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ABSTRACT

Sequencing studies have been discovering a numerous number of rare variants, allowing the
identification of the effects of rare variants on disease susceptibility. As a method to increase
the statistical power of studies on rare variants, several groupwise association tests that
group rare variants in genes and detect associations between genes and diseases have been
proposed. One major challenge in these methods is to determine which variants are causal in
a group, and to overcome this challenge, previous methods used prior information that
specifies how likely each variant is causal. Another source of information that can be used to
determine causal variants is the observed data because case individuals are likely to have
more causal variants than control individuals. In this article, we introduce a likelihood ratio
test (LRT) that uses both data and prior information to infer which variants are causal and
uses this finding to determine whether a group of variants is involved in a disease. We
demonstrate through simulations that LRT achieves higher power than previous methods.
We also evaluate our method on mutation screening data of the susceptibility gene for ataxia
telangiectasia, and show that LRT can detect an association in real data. To increase the
computational speed of our method, we show how we can decompose the computation of
LRT, and propose an efficient permutation test. With this optimization, we can efficiently
compute an LRT statistic and its significance at a genome-wide level. The software for our
method is publicly available at http://genetics.cs.ucla.edu/rarevariants.
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INTRODUCTION

Current genotyping technologies have enabled cost-effective genome-wide association studies

(GWAS) on common variants. Although these studies have found numerous variants associated with

complex diseases (Corder et al., 1993; Bertina et al., 1994; Altshuler et al., 2000), common variants explain

only a small fraction of disease heritability. This has led studies to explore effects of rare variants, and recent

studies report that multiple rare variants affect several complex diseases (Gorlov et al., 2008; Kryukov et al.,

2007; Cohen et al., 2004; Fearnhead et al., 2004; Ji et al., 2008; Bodmer and Bonilla, 2008; Romeo et al.,

2007; Blauw et al., 2008; Consortium, 2008; Xu et al., 2008; Walsh et al., 2008). However, the traditional

statistical approach that tests each variant individually by comparing the frequency of the variant in
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individuals who have the disease (cases) with the frequency in individuals who do not have the disease

(controls) yields low statistical power when applied to rare variants due to their low occurrences.

Identifying genes involved in diseases through multiple rare variants is an important challenge in

genetics today. The main approach currently proposed is to group variants in genes and detect associations

between a disease and these groups. The rationale behind this approach is that multiple rare variants may

affect the function of a gene. By grouping variants, we may observe a larger difference in mutation counts

between case and control individuals and hence, power of studies increases. Recently, several methods

have been developed for the groupwise approach such as the Cohort Allelic Sums Test (CAST) (Mor-

genthaler and Thilly, 2007), the Combined Multivariate and Collapsing (CMC) method (Li and Leal, 2008),

a weighted-sum statistic by Madsen and Browning (MB) (Madsen and Browning, 2009), a variable-

threshold approach (VT) (Price et al., 2010), and Rare variant Weighted Aggregate Statistic (RWAS) (Sul

et al., 2011).

In combining information from multiple rare variants, a groupwise association test faces two major

challenges. The first is unknown effect sizes of variants on the disease phenotype. To address this challenge,

MB and RWAS discuss a disease risk model in which rarer variants are assumed to have higher effect sizes

than common variants (Madsen and Browning, 2009; Sul et al., 2011). This model provides a simulation

framework that would be appropriate for testing the groupwise tests on rare variants because it describes

associations usually not found in traditional GWAS. RWAS is shown to outperform other grouping methods

under this disease risk model (Sul et al., 2011). The second challenge is that only a subset of the rare variants

in the gene will have an effect on the disease and which of these variants are causal is unknown. Including

non-causal variants in a groupwise association test may reduce power because it decreases the relative

contribution of the true causal variants to the statistic (Sul et al., 2011). RWAS and VT attempt to overcome

this challenge by utilizing prior information of which variants are likely deleterious, and prior information

can be obtained from bioinformatics tools such as Align-GVGD (Tavtigian et al., 2006), SIFT (Ng and

Henikoff, 2003), and PolyPhen-2 (Adzhubei et al., 2010). By incorporating prior information into the

methods, RWAS and VT reported that they achieved higher power (Price et al., 2010; Sul et al., 2011).

These methods do not achieve the best performance even under the assumptions of their disease model,

as we show below, and we improve on the previous methods by taking advantage of the following ideas.

