In order to evaluate the sensitivity of the cigarette effect estimates to the CML assumptions,
we also estimate the IV model using a two-stage IV probit model. This is the two-stage
residual substitution method of Rivers and Vuong (1988), which includes the OLS residual
term (e) of equation (2) as a regressor in equation (1), which is estimated by probit as
follows (Rivers and Vuong 1988):

8We evaluate the over-identification restrictions based on Newey’s (1987) minimum chi-square distance estimator of the IV probit
model (Newey 1987).
9Some studies report that maternal alcohol consumption, mainly excessive consumption, increases the risk of OFC (e.g. (Grewal et al.
2008; Romitti et al. 1999). However, other studies report insignificant (e.g. (Bille et al. 2007; Meyer et al. 2003). Some studies also
report that maternal obesity increases OFC risk (e.g. (Stothard et al. 2009; Villamor, Sparen, and Cnattingius 2008) but others do not
find significant effects (Shaw 2000). Food insecurity may also increase cleft palate risk (Carmichael et al. 2007). Low socioeconomic
resources may increase OFC risk (Clark et al. 2003; Durning P 2007; Yang et al. 2008). We include pregnancy intendedness as it
reflects maternal preferences for risk taking and may proxy for some unobserved confounders.
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(3)

Testing the coefficient γ of e in equation (3) evaluates whether cigarettes are endogenous.
One advantage of this method is that it does not impose the CML joint distributional
assumptions. However, a disadvantage is that equation (1) coefficients are estimated only up
to a scale (Wooldridge 2002). Obtaining the marginal effects requires rescaling the
coefficients. We employ Wooldridge’s (2002) approach for rescaling the coefficients.10

Estimating the marginal effects of cigarettes on the sample probability (proportions) of OFC
alone is less intuitive and insufficient in case-cohort and case-control designs. Given that the
outcome is a binary measure and the data is collected using with a case-cohort design, we
also estimate the “odds ratio” (OR) for smoking effects as follows:

(4)

where ps is the average predicted OFC probability at the mean cigarette number among
smokers and pn is the average predicted OFC probability with no smoking. The OFC
probabilities are predicted using the estimated regression coefficients for all observations
based on their values for the model variables (except for cigarette number as explained
above) and then averaged across the sample in order to estimate ps and pn. The OR is the
standard effect estimate for case-control and case-cohort designs, and is a consistent
estimate of the relative risk for rare outcomes such as OFC. The OR as defined in equation
(4) based on a probit function is virtually similar to that obtained from a logistic
regression11. However, logistic regressions are significantly harder to estimate in the case of
endogenous regressors, especially using conditional maximum likelihood. The confidence
intervals for the ORs are estimated using bootstrap with 2,000 replications.12 As a reference
model, we also estimate equation (1) using standard probit regression ignoring the problem
of unobserved confounders.

Another way of interpreting the regression coefficients involves weighting the regression
models by the sample probability weights, which provides an estimate of the effects of
smoking on oral cleft incidence in the population. As mentioned above, the study sample
includes most of the infants with OFC born in Norway during the study years and randomly
selected unaffected births. This allows constructing probability weights for participation in
the study. However, these probability weights are rather simplistic as they do not account for
potential differences in study participation by factors that may affect oral clefts. Also, these
weights make the CML model unstable and cause convergence problems. Therefore, as an

10This approach averages the predicted probabilities from equation (3) across all observations i (so that the predicted effects are
averaged across ei).11In models that include only smoking and no covariates, the OR as defined in equation (4) that is obtained from a probit function is
identical to that from a logistic function, which is the standard regression model used in case-control or case-cohort designs. For
example, both logistic regression and probit regression of OFC on smoking participation (yes/no) in the first trimester provide an OR
estimate of 1.54. When the model includes additional covariates, the odds ratio from the probit model is expected to differ slightly
from the logistic regression OR, because unlike the logistic regression OR, the probit OR is dependent on the covariate values.
However, the ORs from the two models are still expected to be very close to each other. For example, when adding the covariates
described above into the model, the OR for first trimester smoking participation is 1.379 and 1.370 in the probit and logistic
regressions, respectively.
12For the bootstraps, we set the maximum number of iterations for each IV-probit CML regression to 10. Using the full study sample,
The CML model converged at 5 iterations with cigarettes before pregnancy and 6 iterations for first trimester cigarettes.
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alternative approach, we use these sample probability weights with the standard probit and
the two-stage probit model to evaluate the smoking effects on OFC incidence.

The variables in OTHER_BEHAVIOR may be correlated with unobserved confounders,
which may bias the model estimates. We do not have access to instruments to account for
the endogenous maternal selection into all of these factors. In order to gauge their effects on
the cigarette effect estimates, we estimate an additional specification of equation (1) by
CML that excludes OTHER_BEHAVIOR. The expectation is that the IV cigarette effect
estimates should be insensitive to any potential biases in these variables if it is insensitive to
their exclusion.

3.4 Weak Instruments
As described below, the genetic instruments employed in this study have statistically
significant effects on cigarette smoking (F statistic of 3.33 in the main instrument
specification; p=0.0009). However, the magnitude of these effects suggests that they are
“weak”, or not strongly correlated with cigarette smoking13. If instruments are “exogenous”,
which is the required IV assumption, weak instruments are expected to bias the IV effect
estimates towards the classical estimates and the IV variance estimates downward (Hahn
and Hausman 2003). Therefore, standard inference approaches may be biased with weak
instruments. In order to assess the weak-instrument effects on our inference, we re-estimate
the IV probit function using Newey’s minimum chi-square distance estimator (Newey 1987)
with weak-instrument robust confidence bounds for the cigarette coefficients and compare
these confidence bounds to the usual bounds that do not account for weak instruments
(Finaly and Magnusson 2009). We show below that the cigarette marginal effects are
comparable between Newey’s IV probit estimator and the CML estimator, providing support
for using the Newey’s estimator to evaluate the weak-instrument effects on inference.14

Assuming exogenous instruments, weak-instruments are expected to result in over-rejection
of the over-identification restrictions (Hahn and Hausman 2003). Therefore, given that our
evaluations of the second IV condition suggest that the instruments are exogenous as
described below, we do not expect that the weak-instrument problem is resulting in an
inability to reject the over-identification restrictions.

4. RESULTS
4.1. Main Estimates

Table 2 reports the effects of smoking before pregnancy and during the first pregnancy
trimester on OFC risk using the main instrument specifications. 15 Also listed are the results
of testing the joint instrument effects on cigarettes (first IV assumption), the excludability of
the instruments from the OFC function using the over-identification test (second IV
assumption), and the exogenous selection of cigarettes.

