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Abstract
This second, of a two part paper, uses concepts from graph theory to obtain a deeper
understanding of the mathematical foundations of multibody dynamics. The first part [7]
established the block-weighted adjacency (BWA) matrix structure of spatial operators associated
with serial and tree topology multibody system dynamics, and introduced the notions of spatial
kernel operators (SKO) and spatial propagation operators (SPO). This paper builds upon these
connections to show that key analytical results and computational algorithms are a direct
consequence of these structural properties and require minimal assumptions about the specific
nature of the underlying multibody system. We formalize this notion by introducing the notion of
SKO models for general tree-topology multibody systems. We show that key analytical results,
including mass matrix factorization, inversion, and decomposition hold for all SKO models. It is
also shown that key low-order scatter/gather recursive computational algorithms follow directly
from these abstract-level analytical results. Application examples to illustrate the concrete
application of these general results are provided. The paper also describes a general recipe for
developing SKO models. The abstract nature of SKO models allows the application of these
techniques to a very broad class of multibody systems.

1 Introduction
For tree-topology multibody systems, spatial operator techniques have been used to establish
important analytical results, such as decompositions and factorizations of the mass matrix,
and operator expressions for its inverse [9, 15, 16]. This analytical groundwork has led to
low-order computational algorithms, such as for inverse dynamics, forward dynamics, and
for computing the mass matrix. While spatial operators have been used to demonstrate
common mathematical themes across a broad range of multibody systems, there has been a
gap in our understanding of the underlying system properties that make such convergence
possible.

To address this gap, part I of this paper [7] introduced the notions of Spatial Kernel
Operators (SKO) and the related Spatial Propagation Operators (SPO). It showed that key
spatial operators are in fact instances of SKO and SPO matrices. The SKO and SPO
matrices are themselves instances of block-weighted adjacency (BWA) and their 1-resolvent
matrices for the graphs associated with tree-topology multibody systems. Thus it was seen
that SKO and SPO properties of spatial operators applied very generally (serial/tree
topology, rigid/flex bodies) with minimal assumptions on the lower level properties of the
underlying system. This remarkable consistency persists despite significant differences in
the component structure of the corresponding spatial operators for these different systems.
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In this paper1 we explore analytical results and computational algorithms that result from
just the SKO and SPO properties of the spatial operators, and independent of the specific
properties of the multibody system. This level of abstraction ensures that these results
directly apply to a large family of multibody systems. We use examples and important
robotics modeling and control applications to illustrate the connections between the abstract
results and concrete dynamics problems. We introduce the notion of SKO models in Section
2 to formalize the specific dynamics models under consideration. In Section 3 we begin
examining the properties of SKO and SPO operators at an abstract level, with minimal
assumptions about the nature of the underlying multibody system other than that it has a
tree-topology. This section introduces techniques for directly mapping SPO expressions into
low-order, recursive scatter/gather algorithms when evaluation of operator expressions is
needed. This process is illustrated for the classic inverse dynamics problem. Section 4 looks
at the solutions of forward and backward Lyapunov equations associated with SKO models.
It develops decompositions of SPO operator quadratic products. These results are used to
study the structure of mass matrices as well to develop algorithms for efficiently computing
them. Section 5 focuses on solving the quadratic Riccati equation for SKO models. The
solution provides a generalization of the family of articulated body inertia quantities. Several
SKO and SPO identities are developed in this section, that are used in Section 6 to develop
general expressions for the factorization and inversion of the mass matrix and the
operational space inertia. These results are used to develop the general form of the classic
O( ) AB algorithm for the forward dynamics problem. Section 7 examines the system
topology dependent sparsity structure of the spatial operators and the mass matrix. Section 8
describes the process for developing SKO models for general multibody systems.

2 SKO models
Central to SKO formulations are the development of SKO models for multibody systems.
These models are formally defined in the following section, and their properties are explored
in the rest of the paper.

2.1 Definition of SKO models
An SKO model for an n-links tree-topology multibody system consists of the following:

1. A tree digraph reflecting the bodies and their connectivity in the system.

2. An  SKO operator and associated SPO operator,   (I − )−1.

3. A full-rank block-diagonal, joint map matrix operator, H.

4. A block-diagonal and positive-definite spatial inertia operator, M.

5. Stacked vectors:  denoting independent generalized velocities,  the generalized
forces,  the node velocities, α the node accelerations,  the inter-node forces,  the
node Coriolis accelerations,  the node gyroscopic forces the system,  the number
of degrees of freedom, and the equations of motion defined as:

1Preliminary results in this paper have been reported in [8].
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(1)

Thus,

(2)

where

(3)

ℳ is the symmetric and positive-definite mass matrix for the tree system and  is
the vector of nonlinear Coriolis and gyroscopic velocity dependent terms. Eq. 3 is
the Newton-Euler operator factorization of the mass matrix.

To maximize generality, no assumptions have been made about the specific nature of the
weight matrices in the SKO operators, about the component elements of H and M, or that the
tree digraph is the standard digraph2 in an SKO model.

2.2 Existence of SKO models
The dynamics formulations derived in [7] for rigid-body, serial-chain and tree-topology,
multibody systems are examples of SKO models with  and φ as the respective  SKO and

 SPO operators. The existence of an SKO model does not depend on any exceptional or
unusual features of tree-topology multibody systems. Indeed, SKO models can be viewed as
a refinement of the models obtained from the classic, and widely used, Kane’s method for
developing multibody dynamics models [10, 11]. Central to Kane’s method is the
identification of partial velocities that define the mapping from generalized velocities to
body velocities. The elements of the H* matrix product of an SKO model are precisely
Kane’s partial velocities. This is an important connection between these modeling
techniques.