First, observational data can give us a clue to which variants are causal in data because casual variants

occur more frequently in cases than in controls. Hence, a method that infers causal variants from data

would outperform methods that do not, and previous methods fall into the latter category. In addition,

previous methods such as RWAS, MB, and VT compute their statistics using a linear sum of mutation

counts. In these methods, a variant having large discrepancy in mutation counts between cases and controls

has the same effect on a statistic as the sum of two variants having small discrepancies with half the size of

the large one. However, the large discrepancy should contribute more than the sum of small discrepancies

because a variant that causes the large difference in mutation counts is more likely to be involved in a

disease. To emphasize the large discrepancy, a nonlinear combination of mutation counts is necessary.

Finally, the set of rare variants in the gene and their distribution among cases and controls can be used to

estimate the effect sizes of the rare variants on the disease. This estimate can then be used to improve the

statistical power of the method.

In this article, we present a novel method for the groupwise association test based on a likelihood ratio

test (LRT). LRT computes and compares likelihoods of two models: the null model that asserts no causal

variants in a group and the alternative model that asserts at least one causal variant. To compute likelihoods

of the models, LRT assumes that some variants are causal and some are not (called ‘‘causal statuses of

variants’’) and computes the likelihood of the data under each possible causal status. This allows LRT to

compute likelihoods of the null and alternative models, and a statistic of LRT is a ratio between likelihoods

of the two models.

LRT takes advantage of both prior information and data to compute likelihoods of underlying models, and

hence it uses more information than previous methods to identify a true model that generated data. Simulations

show that LRT is more powerful than previous methods such as RWAS and VT using the same set of prior

information. We also show by using real mutation screening data of the susceptibility gene for ataxia telan-

giectasia that LRT is able to detect an association previously reported (Tavtigian et al., 2009; Sul et al., 2011).

Another improvement of LRT is that it computes its statistic using a nonlinear combination of mutation

counts as opposed to a linear sum of counts in the previous methods. Simulations show that this difference

creates different decision boundaries (nonlinear versus linear decision boundaries) that determine whether a
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group of variants is associated with a disease. Moreover, we demonstrate that the nonlinear decision

boundary allows LRT to detect more associations than the linear boundary.

Unfortunately, to compute the LRT statistic directly, we must consider a number of possible models

exponential in the number of rare variants in the gene. In addition, we must perform this computation once

for each permutation and we must perform millions of permutations to guarantee that we control false

positives when trying to obtain genome-wide significance. We address these computational challenges by

decomposing the computation of LRT and developing an efficient permutation test. Unlike the standard

approach to compute the LRT statistic, which requires exponential time complexity, we make a few

assumptions and derive a method for computing the LRT statistic whose time complexity is linear. For the

permutation test, we further decompose LRT and take advantage of the distribution of allele frequency.

These techniques allow us to compute a statistic of each permutation efficiently, and hence we can perform

a large number of permutations to obtain genome-wide significance. We provide the software package for

LRT at http://genetics.cs.ucla.edu/rarevariants.

2. METHODS

2.1. Likelihood ratio test

We consider likelihoods of two models under LRT; the likelihood of the null model (L0) and the

likelihood of the alternative model (L1). The null model assumes that there is no variant causal to a disease

while the alternative model assumes there is at least one causal variant. To compute the likelihood of each

model, let D + and D - denote a set of haplotypes in case and control individuals, respectively. We assume

there are M variants in a group, and let V i be the indicator variable for the ‘‘causal status’’ of variant i;

V i = 1 if variant i is causal, and Vi = 0 if not causal. Let V ¼fV1‚ . . . ‚ VMg represent the causal statuses of

M variants, and there exist 2M possible values for V. Among them, let vj¼fv1
j ‚ . . . ‚ vM

j g be jth value,

consisting of 0 and 1 that represent one specific scenario of causal statuses (Sul et al., 2011). We use ci to

denote the probability of variant i being causal to a disease. Then, assuming that the causal statuses are

independent between variants, we can compute the prior probability of each scenario vj as

P(vj)¼
YM
i¼ 1

c
vi

j

i (1� ci)
1� vi

j : (1)

We define L(D + , D - jvj) as the likelihood of observing case and control haplotypes given jth scenario.

