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Abstract

Though many software packages have been developed to perform label-free quantification of
proteins in complex biological samples using peptide intensities generated by LC–MS/MS, two
critical issues are generally ignored in this field: (i) peptides have multiple elution patterns across
runs in an experiment, and (ii) many peptides cannot be used for protein quantification. To address
these two key issues, we have developed a novel alignment method to enable accurate peptide
peak retention time determination and multiple filters to eliminate unqualified peptides for protein
quantification. Repeatability and linearity have been tested using six very different samples, i.e.,
standard peptides, kidney tissue lysates, HT29-MTX cell lysates, depleted human serum, human
serum albumin-bound proteins, and standard proteins spiked in kidney tissue lysates. At least
90.8% of the proteins (up to 1,390) had CVs ≤ 30% across 10 technical replicates, and at least
93.6% (up to 2,013) had R2 ≥ 0.9500 across 7 concentrations. Identical amounts of standard
protein spiked in complex biological samples achieved a CV of 8.6% across eight injections of
two groups. Further assessment was made by comparing mass spectrometric results to
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immunodetection, and consistent results were obtained. The new approach has novel and specific
features enabling accurate label-free quantification.
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INTRODUCTION
Currently, two main approaches are used to perform quantification of proteomic data from
liquid chromatography–tandem mass spectrometry (LC–MS/MS)1. One method uses
labeling techniques, while the other is label-free. Many different labeling methodologies
have been published and reviewed in the literature2–5. These various approaches share the
same principle, each with different strengths and weaknesses. 6,7 However, all of them
suffer from several limitations: (i) additional sample processing steps in the experimental
workflow, (ii) costs of the labeling reagents, (iii) variable labeling efficiency, and (iv)
difficulty in analyzing low-abundance peptides in multiple samples, especially when
numerous experimental groups are studied. Alternatively label-free quantification
overcomes these drawbacks and is considered as a reliable, versatile, and cost-effective
approach compared to label-based quantification8.

Label-free protein quantification by LC–MS/MS can be conducted by two fundamentally
different strategies: spectral counting and peptide ion intensity. Spectral counting measures
protein abundance by counting the number of spectra matched to peptides from a protein9.
Although spectral counting has been applied in different biological complexes10,11, when
low-end MS and limited LC separation (such as 1D) are applied, protein quantification using
spectral counting is challenging, because (i) the enabling of dynamic exclusion of ions in
data acquisition to obtain more MS/MS fragments of low-abundance peptides dramatically
affects spectral acquisition, and (ii) coeluted peptides in liquid chromatography competing
for MS/MS analysis influence the spectral acquisition. In contrast, peptide intensity
measures protein abundance by extracting the mass spectrometric signal intensity of peptide
precursor ions belonging to a particular protein. Therefore, peptide intensity is an excellent
alternative for label-free protein quantification using data obtained from LC–MS/MS
experiments.

Numerous software packages for label-free quantification of LC–MS/MS-derived data based
on peptide intensity have been developed and applied in proteomics research12. However,
two critical issues are generally ignored in this field: (i) peptides have multiple elution
patterns across runs in an experiment, and (ii) many peptides cannot be used for protein
quantification. This is because a single chromatographic condition, e.g., one specific column
with specific mobile phases and gradient, cannot be optimal for each of the thousands of
peptides in a single injection of a complex sample. A peptide peak in the LC–MS/MS
analysis has at least four features: mass-to-charge ratio (m/z), retention time, MS/MS
spectrum, and intensity. Across multiple runs, m/z and MS/MS spectrum are consistent,
while retention time and intensity (in technical replicates) are variable for many peptides.
Therefore, accurate alignment of retention time and correct determination of peptide
intensity are very important steps in label-free quantification. Here we describe a platform
named IdentiQuantXL, developed to individually align the retention time of each peptide
accurately and to apply multiple filters for exclusion of unqualified peptides to enhance
label-free protein quantification (Figure 1).
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EXPERIMENTAL PROCEDURES
Study Design

Four types of experiments were performed to validate this approach. Study 1: Repeatability.
A standard peptide solution (0.1 pmol/µL of Fibrinopeptide B, Angiotensin I and III), five
different types of tryptic peptide samples (0.25 µg/µL) from kidney tissue lysates, HT29-
MTX cell lysates, depleted human serum, human serum albumin-bound proteins, and 6
standard proteins (0.625–125 fmol, 0.0000481 –0.00203 µg, Supplementary Table 1A,B)
spiked in 10 µg of kidney tissue lysates were injected in 10 replicates (5 replicates for the 6
standard proteins spiked samples) at 40 µL each into a Thermo-Finnigan linear ion-trap
(LTQ) mass spectrometer coupled with a Surveyor autosampler and MS HPLC system
(Thermo-Finnigan). Study 2: Linearity. Seven concentrations of 3 standard peptides (1.0,
0.50, 0.25, 0.10, 0.050, 0.025, and 0.010 pmol/µL of Fibrinopeptide B, Angiotensin I and
III), serially diluted tissue/cell/serum protein/ albumin-bound samples (0.25, 0.125, 0.0625,
0.03125, 0.015625, 0.00078125, and 0.00390625 µg/µL), and 6 standard proteins
(0.0390625–1,000 fmol, 0.000003–0.016239µg, Supplementary Table 1A,B) spiked in
kidney tissue lysates were used. The tryptic peptides were injected in 5 replicates (2
replicates for the 6 standard proteins spiked samples) at 40 µL each into the LTQ mass
spectrometer. Study 3: The quantification of an identical concentration (0.00125 µg/µL) of
lysozyme spiked in human lymphocyte culture media containing secreted proteins in eight
injections of four samples belonging to two groups. Study 4: A prototypical proteomics
experiment that compared pituitary protein expression between wild-type and dwarfed mice,
including 5 samples per group and 2 injections per sample. To summarize the samples used
in the four studies, Supplementary Table 2 is presented.