While the partial velocity elements are adequate for formulating dynamics models using
Kane’s method, the important SPO property is unfortunately lost once the H* partial
velocities product is formed. The SPO nature of the operator  plays a crucial role in
analysis and algorithm development. Therefore, SKO models retain the more fundamental
(H, , M) family of operators to not only define the Eq. 2 dynamics model, but also to
derive important analytical and algorithmic techniques. We will, at times refer to an SKO
model by its (H, , M) triplet of operators. Section 8 describes a systematic process for
developing SKO models for multibody systems.

2.3 Generalizations of SKO models
To highlight the possible areas of generalization of SKO models, we contrast, below, the
properties of BWA matrices with those of the familiar SKO operators for serial and tree-
topology rigid body systems.

• BWA weight matrices are not limited to 6 × 6 φ(℘(k), k) rigid-body transformation
matrices.

2The standard digraph associated with a multibody system has the inertial frame as the root node, and all the links in the system as
the remaining nodes in the digraph [7].
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• BWA weight matrices can be non-square.

• BWA weight matrices can be of non-uniform size across edges.

• BWA weight matrices can be singular.

In general, SKO weight matrices can, and will, deviate in all of these respects from those for
rigid body systems. We will see that the wide variability of the multibody systems is
embodied in the definitions of their SKO model digraphs and, in the specific definitions of
the weight matrices and operator component values.

We now mention two cautionary points concerning SKO models.

Definition of body nodes: The standard digraph for a multibody system assigns a node to
each physical body in the system. This one-to-one correspondence between physical bodies
and digraph nodes has been used to develop the SKO models for tree-topology systems.
However, this one-to-one correspondence is not a requirement for an SKO model. We will
encounter cases where multiple physical bodies are associated with a single node in the
digraph, as well as the converse, where multiple nodes are assigned to a single body! Since
the majority of models will indeed be using the standard digraphs, we will use the nodes and
bodies terminology interchangeably, and will highlight the exceptional cases when we
encounter them.

Spatial operator compatibility: By construction, spatial operators have block structure
derived from a combination of the underlying model digraph and the node weight
dimensions. However, SKO models for a system are not unique, and may differ in the
choices of digraph nodes, edges and weight dimensions.

Spatial operators and stacked vectors are said to be compatible when they are associated
with the same SKO model. Expressions composing spatial operators and stacked vectors are
only meaningful when all the component terms are compatible. Therefore, care is needed to
avoid mixing spatial operators associated with different SKO models. The compatibility
requirement, however, does not preclude the definition of transformations that relate
operators across different SKO models.

In this section, and the following ones, we develop analytical results and algorithms for
SKO models with no assumptions beyond those listed for the definition of these models.
Therefore, the results can be used for any system for which an SKO model is available. We
will also apply these results to important dynamics problems. Several of the spatial operator
techniques and algorithms for serial-chain, rigid body systems will be generalized to the
broader class of SKO models.

3 SPO operator/vector products for trees
In additional to the mathematical analysis supported by spatial operators, there is an intimate
relationship between operator expressions and efficient recursive computational algorithms.
We begin by studying this relationship in detail in the following lemma.

Lemma 1 Tips-to-base gather recursion to evaluate x—Given an SPO operator,
, and a compatible stacked vector, x, for a tree-topology system, the y(k) elements of y = 

x, satisfy the following parent/child recursive relationship:

(4)
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Based on this relationship, the elements of y can be computed using the following O( )
tips-to-base gather recursive procedure:

(5)

As will be customary, the steps in such gather recursions only apply to the body nodes and
not the inertial node in the digraph.

Proof: The y = x expression implies that

(6)

Therefore,

This establishes Eq. 4. The procedure in Eq. 5 follows directly from this recursive
expression.

The left side of Figure 1 illustrates the flow of the recursive procedure in Eq. 5 for
computing the y(k) elements. It starts at the tip bodies of the tree and proceeds towards the
base-body, while gathering together values converging at the branches. The computational
cost of this tips-to-base gather procedure is just of O( ) complexity, instead of the O( )
complexity of a direct x matrix/vector product. We will encounter several applications
later that use this lemma to efficiently evaluate operator expressions involving products of
SPO operators and stacked vectors.

Similarly, the x = y product can be evaluated using a base-to-tips, O( ) scatter
computational algorithm described in the following lemma.

Lemma 2 Base-to-tips scatter recursion to evaluate x—Given an SPO operator,
, and a compatible stacked vector x, for a tree-topology system, the y(k) elements of y = 

x, satisfy the following parent/child recursive relationship:

(7)

Based on this relationship, the elements of y can be computed using the following O( )
base-to-tips scatter recursive procedure:

(8)
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As will be customary, the steps in such scatter recursions only apply to the body nodes and
not the inertial nodes in the digraph. The quantities for the inertial node required in the
initial step for the base-bodies in the scatter recursion are always assumed to be zero.

Proof: The y = x expression implies that

(9)

Therefore,

This establishes Eq. 7. The recursion in Eq. 8 is a direct consequence of this relationship.
The right side of Figure 1 illustrates the flow of the recursive procedure in Eq. 8 for
computing the y(k) elements. It starts at the base-body of the tree and proceeds towards the
tips, while scattering the values onto diverging branches. The computational cost of this
procedure is again just of O( ) complexity, instead of the O( ) complexity of a direct x
matrix/vector product. We will encounter several applications that use this lemma to
efficiently evaluate products involving the transpose of an SPO operator and a stacked
vector.