Then, L0 and L1 can be defined as

L0¼ L(Dþ ‚ D� jv0)P(v0) (2)

L1¼ +
2M � 1

j¼ 1

L(Dþ‚ D� jvj)P(vj) (3)

where v0 is a scenario where vi
0¼ 0 for all variants; no causal variants. In the Appendix, we describe

how we can compute L(D +, D - jvj). The computation is based on the no linkage disequilibrium (LD)

assumption, which is reasonable on rare variants, because very low or no LD is expected between rare

variants (Li and Leal, 2008; Pritchard and Cox, 2002; Pritchard, 2001).

The statistic of LRT is a ratio between L1 and L0, L1/L0, and we perform a permutation test to compute a

p-value of the statistic.

2.2. Decomposition of LRT to increase computational efficiency

We decompose L0 and L1 in Equations (2) and (3) such that we compute likelihoods of variants instead of

likelihoods of haplotypes to reduce the computational complexity. To compute L1 in Equation (3), we need

to compute likelihoods of 2M scenarios of causal statuses, which is computationally expensive if there are

many rare variants in a group. To decompose likelihoods of haplotypes, we need to make one assumption,

and it is low disease prevalence.

Assume there are N/ 2 case and N/ 2 control individuals. Let Hk¼fH1
k ‚ H2

k ‚ . . . ‚ HM
k g denote kth hap-

lotype, where Hk
i 2 f0‚ 1g. Hi

k ¼ 1 if ith variant in kth haplotype is mutated, and Hi
k ¼ 0 if not. Let pi denote

population minor allele frequency (MAF) of variant i, and pþi and p�i represent the true MAF of case and
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control individuals, respectively. We denote relative risk of variant i by ci. Then, L0 and L1 of Equations (2)

and (3) can be decomposed into (for the derivation, see the Appendix):

L0¼
YM
i¼ 1

(1� ci)
Y

Hk2Dþ

pi
Hi

k (1� pi)
1�Hi

k

Y
Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

( )
(4)

L0þ L1¼
YM
i¼ 1

(1� ci)
Y

Hk2Dþ

pi
Hi

k (1� pi)
1�Hi

k

Y
Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

(

þ ci

Y
Hk2Dþ

pþi
Hi

k (1� pþi )1�Hi
k

Y
Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

)
(5)

where pþi and p�i are

pþi ¼
cipi

(ci� 1)piþ 1
(6)

p�i ¼ pi (assuming the disease prevalence is very small) (7)

We estimate the population MAF of a variant ( pi) using an observed overall sample frequency.

pi¼
p̂þi þ p̂�i

2

where p̂þi and p̂�i represent observed case and control MAF, respectively.

This decomposition reduces the time complexity of computing L1 from exponential to linear, substan-

tially increasing the computational efficiency.

2.3. Efficient permutation test for LRT

We propose a permutation test that is substantially more efficient than a naive permutation test that

permutes case and control statuses in each permutation. The naive permutation test is computationally

expensive because every haplotype of case and control individuals needs to be examined in each permu-

tation, and hence it requires more computation as the number of individuals increases. Moreover, to

compute a p-value at a genome-wide level, more than 10 million permutations are necessary assuming a

significance threshold of 2.5 · 10 - 6 (computed from the overall false positive rate of 0.05 and the Bon-

ferroni correction with 20,000 genes genome-wide). It is often computationally impractical to perform this

large number of permutations with the naive permutation test. Hence, we develop a permutation test that

does not permute case and control statuses, and this makes the time complexity independent of the number

of individuals and allows the permutation test to be capable of performing more than 10 million permu-

tations.

First, we reformulate L0 and L1 (Equations 4 and 5) such that they are composed of terms that do not

change and terms that change per each permutation (for the derivation see the Appendix).

L0¼
YM
i¼ 1

Xi (8)

L0þ L1¼
YM
i¼ 1

XiþKiY
Np̂þ

i

i

n o
(9)

where

Xi¼ (1� ci)p
2Npi

i (1� pi)
2N� 2Npi

Ki¼ ci(1� pþi )N(1� pi)
N pi

1� pi

� �2Npi

Yi¼
pþi

1� pþi
� 1� pi

pi

� �
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In Equations (8) and (9), it is only a p̂þi term that changes when the dataset is permuted because pi and

pþi are invariant per permutation, meaning Xi, Ki, and Yi are constant. Np̂þi follows the hypergeometric

distribution with the mean equal to Npi and the variance equal to N
2

pi(1� pi) under permutations. Hence, we

sample Np̂þi from the hypergeometric distribution, and since this sampling strategy does not permute and

examine haplotypes of individuals, it is more efficient than the naive permutation test when studies have a

large number of individuals.