Materials
DL-Dithiothreitol (DTT), urea, triethylphosphine, iodoethanol, and ammonium bicarbonate
(NH4HCO3) were purchased from Sigma-Aldrich (St. Louis, MO, USA). LC–MS grade
0.1% formic acid in acetonitrile (ACN) and 0.1% formic acid in water (H2O) were
purchased from Burdick & Jackson (Muskegon, MI, USA). Modified sequencing grade
porcine trypsin was obtained from Princeton Separations (Freehold, NJ, USA). Lysozyme,
myoglobin, β-lactoglobulin, fetuin, ovalbumin, transferrin, fibrinopeptide B, and angiotensin
I and III were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Sample Preparation
For the kidney samples, 259 mg of tissue was immersed in 2,072 µL of lysis buffer (8
Murea, 10 mM DTT solution, freshly prepared), thoroughly minced with needle-nose
surgical scissors, and lysed using a ground-glass homogenizer. The homogenates were
centrifuged at 100,000 × g for 20 min at 4 °C to remove insoluble materials. For the HT29-
MTX cell samples, 1,600 µL of lysis buffer was added to the collected cells. For depleted
serum samples, the depletion of high-abundance plasma proteins was performed as
described previously13. The albumin-bound protein samples were tryptic peptides pooled
from 16 human subjects studied in a previous experiment. The 6 standard proteins
(0.0390625–1,000 fmol, 0.000003–0.016239 µg) were spiked in 10 µg of kidney tissue
lysates in amounts shown in Supplementary Table 1A,B. For the lysozyme spiked samples,
the media from lymphocyte cell cultures containing 100 µg of protein was used directly for
the next step of sample preparation. Pituitary samples were processed in a manner identical
to the kidney tissues. Protein reduction, alkylation, and digestion were carried out using a
conventional method previously published by the authors13.
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LC-MS/MS
The samples were injected onto a C18 microbore RP column (Zorbax SB-C18, 1.0 mm ×
150 mm) at a flow rate of 50 µL/ min. The mobile phases A, B, and C were 0.1% formic
acid in water, 50% ACN with 0.1% formic acid in water, and 80% ACN with 0.1% formic
acid in water, respectively. The gradient elution profile was as follows: 10% B (90% A) for
5 min, 10–95% B (90–5% A) for 120 min, 100% C for 5 min, and 10% B (90% A) for 12
min. The data were collected in the “Data dependent MS/ MS” mode with the ESI interface
using normalized collision energy of 35%. Dynamic exclusion settings were set to repeat
count 1, repeat duration 30 s, exclusion duration 120 s, and exclusion mass width 0.75 m/z
(low) and 2.0 m/z (high).

Peptide and Protein Identification
The acquired data were searched against the International Protein Index (IPI) database
(ipi.RAT.v3.63, ipi.HUMAN.v3.69, and ipi.MOUSE.v3.77) using SEQUEST (v. Twenty-
eight rev. 12) algorithms in Bioworks (v. 3.3). General parameters were set to peptide
tolerance 2.0 amu, fragment ion tolerance 1.0 amu, enzyme limits set as “fully enzymatic -
cleaves at both ends”, and missed cleavage sites set at 2.

Validation of Peptide and Protein Identification
The searched peptides and proteins were validated by PeptideProphet15 and
ProteinProphet16 in the Trans-Proteomic Pipeline (TPP, v. 3.3.0)
(http://tools.proteomecenter.org/software.php). Only proteins and peptides with protein
probability ≥ 0.9000 and peptide probability ≥ 0.8000 were further analyzed.

Peptide Frequency Calculation
For each peptide, its protein ID, sequence, charge, scan time, m/z, injection, sample, and
group information were extracted and collected. Peptides with identical sequence and charge
were considered as a single entry (peptide) for further analysis. Peptide frequency was
calculated, and only peptides that were identified in at least three injections were included.
This represents the first filter in the approach.

Alignment To Determine Peptide Retention Time Using Clustering
To align retention time, the retention time (scan time) range of each filtered peptide from all
injections was calculated. For a peptide with range ≤3 min, a weighted mean was calculated
using Tukey’s Biweight17 and used as the retention time for all injections. For a peptide with
range >3 min, all obtained retention times were classified into three clusters based on elution
patterns (Figure 2) using hierarchical clustering. Euclidean distance and single-linkage
clustering were used for metrics and linkage criteria, respectively. The weighted mean
retention time of each cluster was calculated and sorted from high to low (T1, T2, and T3).
If T1–T3 ≤ 3 min, a weighted mean was calculated and used as retention time for all
injections. If T1– T3 > 3 min, the frequency (F1, F2, and F3) and interquartile range (IQR1,
2, and 3) of each cluster were calculated and sorted. If a cluster with frequency (F) ≤ 0.25,
or 0.25 < F ≤ 0.50 with IQR > 4, or 0.50 < F ≤ 0.75 with IQR > 6, or 0.75 < F ≤ 1.00 with
IQR > 8, it was excluded. If F1 –F2 was more then 0.25, the cluster with F1 was chosen. If
F1–F2 < 0.25 and F1–F3 ≥ 0.25, the cluster with a smaller retention time was chosen from
the clusters with F1 and F2. If F1–F2 < 0.25 and F1– F3 < 0.25, the cluster with a smaller
retention time was chosen from the three clusters. Peptides that did not meet the criteria
were not assigned a retention time and were excluded. This represents the second filter in
the approach. After the retention time was determined, a weighted mean m/z of each peptide
was calculated. A tab delimited file was created to extract peptide intensity using MASIC18.
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Extraction of Peptide Intensity
Peptide intensity extraction was performed by specifying “Acquisition time (minutes)” and
“Limit the search to only custom m/z values (ignoring auto-fragmented m/z’s)” under
Custom SIC Options in MASIC. The tab delimited file generated above was uploaded to
read custom SIC search values.

Peptide CV
The coefficient of variation (CV) of each peptide in each sample was calculated. The CV
values of a peptide from all samples were placed into four categories: unacceptable CV
(>116%), high CV (71% < CV ≤ 116%), middle CV(47% < CV ≤ 71%), and low CV
(≤47%). The frequency of each category was calculated. If its CV was >116% in any
sample, the peptide was excluded. If a peptide had a “high CV” frequency >12.5%, it was
filtered out. Likewise, if a peptide had a “low CV” frequency <12.5%, it too was filtered out.
This represents the third filter in our approach.