Corollary 3.1 Recursive evaluation of x and x—Similar to Eq. 5 and Eq. 8, show
that the elements of y = x satisfy the following recursive gather relationship:

Additionally, show that the elements of y = x satisfy the following recursive scatter
relationship:

Proof: We have that y  x = ȳ − x where ȳ = x. This implies that

Thus, the computational algorithm for y is the one in Eq. 5 except that the computational
step in the loop is now given by the above expression with initial condition y(0) = 0.

Similarly y  x = ȳ − x where ȳ = x. It thus follows that the computational algorithm
for x is the same as in Eq. 8 except that the computational step in the loop is now given by
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with initial condition y(n + 1) = 0.

Based on the results in this section, we can make the important observation that the serial-
chain recursive algorithms for operator expressions can be easily generalized to tree-
topology systems by simply replacing tip-to-base recursions with tips-to-base gather
recursions, and base-to-tip recursions with base-to-tips scatter recursions.

3.1 SKO model O( ) Newton-Euler inverse dynamics
We now apply the mapping of SPO and stacked vector products to develop an efficient
O( ) recursive algorithm for the inverse dynamics problem for a system with an SKO
model. For the inverse dynamics problem, the  generalized accelerations are assumed to be
known, and the corresponding  generalized forces need to be computed. Eq. 1 and Eq. 2
define the operator expressions for this mapping for the system. These operator expressions
are precisely in the form of SPO and stacked vector products. Thus Lemmas 1 and 2 can be
used to evaluate them using recursive scatter and gather algorithms. Algorithm 3.1 describes
such an implementation. The algorithm begins with a base-to-tips scatter recursion that
implement the operator expressions for  and α in Eq. 1. This is followed by a recursive
tips-to-base gather recursion to evaluate the expressions for  and  in Eq. 1.

Algorithm 3.1 Newton-Euler inverse dynamics algorithm for an SKO model

(10)

4 Lyapunov equations for SKO models
This section studies SPO operator quadratic expressions that are related to forward and
backward Lyapunov equations for an SKO model.

4.1 Forward Lyapunov recursions for SKO models
Lemma 3 Structure of X —Let  and  denote compatible SPO operators and X be
a compatible block-diagonal operator. Then the Z  X  product can be decomposed into
the following disjoint sum
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(11)

where Y is a block-diagonal operator satisfying the forward Lyapunov equation:

(12)

The Y (k) diagonal elements satisfy the recursive parent/child relationship:

(13)

Based on this relationship, the Y (k) terms can be computed via the O( ) tips-to-base,
forward Lyapunov gather recursion:

(14)

While Y defines the block-diagonal elements of Z, the following recursive expressions
describe all the Z(i, j) terms, including the off-diagonal ones:

(15)

Proof: First let us verify that Eq. 12 is well-posed, i.e., that  is block-diagonal when Y
is block diagonal. This follows from:

(16)

This has the form of a block-diagonal matrix with the kth diagonal element being Σj∈  (k,
j)Y(j)  (k, j). This implies that, at the component level, Eq. 12 is equivalent to

from which Eq. 13 follows.

Pre and post multiply Eq. 12 by  and  to get:
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This establishes Eq. 11.

The middle pair of expressions in Eq. 15 follow directly from the structure of Y and Y .

The disjoint terms in Eq. 11 represent the following:

• The non-zero block-elements of the block-diagonal Y are the block-diagonal
elements of X .

• The non-zero block-elements of Y and Y  correspond to related node pairs in the
system, i.e., nodes connected by a directed path.

• The remaining terms are zero, and correspond to unrelated node pairs, i.e., nodes
with no directed path connecting them.

Since entries corresponding to node pairs that do not have an ancestor/child relationship are
zero, X  is in general sparse. The sparsity structure reflects the topological connectivity
of the nodes. Based on Eq. 15, the strategy for computing X  consists of:

1. First, compute the non-zero block-diagonal terms in Y using the tips-to-base gather
algorithm in Eq. 14.

2. Now consider the case of computing Z(j, k), where j is an ancestor of k. Assume
that node i is the child of j on the path to k. Use Eq. 15 to compute Z(j, k) = (j,
i)Z(i, k). This expression implies a recursion that starts with the Z(k, k) = Y (k)
diagonal element, and computes the Z(i, k) elements recursively along the path to
node j.

3. Now consider the converse case of computing Z(j, k), where j is a descendant of k.
Assume that node i is the child of k on the path to j. Use Eq. 15 to compute Z(j, k) =
Z(j, i)  (k, i). This expression implies a recursion that starts with the Z(j, j) = Y(j)
diagonal element, and computes the Z(j, i) elements recursively along the path to
node k.

In the special case where  = , case (3) above is unneeded because Z is symmetric, and Z(j,
k) = Z*(k, j).

4.2 Mass matrix computation for an SKO model
As seen in Eq. 2, the mass matrix in the SKO model has the operator expression ℳ = H M

H*. The following lemma uses Lemma 3 to derive a decomposition of, and computational
procedure for, the mass matrix.