Cigarette smoking before pregnancy or during the first trimester has a small and marginally
significant effect on OFC using standard probit. Smoking 9 cigarettes per day before
pregnancy (the average smoking rate among smokers) increases OFC risk by 1.2 times

13The “threshold” for weak instruments varies with several parameters including sample size, number of instruments, and other
parameters. However, F-statistics below 10 are generally considered to suggest weak-instruments in linear models (Staiger and Stock
1997). There are no rules of thumb for instrument strengths in the CML model, but the instruments may also be weak in that model.
14The weak-instrument robust confidence bounds are only available for the Newey’s IV probit estimator and are not available for the
other IV probit models (CML IV-Probit or the two-stage IV probit with residual substitution).
15Table S3 in the Supplementary Material reports the full CML regression results for the OFC functions in (Equation 1). Table S4
reports the full regression results for the cigarette functions in the CML model (Equation 2).
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relative to non-smoking. A similar effect is observed for smoking 6 cigarettes per day during
the first trimester, which is the average smoking rate among smokers.16

Using the main instrument specification and the CML-IV probit model, the cigarette
smoking coefficients increase and become more strongly statistically significant. Average
cigarette smoking (9 cigarettes per day) before pregnancy relative to non-smoking
significantly increases OFC risk by about 4.2 times. Smoking during the first pregnancy
trimester has a larger effect, increasing OFC risk by 5.4 times at the first trimester average
smoking rate of 6 cigarettes. The hypothesis of the exogenous selection of cigarette smoking
is rejected for both smoking measures (at p <0.05). As expected, the bootstrapped-based OR
confidence intervals are generally less statistically significant compared with the cigarette
regression coefficients, given that multiple variables (and variances) are averaged in the OR
estimate and its variance.

The main instrument specification has statistically significant effects on cigarette smoking
both before pregnancy and during the first pregnancy trimester (p <0.01 and <0.05,
respectively). However, as mentioned above, the instruments may be considered “weak”
based on the magnitude of their effects in the reduced-form model (F statistics of 3.33 and
2.63 for cigarettes before pregnancy and during the first trimester, respectively). The over-
identification restrictions (instrument excludability from the OFC function) are not rejected
at p=0.86 for cigarettes before pregnancy and p=0.77 for smoking in the first pregnancy
trimester.

4.1.a Excluding Cleft Palate Only—Table 3 reports the smoking effects on cleft lip
with/without palate (CL/P) excluding cleft palate only from the sample.17 The same pattern
of differences in effects between the probit and CML-IV probit is observed as in the total
sample. However, the IV smoking effects are larger than in the combined sample. In the
probit model, average smoking before pregnancy (9 cigarettes per day) or during the first
pregnancy trimester (6 cigarettes per day) significantly increases OFC risk by about 1.3
times. Under CML-IV probit, average smoking before pregnancy increases OFC risk by 4.9
times. A larger effect is observed for first trimester smoking, with a 6.1 times increase in
OFC risk. The cigarette coefficients are statistically significant for both periods under the
CML-IV probit model, but only the OR for smoking before pregnancy is marginally
significant. Similar to the total sample, the exogenous selection of smoking is also rejected
for the CL/P sample (at p<0.05). The instruments have similar effects in the CL/P subsample
as in the total sample, and the over-identification restrictions are not rejected (p=0.79 for
smoking before pregnancy and 0.64 for first trimester smoking).

4.2 Sensitivity Analysis
4.2.1 Smoking before Pregnancy—Table 4 reports the effects of smoking before
pregnancy on OFC under alternative model/instrument specifications and estimation
approaches. Excluding the other potential endogenous variables from the model
(OTHER_BEHAVIOR) has virtually no effect on the cigarette smoking effect or other test

16We interpret the smoking effects using odds ratios based on the estimated cigarette number regression coefficients by simulating the
effects of smoking the average number of cigarettes among smokers relative to not smoking. The average cigarette numbers (9
cigarettes per day before pregnancy and 6 per day during the first trimester) used in this simulation are conditional on being a smoker.
Note that these effects may not be directly compared to odds ratios for smoking participation (yes/no) effects. One reason is that
cigarette number is likely to be measured with some error, which attenuates the effect towards zero. We do not use binary smoking
status or categorical indicators for cigarette number because of the limited instrument effects on these measures. Therefore, these
effects should not be contrasted with odds ratio effects reported in previous studies using this sample (Lie et al. 2008). For instance,
adjusting for the model covariates described above, we estimate an odds ratio of any smoking during the first trimester of 1.38 (95%
CI: 1.02; 1.88) for OFC and 1.55 (95% CI: 1.1,2.17) for cleft lip without palate.
17Table S5 in the Supplementary Material reports the full regression results for the OFC function excluding cleft palate only. Table
S6 reports the full regression results for the cigarette function.
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results. Furthermore, the smoking effect is similar using the two-stage IV probit model (with
residual substitution) to the CML-IV probit model, with also a 4.2 times higher OFC risk
with average smoking.

The pattern of higher smoking effects under the IV model compared with the probit model is
consistent across the alternative instrument specifications, and the OR estimate is slightly
larger than the main instrument specification and ranges from 4.6 to 4.8 times across these
specifications. The exogenous selection of cigarettes is rejected under these instrument
specifications. Under all specifications, instruments have statistically significant effects on
smoking (at p <0.01) and the over-identification restrictions cannot be rejected.

4.2.2 First Trimester Smoking—Table 5 reports the first trimester smoking effects on
OFC under alternative model and instrument specifications. Similar to smoking before
pregnancy, the smoking effects are generally insensitive to excluding the
OTHER_BEHAVIOR vector from the model (the effect increases slightly in the probit
model). The effect in the two-stage IV probit model is virtually similar to that of the CML-
IV probit model. The exogenous cigarette selection is rejected in these specifications.

Similar to the first instrument specification, the first trimester smoking effect under
instrument specification 2 is larger than the probit effect with an OR of 5.9 (marginally
significant). The exogenous selection of cigarettes is rejected. The instruments have
significant effects on smoking (p<0.05), and the over-identification restrictions cannot be
rejected.