Peptide Intensity Correlation
To calculate the correlation coefficient of peptides that correspond to a unique protein ID,
Pearson’s correlation (for ≥3 variables) and uncentered Pearson’s correlation (for 2
variables) methods19 were applied. The intensity of each peptide was compared with all
other peptides, and the average was used as the final correlation coefficient value. In the
current studies, a peptide with a correlation coefficient <0.900 was excluded from protein
quantification. This represents the fourth filter in the approach.

Protein Abundance Calculation
Protein abundance was calculated using the following equation:

Where Ap = protein abundance, I p = peptide intensity, and F p = frequency of peptide
sharing. For a peptide shared by different proteins, the intensity of this peptide (I p) was
divided by sharing frequency (Fp). The aim of this strategy is to decrease the impact of
shared peptides.

RESULTS AND DISCUSSION
Peptide Elution Patterns

For a complex sample, a single chromatographic condition, e.g., one specific column with
specific mobile phases and gradient, cannot be optimal for each of the thousands of peptides
in a single sample injection. Peptides behave differently in such a system, and therefore each
peptide may have one of six elution patterns: (i) it is completely eluted at one time point and
very consistent in different sample injections analyzed; (ii) it is completely eluted at one
time point but not consistently in all injections; (iii) its abundance is very high in some
injections and cannot be bound completely to the column, so some amount of peptide is
eluted before the main peak; (iv) it is bound to the column too tightly, mainly eluting at first,
with a remainder eluting at higher organic concentration, after the main peak; (v) it has a
pattern combining patterns (iii) and (iv); and (vi) it has poor chromatographic performance
under the conditions and is eluted at indistinct time points across all injections. When
Dynamic Exclusion is applied, six typical MS/MS spectrum distributions of various peptides
are generated in one experiment, and these are shown in Figure 2A–F. The data were
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generated from injections of a human serum albumin-bound protein sample. Each figure
illustrates the distribution of a specific peptide in all injections, and peptides have multiple
MS/MS spectra in each injection. The x-axis is indicated according to run order. There is no
difference or trend when the x-axis is indicated according to different samples
(Supplementary Figure 1). In distribution A, all spectra are limited to a 3 min interval. In
distribution B, most spectra are limited to 3 min range; a few are scattered in a broad range.
In distribution C, some spectra are concentrated in a narrow window of longer retention
time, while other spectra are scattered in a wide range with a shorter retention time. In
distribution D, some spectra are concentrated in a narrow window of shorter retention time,
while other spectra are scattered in a wide range with a longer retention time. In distribution
E, some spectra are concentrated in a narrow window of retention time, while other spectra
are scattered in a wide range with both shorter and longer retention times. Finally, in
distribution F, all spectra are scattered in a wide range of retention time.

The distribution of peptides from kidney tissue lysates, HT29-MTX cell lysates, depleted
human serum, human serum albumin-bound proteins, and 10 µg of kidney tissue lysates
spiked with 6 standard proteins (0.0390625 – 1,000 fmol, 0.000003– 0.016239 µg) are
summarized in Figure 3. The percentage of each distribution is sample-dependent. Our data
show 77.4–92.1%, 4.2–12.8%, and 2.2–9.8% of peptides have distributions A and B;
distributions C, D, and E; and distribution F, respectively.

Alignment To Determine Peptide Retention Time
Currently, four approaches typically are used to align the retention times of peptides across
multiple injections. In the most popular, researchers initially follow a workflow similar to
that used in 2-DE image analysis20,21, aligning each peptide ion from different injections by
plotting them as two-dimensional images22. Many software packages, such as OpenMS/
TOPP23, MapQuant24, Msight20, msInspect25, and MZmine26, apply this approach. T his is
a global and two-dimensional alignment (Retention Time and m/z). Considering the multiple
peptide elution patterns, this alignment method only performs satisfactorily on peptides
having elution patterns (i) and (ii) and incorrectly quantifies peptides having elution patterns
(iii) –(vi). Furthermore, this is a pattern-based method and is only effective with high
resolution data. For low resolution data, these software packages fail because no peaks can
be extracted. To substantiate this, LC–MS data from the tryptic peptide samples used in this
study were imported into MSight, the mass step was set at 0.05, 0.1, 0.2, and 0.5, and the
result indicates that no spots were produced by MSight (Supplementary Figure 2). Clearly,
m/z values obtained from low resolution instruments cannot be used for alignment in this
way.

Because retention time alignment based solely on LC–MS features is not reliable for
complex proteomic samples27, up- graded alignment methods such as SuperHirn28 and
PEPPeR29 were generated, in which MS/MS scan boundaries become the basis for retention
time comparisons in subsequent landmark matching. Even though this three-dimensional
alignment (Retention Time, m/z, and MS/MS) significantly improves the alignment
accuracy, it is still a global alignment. Like the first approach, false matching is generated
when it is applied in elution patterns (iii) –(vi), and it is still a pattern-based method limited
to the analysis of high resolution data.

The third approach is to align the “Base Peak” chromatograms, such as SIEVE from Thermo
Scientific. The base peak chromatogram consists of only the most intense peak in each
spectrum at every time point of the analysis. In an experiment where complex protein
samples are analyzed, many peptides are eluted at the same time point but their intensities
vary across multiple injections. Consequently, the “Base Peak” in each chromato-gram may
be very different in some elution time windows (Supplementary Figure 3), rendering
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unreliable the accuracy of retention time determination by aligning only the base peak. This
is another global and two-dimensional alignment (Retention Time and Base Peak Intensity).
It is a shape-based method that can be applied to high and low resolution data, but it is
inaccurate.

The last approach is an alignment using MS/MS scan times (identified peptides). DEAL-
Q30,31 first aligns all identified peptides and constructs a regression model. The regression
algorithm then is used to estimate the elution time of an unidentified peptide and perform
peptide cross-assignment by mapping predicted elution time profiles across multiple LC–
MS experiments. This is a global and three-dimensional alignment (Retention Time, m/z,
and MS/MS), but it is an identity-based method. Therefore, it can be applied to high and low
resolution data. However, it does not resolve those peptides having elution patterns (iii) –
(vi). In their publication, the authors found that manual validation of all 11,940 peptide ions
in six replicate LC–MS/MS runs revealed that 97.8% of the peptide ions were correctly
aligned, and 93.3% were correctly validated by SCI. The 93.3% value is consistent with our
observation that 77.4–92.1% of peptides have distributions A and B (elution patterns (i) and
(ii)).