Lemma 4 SKO model mass matrix decomposition—The SKO model mass matrix
can be decomposed into a sum of disjoint terms as follows:

(17)

where the block-diagonal composite body inertia operator, , satisfies the following
forward Lyapunov equation:

(18)

Proof: The results here are a direct consequence of Lemma 3, once we identify  = , and
X = M. From the lemma, we have the following disjoint decomposition of M :
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(19)

Eq. 17 follows by pre and post multiplying the above expression with the block-diagonal H
and H*, respectively.

The tips-to-base gather Algorithm 4.1 describes the general composite body inertia
algorithm for an SKO model.

Algorithm 4.1 Recursive computation of composite body inertias for an SKO
model

(20)

Remark 5.2 in Jain [7] discussed the sparsity structure of the  and  matrices for the
canonical tree in Figure 2 in the paper. Based on Eq. 17, the following matrix illustrates the
sparsity structure of the mass matrix for the same system:

The above matrix shows that, for trees, the ℳ mass matrix contains block-elements that are
zero, because, unlike serial-chains, trees can have unrelated nodes. For serial-chain systems,
the mass matrix is dense and fully populated because all nodes in a serial-chain system are
related.

The sparsity of the mass matrix depends on the underlying branching structure of the
system. As discussed in Section 7, the sparsity structure of the mass matrix is determined by
the connectivity of its serial-chain segments; blocks corresponding to the segments are
dense, while those corresponding to unrelated segments are zero. Section 7 also examines
the sparsity structure of the mass matrix for the more complex tree system in Figure 3.

Based on the decomposition in Eq. 17, Algorithm 4.2 describes a recursive procedure for
computing the mass matrix of a tree-topology system. The outer loop includes the tips-to-
base gather computation of the composite body inertias. The inner loop computes the mass
matrix cross-terms for all the ancestors of a body.

Algorithm 4.2 Recursive computation of the SKO model mass matrix—
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4.3 Backward Lyapunov recursions for SKO models
Complementing the discussion on forward Lyapunov equations is the following lemma
regarding backward Lyapunov equations for SKO models.

Lemma 5 Structure of X —Let  and  denote compatible SPO operators and X be
a compatible block-diagonal operator. Then the Z = X  product can be expressed as the
following sum of disjoint terms:

(21)

Y is a block-diagonal operator satisfying the following backward Lyapunov equation:

(22)

The diagOf  term represents just the diagonal block elements of the (generally non
block-diagonal)  matrix. The Y(k) diagonal elements satisfy the following parent/
child recursive relationship:

(23)

Based on this relationship, the Y(k) diagonal elements can be computed via the following
O( ) base-to-tips scatter recursion:

(24)

While Y defines the block-diagonal elements of Z, the following recursive expressions
describe all the Z(i, j) terms, including the off-diagonal ones:

(25)
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Proof: We have

Therefore,

(26)

This implies that, at the component level, Eq. 22 is equivalent to

from which Eq. 23 follows.

Now let us examine the elements of Z = X  in Eq. 21.

Hence,

The expressions in Eq. 25 are a direct consequence of the above expression for Z(i, j).

Unlike X , X  is a fully populated matrix. The disjoint partitioned terms in Eq. 21
have the following properties:

• The block-diagonal Y contains the diagonal block elements terms of X .

• The non-zero block-elements of Y and Y  correspond to all related nodes.

• The non-zero block-elements of R on the other hand are for the remaining
unrelated node pairs, i.e., ones that have no directed path connecting them.

As is evident from Eq. 25, all the block-elements of X  intimately dependent on the
elements of the Y block-diagonal matrix. An important application of this lemma is to
operational space inertias, as discussed in Section 6.2.

The recursive computational strategy for the elements of X  is described in Algorithm
4.3. For the special case where  = , Z is symmetric, and Step (3) in the algorithm can be
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skipped since these elements can be obtained from the transposes of the corresponding
elements in Step (2).

Algorithm 4.3 Computation of Z = X —We have four situations to consider when
computing a Z(k, j) element. The respective recursive steps are described below and
illustrated in Figure 2.

1. To obtain a block-diagonal element, Z(k, k), compute the Y (k) element using the
base-to-tips scatter O( ) algorithm described in Eq. 24 as illustrated in the
diagram on the left in Figure 2.

2. If the kth body is an ancestor of the jth body, Z(j, k) can be computed recursively,
starting with the Z(k, k) = Y (k) diagonal element, which, in turn, is computed
using the process described in case (1). The recursion for Z(j, k), illustrated by the
middle diagram of Figure 2, starts with this Y (k) diagonal entry, and propagates it
along the path from the kth to the jth body, using the second expression in Eq. 25 to
compute the Z(k − 1, k), Z(k − 2, k), etc., terms.

3. If, on the other hand, the kth body is an ancestor of the jth body, then Z(k, j) can be
computed recursively, starting with the Z(k, k) = Y (k) diagonal element, which, in
turn, is computed using the process described in case (1). The recursion for Z(k, j),
illustrated in the middle diagram of Figure 2, starts with this Y (k) diagonal entry,
and propagates it along the path from the kth to the jth body, using the third
expression in Eq. 25 to compute the Z(k, k − 1), Z(k, k − 2), etc., terms.

4. Now consider the remaining case where the (k, j) node pair are unrelated. In this
case, identify the body that is the closest ancestor for this pair of bodies. If the
bodies do not have a common ancestor, then Z(k, j) is zero since the bodies belong
to independent, decoupled multibody trees.