4.2.3 Weak-Instrument Effects—Table 6 reports the cigarette coefficients in the IV
probit regression estimated using the minimum chi-square distance estimator (Newey 1987).
Also included in Table 6 are the standard 95% confidence bounds for the coefficients, which
do not assume weak-instruments, and confidence bounds that are robust for weak
instruments. Evaluating the sensitivity of the inference to the instrument weakness involves
comparing the standard and the weak-instrument robust confidence bounds for this
estimator. Alternative weak-instrument robust confidence bounds are presented using the
Conditional Likelihood Ratio (CLR), Anderson Rubin (AR), Lagrange Multiple (LM) and
the LM-J statistics (Andrews, Moreira, and Stock 2006; Finaly and Magnusson 2009).18

The CLR test is more powerful under weak-instrument identification than the AR or the LM
test (Andrews et al. 2006). However, we report the AR and the LM bounds for comparison
purposes.

Inference for the smoking regression coefficient using the classical asymptotic standard
errors is overall comparable between Newey’s IV probit estimator and the CML-IV probit
estimator for both smoking measures. This provides support for evaluating the weak-
instrument issue using Newey’s estimator. The CLR, LM and LM-J weak-instrument robust
confidence bounds result in similar inference for the smoking regression coefficient as the
standard confidence bounds under all employed instrument specifications. However, the AR
confidence bounds suggest insignificant smoking coefficients under all specifications. Given
that the AR test suffers from lower power than the other statistics, which all result in similar
inference, these results suggest that the weak-instrument problem is unlikely to have
substantially biased the IV smoking effects presented above. Of course, this conclusion is
conditional on the instruments being truly exogenous. Both the over-identification tests
described above and the current knowledge of the biologic functions of the instrument genes
and of the OFC genetic etiology support the assumption that the instruments are exogenous.

18The regression coefficients cannot be directly compared between these models as they require transformation to obtain the variable
effects.
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4.2.4 Weighted Models and Cigarette Effects on Incidence—We estimate the
population incidence of OFC based on the study sample and the employed probability
weights to be about one affected birth per 500 births, which is similar to what has been
previously estimated for Scandinavian populations.(Christensen 1999; Harville et al. 2007;
Harville et al. 2005). Table 7 reports the smoking and quitting effects on the incidence OFC,
which is estimated by weighting the models with probit and two-stage probit models with
the sampling probability weights described above. When weighted, the standard probit
model suggests that a population-level smoking rate before pregnancy of about 9 cigarettes
per day (the average number of cigarettes among smokers) increases the population OFC
incidence rate by one additional OFC birth per 2,500 births or by about 20% relative to no
smoking (marginally significant). This model predicts that OFC incidence would decrease
by about 8% if all current smokers quit (marginally significant). However, the weighted
two-stage probit model predicts that a population-level smoking rate before pregnancy of
about 9 cigarettes per day relative to no smoking increases OFC incidence by one additional
affected birth per 200 births, or by about 245%, and that incidence would decrease by about
70% if all smokers quit (marginally significant). The weighted models for smoking during
the first trimester show generally comparable effects on OFC incidence but the effects are
overall statistically insignificant based on the bootstrap confidence bounds.

5. DISCUSSION
The study provides an application of genetic instruments for studying the effects of
behaviors on health. The findings generally support the utility of employing genetic
instruments for obtaining consistent estimates of maternal risk behavior effects on child
health. Accurate estimates of the “causal” behavioral effects are needed for designing
effective prevention programs for adverse child health outcomes and devising public
policies to improve child health. To our knowledge, this application is among the first to use
genetic instruments for assessing maternal behavior effects on infant health. The paper also
illustrates an application of instrumental variables using data from case-cohort or case-
control designs and ways of interpreting the behavior effects in such situations.

The employed instruments are predictive of cigarette smoking and do not appear to be
related to health outcomes (OFC) through unobserved pathways based on the literature or
statistical tests (including the inability to reject the over-identification restrictions at high
critical values and the observation of similar smoking effects when excluding other relevant
behavioral factors from the model). Of course, it is still possible that the instruments may
somehow be related to OFC through unobserved, as is the case for any application using
genetic instruments. As further knowledge is obtained on the genes’ functions and pathways,
it is important to reevaluate the evidence for the exogeneity of the instruments and its
implications for the results. One limitation of the instruments employed in this study that
may be relevant to other applications is that instruments may have “weak” (although
statistically significant) effects on behaviors. This is not surprising given the complex
etiologies of risk behaviors, which may involve several genetic, economic and psychosocial
factors, and given that large datasets with genetic instruments are unavailable for many
applications, especially for studying maternal behavior effects. In this case, it is important to
employ weak-instrument robust inference methods such as those presented above.

Genetic instruments provide a unique source of behavior variation to identify “causal”
behavioral effects. In applications where the genetic instruments may be “weak”, the
benefits of the genetic instrumental variables approach may outweigh the inference
challenges due to “weak instruments” given that weak-instrument robust inference methods
are available for most IV estimators. This is particularly relevant when non-genetic
instruments are not available or suffer from theoretical limitations. While prices/taxes and
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other area-level variables are commonly used as instruments for smoking and other risk
behaviors, there are significant theoretical and empirical challenges in employing these
instruments as described above. We are limited to a small set of already genotyped variants
as instruments for smoking in this study. These instruments are considered “weak” as
discussed above. Future studies are expected to have better access to stronger instruments as
the genetic etiologies of behaviors are further revealed and genotypic data become more
widely available. Recent research studies have identified new variants that have strong
effects on smoking. Of these, variants in CHRNA3 and CHRNA5 are the most promising and
are strong candidates to be used as instruments (Liu et al, 2010).19 Future studies are needed
to formally evaluate the utility of these variants as instruments for smoking.

The study results suggest that maternal cigarette smoking may substantially increase the
child’s OFC risk, and that this effect may be significantly underestimated in analyses that
ignore unobserved confounders. If our estimates are correct, the prevention of all cigarette
smoking at the population level may reduce OFC incidence by more than 50%. The study
provides further evidence that direct adjustment for observed confounders may be
insufficient for consistent estimation of maternal behavioral effects due to self-selection into
these behaviors based on unobserved factors that also affect child health.