Some approaches, such as ProteinQuant32, do not align peptide retention time across
multiple injections. In that approach, the first occurrence of a peptide MS/MS scan and its
associated retention time (precursor MS/MS scan time) is collected in the master file. Within
the user-designated retention time window associated with the precursor MS/MS scan time,
it generates a base peak chromatogram for the precursor m/z value and then selects the
maximum intensity peak According to the six elution patterns described earlier, the first
occurrence of a peptide does not necessarily mean the peptide elution peak appears at that
MS/MS scan time.

It is clear that accurate chromatographic alignment is essential in label-free quantification
when peptide intensity extraction is performed, but it is also necessary to account for peptide
elution patterns. Existing alignment methods apply a global alignment, an approach that
totally ignores the impact of peptide elution patterns.

Individual Three Dimensional Alignment To Determine Peptide Retention Time Using a
Clustering Method

To accurately determine peptide retention time, we have developed a novel alignment
method to determine peptide peak retention time by clustering each identified peptide MS/
MS scan time according to its elution pattern. For each peptide, the retention times of all
MS/MS spectra from all injections were collected, and then the retention time distribution
patterns were generated. Each peptide was processed independently, without considering
other peptides’ retention times. Therefore, this is an individual alignment, in contrast to the
global alignment methods described above. For distribution A (Figure 2), the variation is
acceptable for all LC runs, no cluster is applied, and a weighted mean is calculated using
Tukey’s Biweight as the retention time of the peptide across all injections. For distributions
B–F (Figure 2), three clusters are generated, and the weighted mean (retention time),
interquartile range (IQR) value, and frequency (of each cluster present in all injections) are
calculated. The IQR value of a cluster is used to determine whether or not a peak exists at
that retention time. If an IQR is small, it means a peak exists; if an IQR is large, it means the
peak is absent or unacceptable (e.g., too broad). An IQR cutoff based on the cluster
frequency is described in the Experimental Procedures. Only qualified clusters are applied to
the comparison. For distribution B (Figure 2), the range of three clusters’ weighted means is
limited to 3 min, signifying most spectra are within the 3 min interval and only a few are out
of range. Therefore, the total weighted mean is calculated as the retention time for the
peptide in every run. For distribution C (Figure 2), the highest cluster frequency indicates
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that this cluster is generated around the peak. Its weighted mean is thus used as the retention
time for the peptide in every run. For distribution D (Figure 2), MS/MS spectra are acquired
around the peak and then many times after a long time interval. In this case, the qualified
cluster with shorter retention time is chosen. Distribution E (Figure 2) is the most
complicated, and thus a multistep approximation is applied to determine the retention time
of a peptide peak. First, the cluster frequency is used to exclude the MS/MS spectra eluting
before the main peak. Then the main peak is selected because it has a shorter retention time.
Finally, distribution F (Figure 2) is not suitable for retention time determination and is
excluded because the peptide has poor chromatographic performance under the current
experimental conditions. The application of the clustering method, with the aid of its
frequency and IQR, can accurately determine the identified retention time. Because the
determined retention time is identity-based, it can be applied to high and low resolution data.
It is worth noting that this retention time is the weighted mean of the MS/MS acquisition
time points that appear around the eluting peak. The mean retention time is the closest time
point to the apex of the chromatographic peak of an identified peptide. Furthermore, MASIC
is used to define the apex of the eluted peak by importing the mean retention time into the
MASIC software. This approach is an individual and three-dimensional alignment
(Retention Time, m/z, and MS/MS) and can be applied to both high and low resolution data.

Comparison of the key features of our novel method to other existing approaches is
summarized in Table 1. Global alignment does not consider heterogeneous peptide elution
patterns and only works well for elution patterns (i) and (ii). Individual alignment takes into
account the various elution patterns and works well for all of them. A pattern-based method
is limited to analyzing high resolution data. A shape-based method can analyze both high
and low resolution data, but it is inaccurate. An identity-based method can be applied to high
and low resolution data. Therefore, an individual, identity-based alignment method provides
the most accurate retention time determination and widest application. Our alignment
method incorporates these features. In addition, our platform applies multiple filters for
exclusion of unqualified peptides to enhance label-free quantification.

Peptide Frequency
Another of the two important issues in peptide intensity measurements relates to the use of
every identified peptide for protein quantification. Many software packages have ignored
this issue. To obtain accurate quantification results, several considerations prompt one to
filter out some of the peptides. First, in a typical experiment, many peptides are identified
only in some of the injections, even in only one or two. In our experiment in which a tryptic
digest of whole rat kidney lysates was analyzed and included 35 injections, 7,361 peptides
were identified. However, 1,883 (25.6%) of the peptides were identified only in 1 injection,
831 (11.3%) in each of 2 injections, 562 (7.6%) in each of 3 injections, and only 61 (0.8%)
were identified in all 35 injections. The detailed distribution of identification is illustrated in
Figure 4A,B. If a peptide is not analyzed by MS/MS in an injection, that does not mean it is
absent from this injection32. A peptide identified only in one injection is likely to exist in all
other injections in that experiment. However, confidence in this assumption is weakened
because the mass spectrometer is very sensitive and numerous ions are fragmented;
consequently non-peptide ions may be misidentified as peptides and other identified
peptides may be false positive. Extraction of the intensities for nonpeptide ions or
misidentified peptides with low identification frequency leads to erroneous quantification.

To improve confidence in peptide quantification, we have developed a filter for peptide
identification frequency whereby one can determine the peptide identification frequency
criterion according to the characteristics of each experiment. Only peptides with
identification frequencies higher than a specified cutoff are considered for the next step in
the process.
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Peptide Retention Time
A second consideration relates to the fact that chromatographic conditions cannot be optimal
for all of the thousands of peptides detected in a single injection. Consequently, some
peptides have an elution pattern like that shown in distribution F (Figure 2), namely, they do
not form a quantifiable peak. Therefore, a retention time filter must be used to eliminate
these peptides from further analysis.