If, on the other hand, there is a common ancestor, denoted the ith body, then the
first step is to compute Z(k, i), using the recursive procedure described in case (2).
This value is then recursively propagated along the path from the ith body to the jth
body, using the procedure in case (3) to compute the Z(k, i − 1), Z(k, i − 2), etc.,
terms. This process is illustrated in the diagram on the right in Figure 2.

Later, Section 6.2 describes the use of these backwards Lyapunov equation results and
algorithms for the operational space inertia matrices associated with tree multibody systems.
The following Lemma describes simplifications of the backwards Lyapunov equation for
serial-chain systems.

Lemma 6 X  structure for a serial-chain SKO model—For a serial-chain system,
Z = X  can be decomposed into disjoint diagonal, strictly upper triangular, and strictly
lower triangular terms as follows:

(27)

where Y ∈  is a block-diagonal operator satisfying the following backward Lyapunov
equation:

(28)

Assuming that the serial-chain is canonical, the symmetric positive semi-definite Y (k)
diagonal matrices can be computed via the following O( ) base-to-tip scatter recursion:
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(29)

While Y defines the block-diagonal elements of Z, the following recursive expressions
describe all the terms, including the off-diagonal ones:

(30)

Proof: Unlike trees, all nodes in a serial-chain systems are related, i.e., every pair of nodes
is connected by a directed path. Hence, R = 0 in Eq. 21 for these systems. Substituting this in
Eq. 21, and remembering that  in Eq. 22 is block-diagonal for serial-chains leads to
this result.

Observe that Step (4) in Algorithm 4.3 is not needed for serial-chain systems.

5 Riccati equations for SKO models
This section studies another type of SPO quadratic equation, known as a Riccati equation,
for SKO models.

Lemma 7 The Riccati equation for SKO models—Let (H, , M) denote spatial
operators for an SKO model. The following Riccati equation has a block-diagonal,
symmetric and positive-definite operator solution, :

(31)

The expression in Eq. 31 can be broken down into simpler sub-expressions as follows:

The above sub-expressions define the block-diagonal spatial operators:

(32)

The (k) and other diagonal elements can be computed by the following O( ) tips-to-base
gather recursion:
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(33)

Proof: Eq. 33 is essentially a component level restatement of Eq. 31. The positive
definiteness of M and full row-rankness of H ensures that (k) exists and is well defined.

5.1 The  and ψ SKO and SPO operators
Lemma 8 The  SKO operator—Let  be an SKO operator, and H, M, be compatible
operators satisfying the conditions in Lemma 7. Let  denote the block-diagonal solution to
the Eq. 31 Riccati equation. Define

(34)

Then  is an SKO operator, with weights and SPO operator ψ, defined by

(35)

Moreover, the Eq. 31 Riccati equation can be re-expressed as:

(36)

Proof: Since  is an SKO operator, we have

This implies that  is indeed an SKO operator, with weights defined by ψ(℘(k), k). Thus, its
1-resolvent, ψ, defined by Eq. 35 exists.

The first part of the Riccati equation expression in Eq. 36. This is equivalent to Eq. 31
follows from the direct use of the expressions in Eq. 32 to observe that:

Unlike the  SKO operators, which are defined during the SKO model formulation process,
the  SKO operators are derived operators obtained from the solution to the Riccati
equation. Likewise, the ψ SPO operator is also a derived by-product of the solution of the
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Riccati equation. Observe that the ψ (℘(k), k) matrices are singular even when (℘(k), k) is
non-singular.

5.2 Operator identities
Define the  spatial operator as follows:

(37)

 is not block-diagonal, but has structure similar to that of . The following lemma
establishes operator identities that will be needed later.

Lemma 9 Useful spatial operator identities
1.

(38)

2.
(39)

3.
(40)

4. Mψ* has the following disjoint decomposition:

(41)

Proof
1. The expressions in Eq. 38 follow from Eq. 32 and Eq. 37.

2. We have

3. We have

4. Pre and post multiplying Eq. 36 by  and ψ*, then simplifying, leads to Eq. 41.

The following lemma derives additional operator identities.

Lemma 10 Additional spatial operator identities
1.

(42)

2.
(43)
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3.

(44)

4.

(45)

5.
(46)

6.
(47)

7.
(48)

Proof
1. Pre- and post-multiplying Eq. 36 ψ by and ψ*, we obtain

2. We have

3. Pre- and post-multiplying Eq. 43 by  leads to the first pair of identities in Eq. 44.
Repeating the process using ψ leads to the latter pair.

4. We have

Similar use of the other identities in Eq. 44 leads to the the remaining identities in
Eq. 45.

5. We have
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6. Now

7. We have

It is noteworthy that the HψMψ*H* expression in Eq. 46 is block-diagonal, in
contrast to the similar expression, ℳ = H M H*, for the non-diagonal mass
matrix.

6 SKO model mass matrix factorization and inversion
The following lemma derives the mass matrix factorization and inversion properties for
SKO models.

Lemma 11 SKO mass matrix factorization and inversion—Let (H, , M) denote
spatial operators for an SKO model. Recall that its mass-matrix is defined as ℳ = H M 
H*.

1. The ℳ mass matrix has an alternative Innovations Operator factorization defined by

(49)

In this equation,  and  are operators obtained from the solution of the discrete
Riccati equation from Lemma 8. for the SKO model.