To speed up sampling from the hypergeometric distribution, we pre-compute hypergeometric distribu-

tions of all rare variants (e.g., variants whose MAF are less than 10%) before performing the permutation

test. Computing the hypergeometric distribution requires several factorial operations, which is computa-

tionally expensive. The pre-computation of distributions allows the permutation test to avoid having the

expensive operations repeatedly per permutation, and the number of pre-computed distributions is limited

due to the small range of MAF. For common variants, we sample Np̂þi from the normal distribution, which

approximately follows the hypergeometric distribution when p̂þi is not close to 0 or 1.

We find that our permutation test is efficient enough to calculate a p-value of the LRT statistic at a

genome-wide level. For example, using a dataset that contains 1000 cases and 1000 controls with 100

variants, 10 million permutations take about 10 CPU minutes using one core of a Quad-Core AMD 2.3-

GHz Opteron Processor. Note that the time complexity of our method is O(N + kMP), where N is the total

number of individuals, M is the number of variants, P is the number of permutations, and k is the number of

iterations in the local search algorithm discussed below. We find that k is very small in permutations and

MP [ N for a large number of permutations (e.g., 100 millions). Thus, the time complexity of our method

becomes approximately O(MP), and this shows that the amount of computation our method needs mostly

depends on the number of variants and the number of permutations.

We note that our permutation test can also be applied to previous grouping methods such as RWAS (Sul

et al., 2011). RWAS assumes that its statistic (a weighted sum of z-scores of variants) approximately

follows the normal distribution, and the p-value is obtained accordingly. Since the permutation test does not

make any assumptions on the distribution of a statistic, it may provide a more accurate estimate of a p-value

and improve the power of previous methods.

2.4. Power simulation framework

The effect sizes and the causal statuses of variants are two major factors that influence the power of the

groupwise association test. To simulate these two factors, we adopt the same simulation framework as one

discussed in Sul et al. (2011) and Madsen and Browning (2009). In this framework, population attributable

risk (PAR) defines the effect sizes of variants, and we assign the predefined group PAR to a group of

variants. The group PAR divided by the number of causal variants is the marginal PAR, denoted as x, and

every variant has the same x.

The effect size of a variant also depends on its population MAF in this simulation framework. We assign

each variant population MAF ( pi) sampled from Wright’s formula (Wright, 1931; Ewens, 2004), and we

use the same set of parameter values for the formula as discussed in Sul et al. (2011) and Madsen and

Browning (2009). Using x and population MAF, we can compute relative risk of variant i (ci) as following.

ci¼
x

(1�x)pi

þ 1 (10)

Equation (10) shows that rarer variants have the higher effect sizes. Given relative risk and population

MAF of a variant, we compute the true case and control MAF of the variant according to Equations (6) and

(7). We then use the true case and control MAF to sample mutations in case and control individuals,

respectively.

To simulate the causal status of a variant, we assign each variant the probability of being causal to a

disease. Let ci denote this probability for variant i, and in each dataset, a variant is causal with the

probability ci, and not causal with the probability 1 - ci. Relative risk of a causal variant is defined in

Equation (10) while that of non-causal variant is 1.

Given all parameters of variants, we generate 1,000 datasets, and each dataset has 1,000 case and 1,000

control individuals with 100 variants. Since we are interested in comparing power of the groupwise tests,

we only include datasets that have at least two causal variants. The number of significant datasets among

the 1,000 datasets is used as an estimate of power with the significance threshold of 2.5 · 10 - 6.
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2.5. Estimating PAR of a group of variants using LRT

We need a few model parameters to compute the LRT statistic, and we use data, prior information, and

the LRT statistic itself to estimate the parameters. More specifically, we need to know relative risk of

variant i, ci, to compute pþi in Equation (6). According to Equation (10), ci depends on population MAF

( pi) and the marginal PAR (x), which is the group PAR divided by the number of causal variants. We can

estimate pi from observational data, and we use prior information (ci) of variants to compute the expected

number of causal variants, which we use as an estimate of the number of causal variants.

To estimate the group PAR, we use the LRT statistic because we are likely to observe the greatest

statistic when the statistic is computed using the group PAR that generated observational data. We apply a

local search algorithm to find the value of PAR that maximizes the LRT statistic; we compute the statistic

assuming a very small PAR value (0.1%), and iteratively compute statistics using incremental values of

PAR (0.2%, 0.3%, etc.) until we observe a decrease in the LRT statistic. After we find the maximum LRT

statistic, we perform the permutation test with the same local search algorithm to find the significance of the

statistic.