The results are consistent with favorable self-selection into smoking based on unobserved
characteristics that may reduce the OFC risk. In other words, women who smoke at and
during pregnancy may, on average, have higher rates of certain unobserved “baseline”
characteristics that reduce OFC risk, and therefore result in underestimating the harmful
smoking effects when ignored in classical single-equation models. These characteristics may
include favorable family and child health history and lower maternal baseline health risks.
Such factors may increase maternal propensity to smoke, but may relate to unobserved
“health endowments” that reduce OFC risk such as favorable genetic, economic or
psychosocial factors. This may seem counterintuitive given that most observable
characteristics suggest adverse self selection into smoking with less education,
unemployment, alcohol drinking, underweight, not using vitamins and not planning the
pregnancy being positively correlated with cigarette smoking (see Table S3). The only
exception is the positive correlation between income and cigarette smoking. We cannot
evaluate further the hypothesis of adverse self-selection based on unobservables. However,
the change in smoking effects on OFC with the IV estimation is consistent with several
previous IV studies of smoking impacts on birth weight using cigarette tax rates and other
non-genetic instruments (Evans and Ringel 1999; Grossman and Joyce 1990; Lien 2005;
Permutt and Hebel 1989; Rosenzweig 1983) which find larger adverse smoking effects
using the IV models and also with IV studies of other behavioral effects on child health such
as prenatal care effects on birth weight, which also appear to be underestimated in classical
models (Wehby et al. 2009a, 2009b).

One potential bias source that may contribute to underestimating adverse smoking effects in
classical models is biased reporting of maternal smoking status depending on observed OFC
status. Mothers of children with OFC may be less likely to report, post delivery, their
participation in and intensity of smoking before and during pregnancy compared to mothers
of unaffected children due to guilt feeling and avoiding blame. In this study, mothers
reported smoking after the child’s birth (by about 4 months). However, previous analyses of

19Recent studies have provided several additional candidates for smoking, with confirmed associations for the gene encoding
cholinergic receptor, nicotinic, alpha 5 (CHRNA5 on chr 15q24) in multiple, independent studies (Hung et al. 2008; Liu et al. 2010;
Saccone et al. 2010; Thorgeirsson et al. 2008; Thorgeirsson et al. 2010). Additional susceptibility loci have been identified through
recent genome-wide association studies, including acetylcholine receptor genes CHRNB3 and CHRNA6 on chr 8p11, egl nine
homolog 2 (EGLN2) on chr 9q13, brain-derived neurotrophic factor (BDNF) on chr 11p13, CHRNA3 on chr 15q24, and cytochrome
P450 genes CYP2A6 and CYP2B6 on chr 19q13 (2010; McKay et al. 2008; Thorgeirsson et al. 2010).
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this data showed that differences between smoking status reported prospectively by the
study women during their first prenatal visit (available through birth registry data), which
was around 10.3 gestational weeks and for most cases likely before obtaining information
about OFC status, and first trimester smoking status as reported post delivery, are similar
between mothers of affected and unaffected children (Lie et al. 2008). Therefore, it is
unlikely that biased smoking report based on observed OFC is resulting in underestimating
smoking effects in the classical probit model. However, it is possible that the smoking
effects are attenuated toward zero in the classical models due to random errors in smoking
self-report or biases that are not related to OFC, which may partially explain the observed
increase in the effects of smoking when treated as endogenous. Intuitively, the estimates of
the IV model are expected to apply mainly to those whose behaviors change with the
instruments20, which may also contribute to the increase in smoking effects if these
instruments affect smoking behaviors in specific ways (e.g., spacing or timing of cigarette
use or smoking certain brands), or if those who smoke because of these instruments have
different characteristics that intensify the smoking effects, although we cannot evaluate this
in this study. It also remains theoretically possible that part of the increase is due to noise
introduced by the instruments or unforeseen endogeneity issues with the instruments that
may be aggravated by the instrument weakness. Therefore, it is important to replicate this
study in the future with the recently identified and potentially stronger instruments for
smoking.

One limitation of designs that condition sampling on the study outcome such as case-control
or case-cohort designs is that they are at higher risk for sample selection bias. This bias
occurs when the sampling frame or study participation is related to “unobserved” factors that
also affect the outcome (Heckman 1979). Additional sample selection bias that is
particularly relevant for IV applications using such data may occur if the sampling frame or
study participation is related to unobserved factors that are related to both the outcome and
the employed instruments. While such limitations are theoretically possible, we do not
expect that either the sampling frame or maternal decision to participate in this study is
related to unobserved factors that affect OFC or are related to the employed genetic
instruments. The study case-cohort sample included the majority of the eligible OFC
population in Norway during the study period and a random sample of unaffected children.
When suspected, sample selection should be modeled and accounted for using approaches
that explicitly account for the role of unobserved relevant factors that result in this bias such
as Heckman’s approach.

The IV model using genetic instruments may be applied in several other frameworks and
research areas that so far have either relied solely on adjusting for observed confounders or
utilized instruments that may not be effective in accounting for omitted variable bias.
Studies have identified specific genetic risk factors for major behavioral risk factors such as
alcohol use (Edenberg and Foroud 2006; Luo et al. 2006; Tolstrup et al. 2008) and obesity
(Dina et al. 2007; Frayling et al. 2007; Loos et al. 2008; Qi et al. 2008; Willer et al. 2009).
In the US, 34% of women of childbearing age are obese and 8% are extremely obese –
another 25% are overweight (Flegal et al. 2010). The alarmingly high obesity rates increase
the importance of obtaining consistent estimates of the “causal” maternal obesity effects on
child health in order to forecast the impacts of changes in obesity rates on disease incidence
and assess the returns of prevention programs.

In conclusion, the study provides a novel application using genetic instruments to assess the
“causal” effects of maternal smoking before and during pregnancy on child health in the

20Unlike for the local average treatment effect of two stage least squares (2SLS), this is not a strict but rather an intuitive
interpretation of the effects in the CML and other IV probit models.
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form of OFC status. The study finds that genetic instruments may be useful for such
applications and highlights some potential limitations of this approach and ways for
addressing them. Employing genetic instruments provides a valuable approach for
accounting for unobserved confounders and obtaining consistent estimates of the “causal”
behavior effects. The model may be used to study maternal risk behavior effects on various
infant and child health outcomes such as birth weight, fetal growth, preterm birth, birth
defects and child development and also to study long-term behavior effects on health,
economic and psychosocial status.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

References
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with

smoking behavior. Nat Genet. 2010; 42(5):441–7. [PubMed: 20418890]
Agrawal A, Pergadia ML, Saccone SF, et al. Gamma-aminobutyric acid receptor genes and nicotine

dependence: evidence for association from a case-control study. Addiction. 2008; 103(6):1027–38.
[PubMed: 18482426]

Andrews DWK, Moreira MJ, Stock JH. Optimal two-sided invariant similar tests for instrumental
variables regression. Econometrica. 2006; 74(3):715–52.