Peptide CV
For the reasons mentioned above, a third filter has been developed to disregard peptides
whose intensities measured by peak area are highly variable across technical replicates. In
the current study, a mixture of three standard peptides, Angiotensin III, Fibrinopeptide B,
and Angiotensin I, was injected into the LTQ. The intensities of each peptide from 10
replicates are shown in Figure 4C–E. The intensities of 4 pmol of Angiotensin III,
Fibrinopeptide B, and Angiotensin I were 2.39 × 107 ± 0.36 × 107, 6.63 × 107 ± 0.75 × 107,
and 8.90 × 106 ± 5.64 × 106 with CV 15.0%, 11.4%, and 63.4%, respectively. From these
data, it is quite clear that not every peptide can be used to calculate protein abundance. The
results indicate that Angiotensin I has a huge variation (63.4%) and is not qualified for
protein quantification in the current study.

Peptide Intensity Correlation
Finally, when multiple peptides are used to calculate a protein’s abundance, the correlation
among them may be poor. Examples from the current kidney experiment (see below) and an
additional pituitary tissue lysate study are shown in Figure 4F,G. Peptide 7 in Figure 4F and
peptide 9 in Figure 4G are significantly different from other peptides. The peptide sequences
and protein names are provided in Supplementary Table 3A. Possible reasons for poor
correlation are as follows: (i) some peptides have greater variation than others under the
same chromatographic condition, generating a weak relationship among peptides; (ii)
posttranslational modification (PTM) variably affects the relative abundance of unmodified
peptides; and (iii) peptide sharing among diverse proteins causes inconsistent effects on
some peptides. The correlation coefficients of peptide 7 in Figure 4F and peptide 9 in Figure
4G were calculated using Pearson’s correlation (for ≥3 variables) and uncentered Pearson’s
correlation (for 2 variables) methods and are listed in Supplementary Table 3B. Peptides in
Figure 4F had correlation coefficients of at least 0.926, except for peptide 7, which had a
value of 0.595. Peptides in Figure 4G had correlation coefficients of at least 0.901, except
for peptide 9 with a value of 0.814. Therefore, these two peptides were excluded for
subsequent protein quantification.

Multiple Filters To Exclude Unqualified Peptides for Protein Quantification
From the results of the experiments described above, a fundamental concept emerged that
not every peptide can be used to quantify a corresponding protein. Therefore, multiple filters
(Peptide Frequency, Retention Time, Intensity CV, and Correlation) were developed to
enhance protein quantification. To test the performance of this strategy, repeatability and
linearity analyses were performed using (i) a simple sample consisting of 3 standard
peptides, (ii) complex samples consisting of thousands of peptides, and (iii) 6 standard
proteins spiked in complex samples (kidney tissue lysates). In some cases, correlation
calculation (R2) is performed on the log–log scale. However, the variance of log ratios also
depends on signal intensity. When raw data are considered, variation increases as intensity
increases. When log-transformed data are considered, the variance is usually stable above a
certain intensity, but the low intensity data can be highly variable.33 Therefore, R2

calculations using both log-transformed and raw data are presented.
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In the repeatability test of the simple 3 peptide sample, all were identified in each of 10
injections, and their retention time range was less than 3 min. Two of the peptides
(Angiotensin III and Fibrinopeptide B) had an intensity CV ≤ 15% and were qualified for
the next step in the process (see Experimental Procedures for parameters). For these two
peptides, extraordinary quantitative linearity was generated with R2 of 0.9964 and 0.9980
across 7 concentrations with 2 orders of magnitude (Figure 5A). The R2 calculation using
raw data is shown in Supplementary Figure 4A. This result indicates that peptide intensity
measurement is a reliable approach for protein quantification, when some peptides not
qualified for quantification are excluded.

In the repeatability test of a more complex sample (kidney tissue), 2,662 of 4,636 peptides
were identified in at least 3 out of 10 injections, 2,647 of 2,662 peptides with an retention
time were qualified for peak area extraction, and 2,599 of 2,647 peptides with an acceptable
CV were used for protein quantification (see Experimental Procedures section for
parameters). Using these three filters, 772 (76.4%), 99 (9.8%), 102 (10.1%), and 38 (3.8%)
out of 1,011 proteins had a CV ≤ 15%, ≤ 20% and >15%, ≤ 30% and > 20%, and ≤ 50%
and >30%, respectively, indicating that 96.2% of proteins had CVs ≤ 30% (Figure 5B).

In the repeatability test of 6 standard proteins (0.625 – 125 fmol, 0.000048–0.002030 µg,
Supplementary Table 1A,B) spiked in 10 µg of kidney tissue lysate proteins, 1,837 of 5,526
peptides were identified in at least 3 out of 5 injections, 1,835 of 1,837 peptides with an
retention time were qualified for peak area extraction, and 1,783 of 1,835 peptides with an
acceptable CV were used for protein quantification. Using these three filters, 649 (67.1%),
127 (13.1%), 135 (14.0%), and 56 (5.8%) out of 967 proteins had a CV ≤ 15%, ≤ 20% and
>15%, ≤ 30% and > 20%, and ≤ 50% and >30%, respectively, indicating that 94.2% of
proteins had CVs ≤ 30% (Supplementary Figure 5A). The CVs of standard proteins were
8.6%, 9.3%, 12.2%, 10.3%, 8.0%, and 23.3% for lysozyme, myoglobin, β-lactoglobulin,
fetuin, ovalbumin, and transferrin, respectively. The repeatability analysis results of the
HT29-MTX cell lysate, depleted serum, and albumin-bound proteins experiments are
provided in Supplementary Figure 5B –D. In each of the five unique experiments, at least
90.8% of the proteins had CVs ≤ 30%.

In the linearity test of the kidney tissue lysate, 4,647 of 7,361 peptides were identified in at
least 3 of 35 injections (see Methods),4,474 of 4,647 peptides with an acceptable retention
time were qualified for peak area extraction, 4,123 of 4,474 peptides with an acceptable CV
were qualified for protein quantification, and 4,006 of 4,123 peptides with an acceptable
correlation coefficient were used for protein quantification. Using these four filters, 1,157
(77.1%), 259 (17.3%), 41 (2.7%), 35 (2.3%), and 8 (0.5%) of 1,500 proteins had an R2 of
≥0.9900, ≥ 0.9700 and <0.9900, ≥ 0.9500 and <0.9700, ≥ 0.9000 and <0.9500, and <0.9000
across 7 concentrations (Figure 5C), respectively. The linearity analysis indicated 97.2% of
proteins had an R2 ≥ 0.9500. The percentage of R2 distribution using raw data is shown in
Supplementary Figure 4B.