2. [I + H  ] is invertible, with inverse given by:

(50)

3. The mass matrix ℳ is invertible, and the expression for its inverse is

(51)
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Proof
1. We have

2. From the standard matrix identity (I + AB)−1 = I − A(I + BA)−1B, we have:

3. We have

Corollary 6.1 Determinant of the mass matrix
1. Show that [I + H  ] and [I - Hψ ] are strictly lower triangular for canonical

trees, and that they have identity block matrices along the diagonal.

2. Show that the determinant of the Newton-Euler operator factor [I + H  ] is

(52)

3. Furthermore, show that the determinant of the mass matrix is given by

(53)

Proof
1. We have

For a canonical tree,  is strictly lower triangular, while H and  are block-
diagonal. Hence, [I +H  ] is lower triangular with identity blocks along the
diagonal. Moreover, from Eq. 50 we know that [I −Hψ ] is its inverse. From
matrix theory, we know that the inverse of a lower-triangular matrix is also lower-
triangular, and that the diagonal elements are inverses of each other. It thus, follows
that for a canonical tree, [I − Hψ ] is also lower-triangular with identity blocks
along its diagonal.

2. For canonical trees, the above part established that [I + H  ] is a lower-
triangular matrix with identity matrices along the diagonal. Since, the determinant
of a lower-triangular matrix is the product of the determinants of the block
elements along its diagonal, it follows that Eq. 52 holds for canonical trees. Since
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all tree can be converted into canonical trees by a simple renumbering of the
bodies, there exists a permutation matrix which transforms the Newton-Euler
factors for a tree into the corresponding factors for a canonical version of the tree.
Since permutation matrices are orthogonal, their determinants are 1, and hence, the
determinant of the canonical and non-canonical versions of the Newton-Euler
factors are equal to each other and are both 1. This establishes Eq. 52.

3. For Eq. 53, we have

6.1 O( ) AB forward dynamics
The forward dynamics problem consists of computing the  generalized accelerations, given
the  generalized forces for the system. The following lemma derives an explicit operator
expression for .

Lemma 12 Expression for  = ℳ−1(  − )—The explicit expression for  is

(54)

Proof: We have

(55)

Now,

(56)

Substituting this expression into the second half of Eq. 55, it follows that
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(57)

Substituting this expression in Eq. 55 leads to Eq. 54.

We group together sub-expressions in Eq. 54 to define intermediate quantities as shown
below:

Using these intermediate quantities, and simplifications Eq. 54 can be re-expressed as

(58a)

(58b)

(58c)

(58d)

(58e)

(58f)

(58g)

Recall that ψ is an SPO operator. We can thus use Lemmas 1 and 2 to develop a recursive
algorithm for evaluating  from the expressions in Eq. 58. The resulting O( ) AB forward
dynamics algorithm for SKO models is described in Algorithm 6.1. The algorithm consists
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of a tips-to-base gather sweep to compute the residual terms, followed by a base-to-tips
scatter sweep for the generalized accelerations.

Algorithm 6.1 O( ) AB forward dynamics for SKO models
1. Compute the articulated body inertia , , etc., quantities using the gather

algorithm in Eq. 33.

2. Use the following gather and scatter recursions to compute :

6.2 Application: Tree Operational Space Inertia
Another application of the SPO techniques is for operational space inertias [12, 13] which is
essentially the mass matrix of the system reflected to a few “task space” nodes on the
system. These are useful for manipulation tasks involving force control. With  denoting the
pick-off operator for these nodes [17], and with the Jacobian matrix for these nodes  = 
φ*H* [7], the computation of operational space inertia is the inverse of the  ℳ−1  matrix.
This can be an expensive computation to carry out. However, note that

(59)

Application of Eq. 45 on page 18 then results in the simpler form:

(60)

We refer to Ω as the extended operational space compliance matrix. From its definition, it
is clear that Ω is a symmetric, positive semi-definite matrix since  is a symmetric
positive-definite matrix. The structure and computation of the operational space inertia thus
depends on the structure and computation of Ω.

Recalling that φ is an SPO operator, and that H* H is block-diagonal, we can apply the
backwards Lyapunov equation Lemma 5 to decompose and compute elements of Ω
efficiently. We skip the details here and refer the reader to [4, 13, 18] for details.
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7 SPO operator sparsity structure
Researchers have used system-level matrices and operators to analyze and exploit the
sparsity structure of the mass matrix to develop efficient computational algorithms for the
inverse and forward dynamics problems [1, 3, 14, 19]. In this section, study the sparsity
structure of the SKO and SPO operators and the mass matrix for tree-topology systems.

7.1 Decomposition into serial-chain segments
Topologically, serial-chain systems represent the simplest examples of tree systems, and
serve as useful elemental units for studying the sparsity structure of matrices for tree-
topology systems. Unlike trees, all bodies in a serial-chain are related, so that, for any pair
of bodies, one is necessarily an ancestor of the other.

Figure 3 illustrates the decomposition of a tree into branches 1 through 5, where each of the
branches is a serial-chain segment. With such a decomposition, the tree system can be
regarded as a new tree, with one node for each of the serial-chain branch segments. Thus,
the new tree of branches is homeomorphic to the original tree3. The sparsity structure of the
spatial operators (e.g., SPO, mass matrix) can be inferred directly from the structure of the
tree of branches. Due to their serial-chain structure, the blocks associated with individual
serial-chain branches are dense, with sparsity arising for branch pairs that are unrelated, i.e.,
are not connected by a directed path in the tree of branches.

7.2 Sparsity structure of the  SKO matrix
Assuming that the original tree is a canonical tree, Figure 4 and Eq. 61 illustrate the
decomposition of the system-level  SKO operator in terms of the SKO operators for each
of the serial-chain branch segments.