Angrist JD, Imbens GW, Rubin DB. Identification of Causal Effects Using Instrumental Variables.
Journal of the American Statistical Association. 1996; 91(434):444–55.

Baum, CFWV.; Stillman, S.; Schaffer, ME. OVERID: Stata module to calculate tests of
overidentifying restrictions after ivreg, ivreg2, ivprobit, ivtobit, reg3, Statistical Software
Components S396902. Boston College Department of Economics; 2007.

Berrettini W, Yuan X, Tozzi F, et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk
for heavy smoking. Mol Psychiatry. 2008; 13(4):368–73. [PubMed: 18227835]

Beuten J, Ma JZ, Payne TJ, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC, Li MD.
Single- and multilocus allelic variants within the GABA(B) receptor subunit 2 (GABAB2) gene are
significantly associated with nicotine dependence. Am J Hum Genet. 2005; 76(5):6.

Bille C, Olsen J, Vach W, et al. Oral clefts and life style factors--a case-cohort study based on
prospective Danish data. Eur J Epidemiol. 2007; 22(3):173–81. [PubMed: 17295096]

Bille C, Winther JF, Bautz A, et al. Cancer risk in persons with oral cleft--a population-based study of
8,093 cases. Am J Epidemiol. 2005; 161(11):1047–55. [PubMed: 15901625]

Boulet SL, Grosse SD, Honein MA, et al. Children with orofacial clefts: health-care use and costs
among a privately insured population. Public Health Rep. 2009; 124(3):447–53. [PubMed:
19445422]

Caporaso N, Gu F, Chatterjee N, et al. Genome-wide and candidate gene association study of cigarette
smoking behaviors. PLoS One. 2009; 4(2):e4653. [PubMed: 19247474]

Carmelli D, Swan GE, Robinette D, et al. Genetic influence on smoking--a study of male twins. N
Engl J Med. 1992; 327(12):829–33. [PubMed: 1508241]

Carmichael SL, Shaw GM, Ma C, et al. Maternal corticosteroid use and orofacial clefts. American
Journal of Obstetrics and Gynecology. 2007; 197(6):585.e1–85.e7. [PubMed: 18060943]

Cassell CH, Meyer R, Daniels J. Health care expenditures among Medicaid enrolled children with and
without orofacial clefts in North Carolina, 1995–2002. Birth Defects Res A Clin Mol Teratol.
2008; 82(11):785–94. [PubMed: 18985685]

Centers for Disease Control and Prevention, C. Improved national prevalence estimates for 18 selected
major birth defects--United States, 1999–2001. MMWR Morb Mortal Wkly Rep. 2006; 54(51):
1301–5. [PubMed: 16397457]

Christensen K. The 20th century Danish facial cleft population--epidemiological and genetic-
epidemiological studies. Cleft Palate Craniofac J. 1999; 36(2):96–104. [PubMed: 10213053]

Wehby et al. Page 16

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Christensen K, Juel K, Herskind AM, et al. Long term follow up study of survival associated with cleft
lip and palate at birth. BMJ. 2004; 328(7453):1405. [PubMed: 15145797]

Christensen K, Mortensen PB. Facial clefting and psychiatric diseases: a follow-up of the Danish
1936–1987 Facial Cleft cohort. Cleft Palate Craniofac J. 2002; 39(4):392–6. [PubMed: 12071787]

Chung KC, Kowalski CP, Kim HM, et al. Maternal cigarette smoking during pregnancy and the risk of
having a child with cleft lip/palate. Plastic and Reconstructive Surgery. 2000; 105(2):485–91.
[PubMed: 10697150]

Clark JD, Mossey PA, Sharp L, et al. Socioeconomic status and orofacial clefts in Scotland, 1989 to
1998. Cleft Palate Craniofac J. 2003; 40(5):481–5. [PubMed: 12943441]

Comings DE, Bradshaw-Robinson FLS, Burchette R, Chiu C, Muhleman D. The dopamine D2
receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics. 1996; 6(1):73–79.
[PubMed: 8845863]

Comings DE, Wu S, Gonzalez N, et al. Cholecystokinin (CCK) gene as a possible risk factor for
smoking: a replication in two independent samples. Mol Genet Metab. 2001; 73(4):349–53.
[PubMed: 11509018]

Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult
obesity. Nat Genet. 2007; 39(6):724–6. [PubMed: 17496892]

Ding W, Lehrer SF, Rosenquist JN, et al. The impact of poor health on academic performance: New
evidence using genetic markers. Journal of Health Economics. 2009; 28(3):578–97. [PubMed:
19217678]

Durning PCI, Morgan MZ, Lester NJ. The relationship between orofacial clefts and material
deprivation in wales. Cleft Palate Craniofac J. 2007; 44(2):5.

Edenberg HJ, Foroud T. The genetics of alcoholism: identifying specific genes through family studies.
Addict Biol. 2006; 11(3–4):386–96. [PubMed: 16961766]

Evans WN, Ringel JS. Can higher cigarette taxes improve birth outcomes? Journal of Public
Economics. 1999; 72(1):135–54.

Finaly K, Magnusson LM. Implementing weak-instrument robust tests for a general class of
instrumental-variables models. Stata Journal. 2009; 9(3):398–421.

Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–
2008. JAMA. 2010; 303(3):235–41. [PubMed: 20071471]

Fletcher JM, Lehrer SF. The effects of adolescent health on educational outcomes: Causal evidence
using genetic lotteries between siblings. Forum on Health Economics and Policy. 2009a; 12(2)

Fletcher JM, Lehrer SF. Using Genetic Lotteries within Families to Examine the Causal Impact of
Poor Health on Academic Achievement. National Bureau of Economic Research Working Paper
Series No. 15148. 2009b

Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with
body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826):889–
94. [PubMed: 17434869]

Freathy RM, Ring SM, Shields B, et al. A common genetic variant in the 15q24 nicotinic acetylcholine
receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of
women to quit smoking in pregnancy. Hum Mol Genet. 2009:ddp216.

Grewal J, Carmichael SL, Ma C, et al. Maternal periconceptional smoking and alcohol consumption
and risk for select congenital anomalies. Birth Defects Res A Clin Mol Teratol. 2008; 82(7):519–
26. [PubMed: 18481814]

Grossman M, Joyce TJ. Unobservables, Pregnancy Resolutions, and Birth Weight Production
Functions in New York City. Journal of Political Economy. 1990; 98(5):983.

Hahn J, Hausman J. Weak instruments: Diagnosis and cures in empirical econometrics. American
Economic Review. 2003; 93(2):118–25.