In this analysis, the dilution ratios (fold differences) of the 7 kidney sample concentrations
are known. The comparison between the known fold differences and the calculated fold
differences by linear regression analysis across the different concentrations was used as an
additional method to judge the performance of the approach. The fold differences calculated
from the linear regressions between different concentrations and their R2 are listed in Table
2. All fold differences fall into the ±28% range, and the minimal R2 is 0.9376. Even the
largest fold difference (64-fold) was successfully determined as 6.30 (log2 transformed),
with an error of only 5%. The calculation of fold and R2 distribution using raw data is shown
in Supplementary Table 4. The representative linear regressions of 1,500 proteins using log-
transformed and raw data are shown in Figure 6 and Supplementary Figure 6, respectively.
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Other regressions using log-transformed and raw data are indicated in Supplementary Figure
7A,B.

In the linearity test of 6 standard proteins (0.0390625 – 1,000 fmol, 0.000003–0.016239 µg,
Supplementary Table 1A,B) spiked in 10 µg of kidney tissue lysates, 4,323 of 8,524
peptides were identified in at least 3 of 16 injections, 4,171 of 4,323 peptides with an
acceptable retention time were qualified for peak area extraction, 4,060 of 4,171 peptides
with an acceptable CVwere qualified for protein quantification, and 1,720 of 4,171 peptides
with an acceptable correlation coefficient were used for protein quantification. With these
four filters, the intensity and R2 of 6 standard proteins were calculated. In the range of
0.3125–1,000 fmol (0.000017–0.016239 µg), the R2 of 6 standard proteins were 0.9990,
0.9986, 0.9939, 0.9777, 0.9893, and 0.9763 for lysozyme, myoglobin, β-lactoglobulin,
fetuin, ovalbumin, and transferrin (Figure 7), respectively. The calculation of R2 using raw
data is shown in Supplementary Figure 8.

The linearity analysis results from the HT29-MTX cell lysate, depleted serum, and albumin-
bound protein experiments are provided in Supplementary Figure 9 and Supplementary
Tables 5–7. Among these very different samples, the linearity analysis indicated 96.5%,
98.4%, and 93.6% of proteins had an R2 ≥ 0.9500, respectively. The linear regressions
between different concentrations are indicated in Supplementary Figures 10–15.

Quantification of identical amounts of lysozyme spiked in human lymphocyte culture media
containing secreted proteins was carried out to further evaluate the performance of the
approach. In this experiment, eight injections of four complex biological media samples
belonging to two groups were carried out. The label-free quantification of lysozyme is
shown in Figure 5D–F. The resulting CV for lysozyme was 8.6%, 8.2%, and 3.2% for eight
injections, four samples, and two groups, respectively, and indicates that this strategy was
accurate in the quantification of a protein in a complex mixture.

After the validation of the approach, it was applied to a proteomics experiment that
compared global pituitary protein expression between wild-type and a dwarfed mouse model
of combined pituitary hormone deficiency (CPHD) containing a targeted knock-in mutation
(Lhx3 W227ter), a model for human LHX3 W224ter disease.34 More than 4,000 proteins
were quantified using the method. Expression of many pituitary proteins was decreased in
the dwarfed mouse, consistent with results that were obtained by other methods. One of
these proteins, prolactin, was decreased 17.1-fold in dwarfed mice compared to wild-type
using the label-free quantification strategy (Figure 5G, H). Western blot experiments
analyzing whole pituitaries have independently shown very low or undetectable prolactin in
the pituitaries of adult dwarfed mice compared with wild type controls (Figure 5I).34 Again,
this result demonstrates the utility of this label-free strategy in analyzing complex protein
mixtures.

Optimal Filtering Thresholds for the Four Filters
After achieving successful quantification of proteins in different samples, an additional
concern is the optimal threshold for each of the four filters. Because concrete values are not
generally transferable and it is very difficult to set such parameters using a statistical
analysis, unique experiments cannot use identical thresholds. In this platform, filter
thresholds can be set at different values for different projects achieving optimal thresholds
specific to the unique protocols/platforms used to generate the data.

A balanced approach to setting thresholds should be applied. Overly conservative
parameters will reduce the number of proteins quantified, by filtering out those that vary
only through minor experimental errors. Conversely, excessively liberal parameters will
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produce a large number of inaccurately quantified proteins. Because our platform applies the
four filters in a sequential manner, inaccurate results generated using relatively liberal
parameter settings in each previous step have an opportunity to be excluded in the next step,
and so on. Therefore, reasonably liberal parameters can safely be applied, in general. A
summary of the optimal filtering thresholds for the four filters is presented in Supplementary
Table 8.

In general, a protein identified by two or more peptides is considered a more confident
identification than one identified by only one peptide. Similarly, a peptide identified in
multiple injections is considered a more confident identification than one from only one
injection. Different laboratories use different software and cutoff values for peptide
identification, and this affects the Peptide Frequency calculation. We suggest that peptide
identifications from 2 or 3 injections minimum should be used as the threshold of Peptide
Frequency.

In retention time determination, the threshold of 3 min is used as basic cutoff based on
observations from many HPLC runs and the elution patterns shown in Figure 2. Although
the development of a simpler approach more generally applicable to other platforms or
protocols was attempted, such a method remains currently unavailable. Therefore, the rules
to combine IQR with frequencies were developed.

The Peptide CV filter is a combination of the CV value and its frequency. Because at least
two injections are needed when this filter is applied, the threshold of the CV value is
calculated based on two injections. The concept is as follows: if a peptide has an
unacceptable CV in one injection, it should be excluded from all injections; if a peptide has
an excessively high CV, it should be excluded; and if a peptide has too few low CV values,
it too is excluded.

The correlation coefficient (CC) filter is used to exclude extreme outliers. Though there is
no requirement that qualified peptides have excellent correlation coefficients (such as CC ≥
0.9), most poorly correlated peptides are excluded. Normally, when CC < 0.9, the threshold
setting filters out 10–15% of the peptides. When outlier peptides are checked manually, this
cutoff always excludes the pertinent, outlier peptides. Different experiments can apply
different correlation coefficient cutoff because this cutoff is sample dependent. In our
experience, CC ≥ 0.9 works well for data from two-group data.