2.6. Web resources

The software package for computing the LRT statistic and performing the proposed permutation test is

publicly available online at http://genetics.cs.ucla.edu/rarevariants.

3. RESULTS

3.1. Type I error rate of LRT

We examine the type I error rate of LRT by applying it to ‘‘null’’ datasets that contain no causal variants.

We measure the type I error rates under three significance thresholds: 0.05, 0.01, and 2.5 · 10 - 6 (the

significance threshold for the power simulation). A large number of null datasets are necessary to accu-

rately estimate the type I error rate under the lowest significance threshold (2.5 · 10 - 6). Thus, we create 10

million datasets, and each dataset contains 1000 case and 1000 control individuals with 100 variants. We

estimate the type I error rate as the proportion of significant datasets among the 10 million datasets.

To efficiently measure the type I error rates of LRT, we use the following approach. We first test LRT on

all 10 million datasets with 100,000 permutations. This small number of permutations makes it possible to

test LRT on all null datasets and allows us to estimate the type I error rates under the 0.05 and 0.01

significance thresholds. As for the lowest significance threshold, we need to test LRT with a very large

number of permutations (e.g., 100 million) to obtain a genome-wide level p-value. To reduce the amount of

computation, we exclude datasets whose p-values cannot be lower than 2.5 · 10 - 6 with 100 million

permutations. More specifically, to obtain a p-value less than 2.5 · 10 - 6, the number of significant per-

mutations (permutations whose LRT statistics are greater than the observed LRT statistic) must be less than

250 with 100 million permutations. We exclude datasets already having more than 250 significant per-

mutations after the 100,000 permutations. We then apply the adaptive permutation test on the remaining

datasets; we stop the permutation test when the number of significant permutations is greater than 250. The

proportion of datasets whose permutation tests do not stop until 100 million permutations is the type I error

rate under the 2.5 · 10 - 6 threshold.

We find that the type I error rates of LRT are 0.0500946, 0.0100042, and 2.6 · 10 - 6 for the significance

thresholds of 0.05, 0.01, and 2.5 · 10 - 6, respectively. This shows that the type I error rates are well

controlled for LRT under the three different thresholds.

3.2. Power comparison between LRT and previous grouping methods

We compare power between LRT and previous methods using two simulations. We design these sim-

ulations to observe how LRT’s implicit inference of which variants are causal affects the power compared

to methods which do not make this kind of inference. In the first simulation, we generate datasets in which

all variants have true ci = 0.1. This means that only a subset of variants is causal, and causal statuses of

variants vary per datasets. In the second simulation, all 100 variants in datasets are causal; true ci of all

variants is 1.
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We test four different methods in this experiment: LRT, Optimal Weighted Aggregate Statistic (OWAS),

MB, and VT. OWAS computes a difference in mutation counts between case and control individuals for

each variant, or z-score of a variant, and assigns weights to z-scores according to the non-centrality

parameters of z-scores (Sul et al., 2011). Sul et al. (2011) reported that OWAS achieves slightly higher

power than RWAS. Thus, we test OWAS instead of their proposed method, RWAS, to compare power

between a weighted sum of z-scores approach and the LRT approach. Since OWAS needs to know the

effect sizes of variants, we give OWAS the true group PAR that generated data. OWAS divides the true

group PAR by the expected number of causal variants to compute the marginal PAR (x) and then computes

relative risk of variants (Equation 10). We also apply our permutation test for LRT to OWAS to estimate its

p-value more accurately. To test VT, we use an R package available online (Price et al., 2010). LRT,

OWAS, and VT are given prior information that is equivalent to true ci of datasets, and we perform 10

million permutations to estimate p-values of their statistics.

Results of the two simulations show that LRT outperforms the previous groupwise tests in the first

simulation, and it has almost the same power as OWAS in the second simulation. In the first simulation,

LRT has higher power than other tests at all group PAR values (Fig. 1A); at the group PAR of 5%, LRT

achieves 94.5% power while OWAS and VT achieve 53.7% and 83.6% power, respectively. This shows

that data may provide useful information about causal statuses of variants, and a method that takes

advantage of data achieves higher power than those that do not. When prior information, however, can

alone identify which variants are causal as in the second simulation, LRT and OWAS have almost the

identical power (Fig. 1B). This is because both methods know which variants are causal from prior

information. Hence, this experiment demonstrates that LRT is generally a more powerful approach than the

weighted sum of z-scores approach because it achieves higher power in studies where prior information

cannot specify which variants are causal.