Harville EW, Wilcox AJ, Lie RT, et al. Epidemiology of cleft palate alone and cleft palate with
accompanying defects. Eur J Epidemiol. 2007; 22(6):389–95. [PubMed: 17484027]

Harville EW, Wilcox AJ, Lie RT, et al. Cleft lip and palate versus cleft lip only: are they distinct
defects? Am J Epidemiol. 2005; 162(5):448–53. [PubMed: 16076837]

Wehby et al. Page 17

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Heath AC, Martin NG. Genetic models for the natural history of smoking: evidence for a genetic
influence on smoking persistence. Addict Behav. 1993; 18(1):19–34. [PubMed: 8465673]

Heckman JJ. Sample Selection Bias as a Specification Error. Econometrica. 1979; 47(1):153–61.
Honein MA, Rasmussen SA, Reefhuis J, et al. Maternal smoking and environmental tobacco smoke

exposure and the risk of orofacial clefts. Epidemiology. 2007; 18(2):226–33. [PubMed: 17202867]
Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic

acetylcholine receptor subunit genes on 15q25. Nature. 2008; 452(7187):633–7. [PubMed:
18385738]

Jugessur A, Farlie PG, Kilpatrick N. The genetics of isolated orofacial clefts: from genotypes to
subphenotypes. Oral Dis. 2009; 15(7):437–53. [PubMed: 19583827]

Khoury MJ, Gomez-Farias M, Mulinare J. Does maternal cigarette smoking during pregnancy cause
cleft lip and palate in offspring? American Journal of Diseases of Children. 1989; 143(3):333–7.
[PubMed: 2644816]

Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for
making causal inferences in epidemiology. Statistics in Medicine. 2008; 27(8):1133–63. [PubMed:
17886233]

Lee LF. Amemiya’s Generalized Least Squares and Tests of Overidentification in Simultaneous
Equation Models with Qualitative or Limited Dependent Variables. Econometric Reviews. 1992;
11(3):319–28.

Lerman C, Caporaso NE, Bush A, et al. Tryptophan hydroxylase gene variant and smoking behavior.
Am J Med Genet. 2001; 105(6):518–20. [PubMed: 11496367]

Lessov CN, Martin NG, Statham DJ, et al. Defining nicotine dependence for genetic research:
evidence from Australian twins. Psychol Med. 2004; 34(5):865–79. [PubMed: 15500307]

Li MD. The genetics of nicotine dependence. Curr Psychiatry Rep. 2006; 8(2):158–64. [PubMed:
16539894]

Li MD, Beuten J, Ma JZ, et al. Ethnic- and gender-specific association of the nicotinic acetylcholine
receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet. 2005; 14(9):
1211–9. [PubMed: 15790597]

Li MD, Mangold JE, Seneviratne C, et al. Association and interaction analyses of GABBR1 and
GABBR2 with nicotine dependence in European- and African-American populations. PLoS One.
2009; 4(9):e7055. [PubMed: 19763258]

Lidral AC, Moreno LM, Bullard SA. Genetic Factors and Orofacial Clefting. Semin Orthod. 2008;
14(2):103–14. [PubMed: 19492008]

Lie RT, Wilcox AJ, Taylor J, et al. Maternal smoking and oral clefts: the role of detoxification
pathway genes. Epidemiology. 2008; 19(4):606–15. [PubMed: 18449058]

Lieff S, Olshan AF, Werler M, et al. Maternal cigarette smoking during pregnancy and risk of oral
clefts in newborns. Am J Epidemiol. 1999; 150(7):683–94. [PubMed: 10512422]

Lien DS, Evans WN. Estimating the impact of large cigarette tax hikes: The case of maternal smoking
and infant birth weight. Journal of Human Resources. 2005; 40(2):373–92.

Little J, Cardy A, Arslan MT, et al. Smoking and orofacial clefts: a United Kingdom -based case-
control study. Cleft Palate-Craniofacial Journal. 2004a; 41(4):381–6. [PubMed: 15222794]

Little J, Cardy A, Munger RG. Tobacco smoking and oral clefts: a meta-analysis. Bulletin of the
World Health Organization. 2004b; 82(3):213–8. [PubMed: 15112010]

Liu J, Tozzi ZF, Waterworth DM, et al. Meta-analysis and imputation refines the association of 15q25
with smoking quantity. Nat Genet. 2010; 42(5):436–40. [PubMed: 20418889]

Loos R, Lindgren JCM, Li S, et al. Common variants near MC4R are associated with fat mass, weight
and risk of obesity. Nat Genet. 2008; 40(6):768–75. [PubMed: 18454148]

Luo X, Kranzler HR, Zuo L, et al. Diplotype trend regression analysis of the ADH gene cluster and the
ALDH2 gene: multiple significant associations with alcohol dependence. Am J Hum Genet. 2006;
78(6):973–87. [PubMed: 16685648]

Ma JZ, Beuten J, Payne TJ, et al. Haplotype analysis indicates an association between the DOPA
decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet. 2005; 14(12):1691–98.
[PubMed: 15879433]

Wehby et al. Page 18

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MacLehose RF, Olshan AF, Herring AH, et al. Bayesian methods for correcting misclassification: an
example from birth defects epidemiology. Epidemiology. 2009; 20(1):27–35. [PubMed:
19234399]

Maes HH, Sullivan PF, Bulik CM, et al. A twin study of genetic and environmental influences on
tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med. 2004; 34(7):1251–
61. [PubMed: 15697051]

McKay JD, Hung RJ, Gaborieau V, et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet.
2008; 40(12):1404–6. [PubMed: 18978790]

McKinney EF, Walton RT, Yudkin P, et al. Association between polymorphisms in dopamine
metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000; 10(6):483–91.
[PubMed: 10975602]

Meyer KA, Werler MM, Hayes C, et al. Low maternal alcohol consumption during pregnancy and oral
clefts in offspring: the Slone Birth Defects Study. Birth Defects Res A Clin Mol Teratol. 2003;
67(7):509–14. [PubMed: 14565622]

Mossey PA, Little J, Munger RG, et al. Cleft lip and palate. Lancet. 2009; 374(9703):1773–85.
[PubMed: 19747722]

Mullahy J. Instrumental-Variable Estimation of Count Data Models: Applications to Models of
Cigarette Smoking Behavior. Review of Economics and Statistics. 1997; 79(4):586–93.