(61)

 denotes the SKO operator for the jth branch segment. Also, when the kth branch is a child
of the jth branch, the  block denotes the non-zero connector block between them. All other
blocks are zero. The structure of  is as follows:

(62)

where 1j denotes the tip body on the jth branch that is the parent of the nk base-body of the
kth branch.

3A pair of digraphs are said to be homeomorphic if they can both be obtained from a common digraph by a sequence of adding and
removing nodes (also known as subdivisions) along serial segments [2, 20].
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7.3 Sparsity structure of the  matrix
With φj  = (I − )−1 denoting the SPO operator for the jth branch, the overall structure of
the system level  SPO operator for the Figure 3 tree is illustrated in Figure 5 and Eq. 63:

(63)

The  blocks denote the non-zero connector block between related serial-chain segments.
All other blocks are zero. The general expression for the  elements is:

In the above,  ≡ .

7.4 Sparsity structure of the ℳ mass matrix
Based on the mass matrix decomposition discussed in Section 4.2, Figure 6 illustrates the
sparsity structure of the mass matrix for the tree-topology system in Figure 3, partitioned
according to its branch segments. As expected, the sparsity structure of the mass matrix
mirrors the sparsity of the  SPO operator in Figure 5 and that of its transpose. The block-
diagonal of the mass matrix contains dense blocks, one for each of the branch segments in
the tree. The off-diagonal blocks are zero for unrelated segment pairs, i.e., ones where
neither is the ancestor of the other. The remaining nonzero off-diagonal elements are for
segment pairs that are related. This structure of the mass matrix is a generalization of the
discussion on this subject in Section 4.2. The topology dependency of the mass matrix’s
sparsity structure was initially described in Rodriguez et al [18]. Additional discussion on
this topic can be found in Featherstone [3].

8 Generalized SKO formulation process
In this paper, we have derived analytical techniques and efficient algorithms for SKO
models of multibody systems. These have included

• Recursive O( ) procedures for computing SPO operator and stacked vector
products.

• General O( ) Newton-Euler inverse dynamics algorithms.

• Solutions for the forward Lyapunov equations and decomposition of X 
operator product.

• General O( ) algorithm for computing the mass matrix.

• Solution for the backward Lyapunov equations and decomposition of X 
operator product.

• Recursive algorithms for computing the X  operator product.

• The general O( ) articulated body inertia solution of the Riccati equation.

• Several operator identities.

• The alternative Innovations Operator Factorization of the mass matrix.
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• An analytical expression for the inverse of the mass matrix.

• The analytical expression for the determinant of the mass matrix.

• The general O( ) AB forward dynamics algorithm.

The above results required no assumptions on the SKO model regarding the SKO weight
matrices, the components of the other spatial operators, or the structure of the tree digraph.
Thus, any multibody system formulation satisfying the requirements of the SKO model has
available to it the full spectrum of these techniques and efficient algorithms. With this as
motivation, we outline the general steps in the development of an SKO multibody dynamics
formulation:

Develop an SKO model: The key starting point of an SKO formulation is the
development of an SKO model for the system. A systematic procedure for this is
deferred till Section 8.1.

Apply SKO techniques: Once the SKO model has been developed, the analytical
results and efficient algorithms for spatial operators described above can be applied to
the system.

Optimize algorithms: Finally, optimizations that take advantage of the specific
features of the SKO model can be further applied to the SKO algorithms. Though the
SKO algorithms are already highly efficient, there are usually several opportunities for
further optimizations based on the specific structure, sparsity, and redundancies of the
SKO weight matrices, joint map matrices, etc. Even though such system specific
optimization are applied only in this last step, they can significantly transform the
structure of the eventual algorithms.

8.1 Procedure for developing an SKO model
Outlined below is a procedure for developing an SKO model for general multibody systems.
It provides guidelines for identifying the SKO weight matrices and the components of the H
and M operators. Figure 7 illustrates the key steps in the procedure.

1. Identify system tree digraph: First, identify a tree digraph for the SKO model.
For tree-topology multibody systems, this is usually straightforward, with the
standard tree digraph for the system being a good candidate.

However, there is no requirement that the nodes in the tree digraph be in one-to-one
correspondence with the physical bodies in the system, as is the case for the
standard tree digraph.

2. Node equations of motion: Establish the equations of motion of the component
nodes in the system. To accomplish this, identify the (k) velocities for the
component nodes. The size of the velocity vector for a node determines the mk
BWA weight dimension for the node. Also, identify the appropriate mk × mk
dimensional M(k) inertia matrix for each node. Together with the node velocity, the

 expression should define the kinetic energy contribution of the
node.

3. Identify inter-node velocity relationships: Identify the recursive relationship
between the (k) velocity of a node and and that of its parent node, and the (k)
generalized velocities of the hinge connecting them. This will help identify the
parent/child SKO weight matrix, (℘(k), k), and the component H(k) joint map
matrices associated with the connecting hinge. The  (℘(k), k) term defines the
contribution of the (℘(k)) parent node’s velocity to (k) while H*(k) defines the
contribution from the (k) generalized velocities.
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The hinges connecting adjacent nodes are not required to be physical hinges. This
is especially true in cases where multiple bodies are assigned to nodes in the
digraph.