In reality, optimal thresholds are difficult to achieve for all peptides, because over 10,000
peptides are processed simultaneously. Nonetheless, they may be obtained over the course
of many trials. It also is important to concede that even the best software in the world cannot
fix poor quality measurements; consequently, the quality of the LC–MS/MS data always is
of the highest priority.

Comparison between IdentiQuantXL and SIEVE
In Figure 7 and Supplementary Figure 8, the linearity test of the 6 standard proteins
(0.0390625–1,000 fmol, 0.000003–0.016239 µg, Supplementary Table 1A,B) spiked in 10
µg of kidney tissue lysates have been presented. Therefore, the fold differences between any
two concentrations can be calculated easily. Two sets of comparisons were processed, 2:1
(128 vs 64) and 16:1 (128 vs 8). The results using IdentiQuantXL are shown in Table 3.

The same data sets then were analyzed using the latest version of SIEVE software (1.3.744
SP1) developed by ThermoFisher Scientific, an automated LC–MS analysis platform for
label-free quantitative differential expression analysis of proteins, peptides, and small
molecules for quantitative measurements in conjunction with qualitative identification. In
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each data set, four raw data from two concentrations including two injections in each
concentration were submitted to SIEVE. After the alignment, frames were created and
submitted for identification. For the protein report, Maximum Percolator Peptide FDR was
set as 1.00; the Minimum Xcorr for Charge 1, 2, 3, and >3 was 1.90, 2.20, 3.75, and 3.75,
respectively, and Maximum Rank was set as 1 in SEQUEST Criteria. The results were
exported to Excel, and the quantification of the 6 standard proteins is presented in Table 3.

Comparing the results from IdentiQuantXL and SIEVE in Table 3, it is clear that the
performance of IdentiQuantXL is much better than SIEVE. For highly abundant proteins,
both IdentiQuantXL and SIEVE generate excellent results, but IdentiQuantXL performs
better than SIEVE. For low abundance proteins, IdentiQuantXL performs significantly
better than SIEVE. Transferrin is the lowest abundance protein of the 6 standards.
IdentiQuantXL accurately quantified the 2-fold difference as well as the 16-fold differences
of transferrin, while SIEVE failed to report the quantification data. For β-lactoglobu-lin and
fetuin in low abundance, the fold differences detected by SIEVE are highly inaccurate, while
IdentiQuantXL quantified the fold changes accurately.

CONCLUSIONS
In LC–MS/MS analysis, a single chromatographic condition, e.g., one specific column with
specific mobile phases and gradient, cannot be optimal for each of the thousands of peptides
in a single sample injection of a complex sample. Accordingly, two important issues hinder
the use of peptide intensity measurements: (i) peptides have multiple elution patterns across
runs in an experiment, and (ii) many peptides cannot be used for protein quantification.
However, these issues are generally ignored by many software packages that have been
developed to perform label-free quantification of proteins in complex biological samples
using peptide intensities.

In LC–MS/MS applications, the alignment of peptide retention time is challenging and
critical to label-free quantification, and using peptides to quantify corresponding proteins is
not always straightforward. Because many identified peptides are unqualified for use in
protein quantification for reasons presented in this paper, the practice of unconstrained use
of all peptides to calculate protein abundance generates inaccurate results. Therefore, we
have developed a novel individual three-dimensional alignment method to determine peptide
retention time and four novel filters, Peptide Frequency, Retention Time, Intensity CV, and
Correlation, to enhance protein quantification.

By analyzing the repeatability and linearity of protein quantification in complex samples,
this approach systematically demonstrated its excellent utility in a wide variety of
concentrations. Repeatability and linearity have been tested using ion trapderived low
resolution data from six very different samples, i.e., standard peptides, kidney tissue lysates,
HT29-MTX cell lysates, depleted human serum, human serum albumin-bound proteins, and
standard proteins spiked in kidney tissue lysates. In these unique experiments, at least 90.8%
of the proteins (up to 1,390) had CVs ≤ 30% across 10 technical replicates, and at least
93.6% (up to 2,013) had R2 ≥ 0.9500 across 7 concentrations. By comparing known fold
differences with calculated fold differences from linear regression analysis between different
concentrations, this approach has successfully quantified up to a 64-fold difference in
protein abundance in complex samples. The performance of our approach was verified using
identical amounts of standard protein (lysozyme) spiked in complex biological samples (cell
culture media containing secreted proteins) with a CV of 8.6% across eight injections.
Further assessment was made by comparing mass spectrometric results to immunodetection.
Prolactin, which was 17.1-fold lower in dwarfed mice versus wild-type using the label-free
quantification strategy, was very low or undetectable using Western blot34. These results
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indicate that our new approach accurately quantifies numerous peptides and proteins in
complex samples.

The results of repeatability testing, linearity assessment, fold difference comparison,
standard protein inclusion, and Western blot analysis all clearly indicate this new approach
performed accurately in the analysis of LC–MS data acquired by low resolution mass
spectrometry and using the Dynamic Exclusion function. In addition, it has been applied
successfully in the analysis of the aqueous humor proteome data acquired by high resolution
mass spectrometry in patients with Fuchs endothelial corneal dystrophy35. While many
software packages focus only on high resolution data, our approach is designed for both high
and low resolution data. Consequently, it is very useful for data generated by low resolution
mass spectrometers such as the LTQ, especially when the dynamic exclusion of ions in data
acquisition is enabled to obtain more MS/MS fragments of low-abundance peptides to
maximally identify proteins in a complex biological sample.