Newey WK. Efficient Estimation of Limited Dependent Variable Models with Endogenous
Explanatory Variables. Journal of Econometrics. 1987; 36(3):231–50.

NIEHS. Norway Facial Cleft Study (NCL). 2009.
Noble EP, St Jeor ST, Ritchie T, et al. D2 dopamine receptor gene and cigarette smoking: a reward

gene? Med Hypotheses. 1994; 42(4):257–60. [PubMed: 8072432]
Permutt T, Hebel JR. Simultaneous-equation estimation in a clinical trial of the effect of smoking on

birth weight. Biometrics. 1989; 45(2):619–22. [PubMed: 2669989]
Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature. 1998;

393(6687):750. [PubMed: 9655391]
Qi L, Kraft P, Hunter DJ, et al. The common obesity variant near MC4R gene is associated with higher

intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol
Genet. 2008; 17(22):3502–08. [PubMed: 18697794]

Rivers D, Vuong QH. Limited Information Estimators and Exogeneity Tests for Simultaneous Probit
Models. Journal of Econometrics. 1988; 39(3):347–66.

Romitti PA, Lidral AC, Munger RG, et al. Candidate genes for nonsyndromic cleft lip and palate and
maternal cigarette smoking and alcohol consumption: evaluation of genotype-environment
interactions from a population-based case-control study of orofacial clefts. Teratology. 1999;
59(1):39–50. [PubMed: 9988882]

Rosenzweig M, Schultz TP. Estimating a household production function: Heterogeneity, the demand
for health inputs, and their effects on birth weight. The Journal of Political Economy. 1983; 91(5):
723–46.

Rosenzweig MR, Schultz TP. Estimating a Household Production Function: Heterogeneity, the
Demand for Health Inputs, and Their Effects on Birth Weight. The Journal of Political Economy.
1983; 91(5):723–46.

Saarikoski ST, Sata F, Husgafvel-Pursiainen K, et al. CYP2D6 ultrarapid metabolizer genotype as a
potential modifier of smoking behaviour. Pharmacogenetics. 2000; 10(1):5–10. [PubMed:
10739167]

Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome
15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD.
PLoS Genet. 2010; 6(8)

Sellers EM, Kaplan HL, Tyndale RF. Inhibition of cytochrome P450 2A6 increases nicotine’s oral
bioavailability and decreases smoking. Clin Pharmacol Ther. 2000; 68(1):35–43. [PubMed:
10945314]

Shaw G, Todoroff K, Schaffer DM, Selvin S. Maternal height and prepregnancy body mass index as
risk factors for selected congenital anomalies. Paediatric & Perinatal Epidemiology. 2000; 14(3):
234–39. [PubMed: 10949215]

Wehby et al. Page 19

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Shaw GM, Carmichael SL, Vollset SE, et al. Mid-pregnancy cotinine and risks of orofacial clefts and
neural tube defects. Journal of Pediatrics. 2009; 154(1):17–9. [PubMed: 18990410]

Smith GD, Lawlor DA, Harbord R, et al. Clustered environments and randomized genes: a
fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007;
4(12):e352. [PubMed: 18076282]

Sperber, G. Formation of the primary palate. In: WDF, editor. Cleft Lip and Palate: From Origin to
Treatment. Oxford University Press; 2002. p. 5-13.

Spitz MR, Shi H, Yang F, et al. Case-control study of the D2 dopamine receptor gene and smoking
status in lung cancer patients. J Natl Cancer Inst. 1998; 90(5):358–63. [PubMed: 9498485]

Staiger D, Stock JH. Instrumental Variables Regression with Weak Instruments. Econometrica. 1997;
65(3):557–86.

Stothard KJ, Tennant PW, Bell R, et al. Maternal overweight and obesity and the risk of congenital
anomalies: a systematic review and meta-analysis. JAMA. 2009; 301(6):636–50. [PubMed:
19211471]

Sullivan PF, Jiang Yuxin, Neale Michael C, Kendler Kenneth S, Straub Richard E. Association of the
tryptophan hydroxylase gene with smoking initiation but not progression to nicotine dependence.
American Journal of Medical Genetics. 2001; 105(5):479–84. [PubMed: 11449402]

Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer
and peripheral arterial disease. Nature. 2008; 452(7187):638–42. [PubMed: 18385739]

Thorgeirsson TE, Gudbjartsson DF, Surakka I, et al. Sequence variants at CHRNB3-CHRNA6 and
CYP2A6 affect smoking behavior. Nat Genet. 2010; 42(5):448–53. [PubMed: 20418888]

Tolstrup JS, Nordestgaard BG, Rasmussen S, et al. Alcoholism and alcohol drinking habits predicted
from alcohol dehydrogenase genes. Pharmacogenomics J. 2008; 8(3):220–7. [PubMed: 17923853]

Tyndale R. Genetics of alcohol and tobacco use in humans. Annals of Medicine. 2003; 35(2):94–122.
[PubMed: 12795339]

Villamor E, Sparen P, Cnattingius S. Risk of oral clefts in relation to prepregnancy weight change and
interpregnancy interval. Am J Epidemiol. 2008; 167(11):1305–11. [PubMed: 18375499]

von Hinke Kessler Scholder, S.; Smith, GD.; Lawlor, DA.; Propper, C.; Windmeijer, F. Genetic
markers as instrumental variables: An application to child fat mass and academic achievement.
The Centre for Market and Public Organisation; 2010 Jun.

Wehby GL, Cassell CH. The impact of orofacial clefts on quality of life and healthcare use and costs.
Oral Dis. 2010; 16(1):3–10. [PubMed: 19656316]

Wehby GL, Murray JC, Castilla EE, et al. Prenatal care demand and its effects on birth outcomes by
birth defect status in Argentina. Econ Hum Biol. 2009a; 7(1):84–95. [PubMed: 19059012]

Wehby GL, Murray JC, Castilla EE, et al. Quantile effects of prenatal care utilization on birth weight
in Argentina. Health Economics. 2009b; 18(11):1307–21. [PubMed: 19142894]

Wehby GL, Ohsfeldt RL, Murray JC. Health professionals’ assessment of health-related quality of life
values for oral clefting by age using a visual analogue scale method. Cleft Palate-Craniofacial
Journal. 2006; 43(4):383–91. [PubMed: 16854194]

Wehby GL, Ohsfeldt RL, Murray JC. ‘Mendelian randomization’ equals instrumental variable analysis
with genetic instruments. Statistics in Medicine. 2008b; 27(15):2745–9. [PubMed: 18344186]

Werler MM, Lammer EJ, Rosenberg L, et al. Maternal cigarette smoking during pregnancy in relation
to oral clefts. Am J Epidemiol. 1990; 132(5):926–32. [PubMed: 2239907]

Willer C, Speliotes JEK, Loos RJ, et al. Six new loci associated with body mass index highlight a
neuronal influence on body weight regulation. Nat Genet. 2009; 41(1):25–34. [PubMed:
19079261]

Wooldridge, JM. Econometric analysis of cross section and panel data. Cambridge and London: MIT
Press; 2002.