4. Assemble Newton-Euler mass matrix expression: Assemble the system-level
stacked vectors for the hinge generalized velocities, the node velocities, etc., and
the various SKO, SPO, etc., spatial operators leading to the system-level equations
of motion, the Newton-Euler factorization of the ℳ mass matrix and the 
nonlinear Coriolis and velocity terms vector in Eq. 1 through Eq. 3.

8.2 Potential non-tree topology generalizations
The digraph in an SKO model is required to be a directed tree. We address here the potential
extension of an SKO model to work with non-tree digraphs. First, we recall key steps in the
SKO model development:

1. set up of the implicit relationship

for the  node velocities using independent generalized hinge velocity coordinates,
and

2. use the nilpotency of the  BWA matrix to derive its  1-resolvent to convert this
implicit expression into the  = H*  explicit form.

Non-tree digraphs can contain directed cycles as well as multiply-connected nodes. We now
examine specific issues in developing SKO models for such non-tree digraph systems.

Digraphs with directed cycles: For digraphs with directed cycles, the BWA matrices
are not nilpotent, and their 1-resolvents do not exist. Intuitively, the presence of cycles
implies that there are paths of arbitrary lengths connecting nodes that are part of such
cycles, since paths that loop around the cycle multiple times are legal. Thus, none of the
powers of the BWA matrix, with directed cycles, are nonzero. Hence, their 1-resolvent
SPO operators do not exist. This means that step (2) above breaks down, and the
implicit relationship for  in cannot be transformed into the explicit form.

Multiply-connected DAGs: Multiply-connected DAGs are digraphs containing a node
with more than one parent. For these systems, the BWA matrix is still nilpotent and,
hence, its 1-resolvent is well defined. The catch for such systems is the inability to
identify independent generalized hinge velocity coordinates for the edges. Such
relationships are unique and well-defined when bodies have single parents. However,
when a body has multiple parents, the parent/child node velocity relationship must hold
simultaneously for each parent. For them to hold simultaneously, the pair of generalized
hinge velocity coordinates must be mutually consistent and, hence, they are not
independent. Step (1) above therefore breaks down.

Thus, we see that the use of non-tree digraphs with SKO models has potential problems.
This complicates the formulation of the dynamics of closed-chain systems. Jain [6] discuss
avenues for overcoming these hurdles in order to develop and use SKO models for closed-
chain systems.

9 Conclusions
We have identified key mathematical connections between digraph properties - adjacency
matrices, nilpotency, 1-resolvents - and the spatial operators associated with the dynamics of
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multibody systems. We have used these to define the abstract notions of SKO models for
multibody systems, and derived a broad family of analytical results for such models.

Important illustrative examples of such analytical results include: the closed-form
factorization and inversion of the system mass matrix, expressions for its determinant,
factored expression for the system operational space inertia. While these results were
derived in much narrower contexts in the past (e.g. rigid-body/serial-chain assumptions), the
SKO model abstraction provides a unifying, abstract perspective that allows us to apply the
results to the broad class of tree-topology systems where: the tree branching structure and
body indexing can be arbitrary, and the weight matrices can be general, non-invertible, non-
square and even of non-uniform size.

We have also shown that the SKO model analytical operator expressions can be transformed
into efficient, low-order gather and scatter recursive computational algorithms whenever
evaluation is required. This transformation process has been illustrated by deriving (in a
general context) key computational algorithms used in the control and simulation of the
robot multibody systems. Examples of such algorithms include ones for O( ) Newton-
Euler inverse dynamics, O( ) AB forward dynamics, O( ) composite rigid body inertias,
O( ) mass matrix computation, and O( ) operational space inertia computation. Once
gain, these algorithms apply to all SKO models and are independent of the specific nature of
the component weight matrices. While these algorithms are already the most efficient
known, there is opportunity for further optimization based on exploiting the system-specific
structure of the weight matrices.

This paper has also studied the sparsity structure of the mass matrix and related quantities
for SKO models. Such sparsity structure has been exploited in recent years to develop new
families of efficient computational algorithms [3]. A systematic recipe for developing SKO
models for general multibody systems has been described.

Since SKO models require tree-topology digraphs, they do not directly apply to systems
with closed-graph topologies. In [6] we have begun exploring techniques for deriving SKO
models for closed-graph systems by transforming the standard digraph using constraint
embedding techniques [5]. Being independent of system topology and detailed structure, we
expect to broaden and advance the application of the SKO principles to robotic kinematics
and dynamics problems in future work. Indeed techniques such as sensitivity analysis,
diagonalized dynamics formulations, under-actuated systems etc. that had previously been
developed for rigid body serial-chain systems using spatial operators, we expect to
generalize using SKO techniques.
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Fig 1.
Tips-to-base gather and base-to-tips scatter recursions to evaluate x and x, respectively
for tree-topology systems.
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Fig 2.
Illustration of the recursions for computing the Z(., .) elements for the three cases described
in Algorithm 4.3 for a tree. These recursions start from the Y (.) diagonal terms.
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Fig 3.
Illustration of the decomposition of a tree-topology system into a tree of serial-chain branch
segments.
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Fig 4.
Structure of the  spatial operator for the tree topology system in Figure 3
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Fig 5.
Structure of the  spatial operator for the tree-topology system in Figure 3
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Fig 6.
Structure of the mass matrix ℳ for the tree topology system in Figure 3
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Fig 7.
Flow chart illustrating steps 2 through 4 of the process described in Section 8.1 for
developing SKO models for multibody systems. The corresponding steps for rigid-link, tree-
topology multibody systems are shown on the right.
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