No specific “identification” and “quantification” runs are needed in this approach, as both
LC–MS and MS/MS data are acquired in the same run, the benefits of which have been
summarized by Andreev et al27. This approach responds to the realities and requirements of
current systems biology and biomarker discovery research and is practical and relevant to a
broad range of proteomic applications and mass spectrometric capabilities.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Typical workflow for label-free quantification using a novel alignment method and multiple
filters for exclusion of unqualified peptides, illustrating a hypothetical experiment consisting
of 2 groups, 2 samples in each group, and 2 injections in each sample. In the 8 injections,
8,000 peptides are identified. Some peptides exist in only one or two injections and thus are
excluded (Filter 1: Peptide Frequency). Filtered by peptide frequency, 7,000 peptides are
analyzed individually across all injections to obtain their peak retention time using a novel
retention time determination method. Some peptides are excluded, because they lack a stable
peak (Filter 2: Peptide Retention Time). Using the computed retention time, the peak area of
6,500 peptides is extracted. The coefficient of variation (CV) of each peptide between 2
injections in each sample is calculated, and peptides with a high CV are removed (Filter 3:
Peptide CV). After Filter 3, 6,000 peptides remain. When multiple peptides are used to
calculate a protein’s abundance, the correlation among them is calculated. A few peptides
with poor correlation coefficients are excluded (Filter 4: Peptide Correlation). Using Filter 4,
5,500 peptidesare finally used to calculate protein abundance.
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Figure 2.
Typical MS/MS spectrum distributions of six selected peptides across multiple injections.
The x-axis is indicated according to run order. There is no difference or trend when the x-
axis is indicated according to different samples (Supplementary Figure 1). (A) Multiple
spectra are limited to a 3 min retention time range. (B) Most spectra are limited to a 3 min
range; a few are scattered in a broad range. (C) Some spectra are concentrated in a narrow
window of longer retention time, while other spectra are scattered in a wide range with a
shorter retention time. (D) Some spectra are concentrated in a narrow window of shorter
retention time, while other spectra are scattered in a wide range with a longer retention time.
(E) Some spectra are concentrated in a narrow window of retention time, while other spectra
are scattered in a wide range with a shorter and longer retention times. (F) All spectra are
scattered in a wide range of retention time.
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Figure 3.
Percentage of each distribution of peptides from (A) kidney tissue lysates, (B) HT29-MTX
cell lysates, (C) depleted human serum, (D) human serum albumin-bound proteins, and (E)
10 µg of kidney tissue lysates spiked with 6 standard proteins (0.3125–1,000 fmol,
0.000017–0.016239 µg). The percentage of each distribution is sample-dependent: 77.4–
92.1%, 4.2–12.8%, and 2.2–9.8% of peptides have distributions A and B; distributions C, D,
and E; and distribution F, respectively.
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Figure 4.
Multiple filters used in the approach for protein quantification. (A, B) Distribution of
peptide identification in 35 injections of rat kidney sample lysates. In total, 7,361 peptides
were identified. However, 1,883 (25.6%) of the peptides were identified in only 1 injection,
and only 61 (0.8%) were identified in all 35 injections. Peptide Frequency is used as the first
filter in this approach. Only peptides with identification frequencies higher than the cutoff
are considered for the next step in the filtration process. (C–E) Peak areas of three standard
peptides from 10 replicates (Angiotensin III, 449.49; Fibrinopeptide B, 786.24; and
Angiotensin I,433.23). Data clearly show that some peptides cannot be used to calculate
protein quantity. (F, G) Correlation of peptides from two proteins. The arrow indicates
peptides significantly different from other peptides, their correlation coefficients are much
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lower than others, and they are excluded from subsequent protein quantification. Correlation
represents the fourth and final filter in this approach.
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Figure 5.
Performance of the approach in protein quantification. (A) The calibration curve of two
standard peptides from 7 concentrations in 5 replicates each (Angiotensin III, 449.49;
Fibrinopeptide B, 786.24). Extraordinary quantitative linearity was observed with R2 of
0.9964 and 0.9980 across 7 concentrations with 2 orders of magnitude. (B) The repeatability
analysis of 1,011 proteins in the current kidney tissue lysates indicates 96.2% of proteins
had CVs ≤30%. (C) The linearity analysis of 1,500 proteins in the kidney tissue lysates
indicates 97.2% of proteins had an R2 of ≥ 0.9500. (D–F) Label-free quantification of
identical concentrations of lysozyme with CV = 8.6%, 8.2%, and 3.2% for eight injections
(D), four samples (E), and two groups (F), respectively. (G–I) The quantification of
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prolactin using this approach versus Western blot. Prolactin was 17.1-fold lower in dwarfed
mice (KI/KI) compared to wild-type (+/+) using the label-free quantification strategy (G).
The quantification of GAPDH reported as a control is 1.14-fold lower (H). Western blot of
prolactin with GAPDH as a loading control (I) is reprinted with permission of the authors
and shows very low or undetectable prolactin in the pituitaries of adult dwarfed mice
compared with wild type controls34. Western blot analysis of prolactin is consistent with the
fold change detected by the label-free quantification strategy.
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Figure 6.
Linear regression analysis between 7 different concentrations of 1,500 proteins from kidney
tissue lysates. All fold differences fall in the ±28% range, and the minimal R2 is 0.9376. The
largest fold difference (64-fold) was accurately determined as 6.30 (log2 transformed), with
an error of only 5%.
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Figure 7.
Linear regression analysis between 8 different concentrations of 6 standard proteins
(0.3125–1,000 fmol, 0.000017–0.016239 µg) spiked in 10 µg of kidney tissue lysates. All 6
proteins have an excellent correlation in the range, and the minimal R2 is 0.9763.
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Table 3

Comparison between IdentiQuantXL and SIEVE in Protein Quantification

2:1 (128 vs 64) 16:1 (128 vs 8)

protein IdentiQuantXL SIEVE IdentiQuantXL SIEVE

lysozyme C [Gallus gallus] 2.0 (0.0%) 1.8 (−10.0%) 17.6 (10.0%) 17.9 (11.9%)

myoglobin [Equus caballus] 1.9 (−5.0%) 1.7 (−15.0%) 17.1 (6.9%) 17.2 (7.5%)

β-lactoglobulin [Bos taurus] 1.6 (−20.0%) 1.6 (−20.0%) 15.7 (−1.9%) 8.2 (−48.8%)

fetuin [Bos taurus] 2.1 (5.0%) 2.2 (10.0%) 23.3 (45.6%) 34.6 (116.3%)

ovalbumin [Gallus gallus] 1.8 (−10.0%) 1.9 (−5.0%) 13.6 (−15.0%) 13.9 (−13.1%)

transferrin [Homo sapiens] 1.7 (−15.0%) NDa 4.2 (−73.8%) NDa

a
No data reported.
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