Wyszynski DF, Duffy DL, Beaty TH. Maternal cigarette smoking and oral clefts: a meta-analysis.
Cleft Palate-Craniofacial Journal. 1997; 34(3):206–10. [PubMed: 9167070]

Yang J, Carmichael SL, Canfield M, et al. Socioeconomic status in relation to selected birth defects in
a large multicentered US case-control study. Am J Epidemiol. 2008; 167(2):145–54. [PubMed:
17947220]

Wehby et al. Page 20

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Yu Y, Panhuysen C, Kranzler HR, et al. Intronic variants in the dopa decarboxylase (DDC) gene are
associated with smoking behavior in European-Americans and African-Americans. Hum Mol
Genet. 2006; 15(14):2192–9. [PubMed: 16740595]

Wehby et al. Page 21

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wehby et al. Page 22

Table 1

Description of the Study Variables

Variable Definition Mean (SD)

Cigarettes before pregnancy Number of cigarettes per day smoked in the 12 months before pregnancy 4.2 (6.4)

Cigarettes in the first trimester Number of cigarettes per day smoked in the first trimester 2.3 (4.3)

Maternal age Maternal age in years 29.3 (4.7)

Less than high schoola Binary (0,1) indicator for maternal education of less than completed high school 0.111 (0.314)

High schoola Binary (0,1) indicator for maternal education of completed high school 0.255 (0.436)

Technical collegea Binary (0,1) indicator for mother attending technical college 0.202 (0.402)

Universitya Binary (0,1) indicator for mother completing university education 0.064 (0.245)

Maternal employment Binary (0,1) indicator for maternal employment in the first trimester 0.839 (0.368)

Very low maternal incomeb Binary (0,1) indicator for current gross maternal yearly income of less than
150,000 kr

0.359 (0.48)

Moderate maternal incomeb Binary (0,1) indicator for current gross maternal yearly income between 201,000
and 250,000 kr inclusive

0.244 (0.43)

High maternal incomeb Binary (0,1) indicator for current gross maternal yearly income of 251,000 kr or
more

0.141 (0.349)

Binge drinking in the first trimesterc Binary (0,1) indicator for ≥ 4 drinks per drinking occasion in the first trimester 0.06 (0.237)

Moderate drinking in the first trimesterc Binary (0,1) indicator for 2–3 drinks per occasion in the first trimester 0.092 (0.29)

Low drinking in the first trimesterc Binary (0,1) indicator for 1 drink per occasion in the first trimester 0.189 (0.392)

Multivitamin use Binary (0,1) indicator for using multivitamins before and during the first two
months of pregnancy

0.359 (0.48)

Underweightd Binary (0,1) indicator for maternal BMI prior to pregnancy of less than 18.5 0.03 (0.172)

Overweightd Binary (0,1) indicator for maternal BMI prior to pregnancy between 25 and 29.9
inclusive

0.19 (0.393)

Obesed Binary (0,1) indicator for maternal BMI prior to pregnancy of greater than 29.9 0.079 (0.271)

Calories Average daily calorie intake during the first trimester 2244.6 (750.8)

Pregnancy planning Binary (0,1) indicator for mothers who were planning to become pregnant 0.735 (0.442)

rs1930139_BBe Binary (0,1) indicator of AB genotype of rs1930139 0.327 (0.469)

rs1930139_ABe Binary (0,1) indicator of BB genotype of rs1930139 0.051 (0.221)

rs1547272_BBe Binary (0,1) indicator of AB genotype of rs1930139 0.345 (0.476)

rs1547272_ABe Binary (0,1) indicator of BB genotype of rs1930139 0.06 (0.237)

rs1435252_AAf Binary (0,1) indicator of AB genotype of rs1435252 0.082 (0.274)

rs1435252_ABf Binary (0,1) indicator of BB genotype of rs1435252 0.405 (0.491)

rs2743467_BBe Binary (0,1) indicator of AB genotype of rs2743467 0.43 (0.495)

rs2743467_ABe Binary (0,1) indicator of BB genotype of rs2743467 0.11 (0.313)

Note: The sample includes 856 observations.

a
The reference category is 2–4 years of college;

b
The reference category is 151,000–200,000 kr;
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c
The reference category is no drinking;

d
The reference category is normal weight (18.5≤BMI<25);

e
The reference category for the SNP genotype indicators is the AA genotype;

f
The reference category for the SNP genotype indicator is the BB genotype.
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Table 7

Cigarettes Effects on OFC Incidence Based on Weighted Models

Model Probit Regression Coefficient APE of smoking versus no
smoking on incidence

APE of current smokers quitting on
incidence

Cigarettes before pregnancy

 Probit 0.0068* (0.0039) 0.0004* [−0.00005, 0.00097] −0.00017* [−0.00038, 0.00002]

 Two stage IV probit
– Instrument
Specification 1

0.06** (0.0234) 0.0049* [−0.00004, 0.0141] −0.0014* [−0.0029, 0.00002]

Cigarettes in the first trimester

 Probit 0.0098* (0.0058) 0.0004* [−0.00004, 0.001] −0.00012 [−0.0003, 0.00001]

 Two stage IV probit
– Instrument
Specification 1

0.0884* (0.0459) 0.0055 [−0.002, 0.0256] −0.001 [−0.0028, 0.0008]

Note: The table reports the regression coefficients of cigarettes in the OFC functions that are weighted by the sampling probability weights.
Standard errors of regression coefficients are in parentheses. The average partial effects (APE) of smoking the “weighted” averages of cigarettes
among smokers (about 9 cigarettes per day for smoking before pregnancy and 6 cigarettes per day for smoking during the first pregnancy trimester)
relative to not smoking on the incidence of OFC are reported. The APE of all current smokers quitting on OFC incidence is also reported. The 95%
CI of the APE based on 2000 bootstrap replications are in brackets. The models are based on a sample size of 856 observations.

*
p < 0.1,

**
p < 0.05,

***
p < 0.01.
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