3.3. Comparison of decision boundaries between LRT and the weighted sum of z-scores

We show decision boundaries of LRT and the weighted sum of z-scores method to visualize the way

each method combines information from multiple variants and to determine how decision boundaries affect

power of studies. A decision boundary determines whether a group of variants is statistically associated

with a disease; a statistic for the group is significant if it is above the boundary while it is not significant if it

is below the boundary. Methods that combine information linearly has a linear decision boundary, and

those methods include RWAS and MB that compute a statistic based on a linear sum of mutation counts or

z-scores. LRT, on the other hand, has a nonlinear decision boundary since its statistic is computed using a

nonlinear combination of mutation counts.

For this experiment, we perform two simulations similar to ones in the previous experiment with a fewer

number of variants. In each simulation, we generate 10,000 datasets containing 500 case and 500 control

individuals with only two variants. Population MAF of both variants is 1%, and the true case MAF is

calculated assuming the group PAR of 2%. Both variants have true ci = 0.5 in the first simulation while

they have true ci = 1 in the second simulation, which is similar to ci of the two simulations in the previous

experiment. We perform the single marker test to compute z-score of each variant in each dataset, meaning

that we have two statistics per dataset. These statistics are represented in a two-dimensional graph where

FIG. 1. Power comparison among

four different groupwise associa-

tion tests on datasets where ci = 0.1

for all variants (A) and ci = 1 (B)

over different group PAR values.
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each dimension corresponds to z-score of each variant. We then test LRT and OWAS on each dataset to

determine whether their statistics on a group of the two variants are significant using the significance

threshold of 0.05.

Figure 2 shows results of the two simulations; Figures 2A and 2B are results of testing LRT and OWAS,

respectively, on the first simulation (ci = 0.5), and Figures 2C and 2D are results on the second simulation

(ci = 1). In each figure, a point represents one of the 10,000 datasets, and its x- and y-axes correspond to

z-scores of the first and second variants, respectively. The red points are datasets whose LRT or OWAS

statistics on a group of variants are significant, and the blue points are non-significant statistics.

We find that LRT achieves higher power by using the nonlinear decision boundary as there are more

number of red points in Figure 2A (LRT) than Figure 2B (OWAS). A curved line separates significant and

non-significant associations, which indicates the nonlinear decision boundary of LRT (Fig. 2A). On the

other hand, a straight line or a linear decision boundary segregates the statistics of OWAS (Fig. 2B). The

nonlinear decision boundary allows LRT to emphasize causal variants more strongly than non-casual

variants while OWAS considers both casual and non-casual variants to be equally important.

When all variants in datasets are causal, however, they all should be emphasized equally, and hence a

linear decision boundary would best detect associations. Hence, the decision boundary of LRT becomes

linear in the second simulation (Fig. 2C), since LRT knows every variant is causal and equally important.

The decision boundary of OWAS is also linear in this simulation (Fig. 2D), and this explains why LRT and

OWAS have the same power in the second simulation of the previous experiment. This experiment shows

that because the decision boundary of LRT can become both linear and nonlinear depending on the causal

statuses of variants, LRT is more powerful than previous methods that have a fixed decision boundary.

3.4. LRT on real mutation screening data of ATM

We apply LRT to real mutation screening data of the susceptibility gene for ataxia telangiectasia

(Tavtigian et al., 2009). This gene, called ATM, is also an intermediate-risk susceptibility gene for breast

cancer. Tavtigian et al. (2009) conducted mutation screening studies and collected data from 987 breast

cancer cases and 1021 controls. Tavtigian et al. (2009) increased the number of cases and controls to 2531

and 2245, respectively, by collecting data from seven published ATM case-control mutation screening

FIG. 2. Plots showing decision

boundaries of LRT and OWAS on

datasets with two variants whose

ci = 0.5 (A, B) and ci = 1 (C, D).

X-axis and Y-axis correspond to

z-scores of two variants, and red

points are significant statistics ac-

cording to LRT or OWAS while

blue points are non-significant.
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studies. This dataset is called ‘‘bona fide case-control studies,’’ and 170 rare missense variants are present

in this dataset. Sul et al. (2011) also analyzed the dataset with RWAS.

To obtain prior information of variants in the dataset, Tavtigian el al. (2006) used two missense analysis

programs: Align-GVGD (Tavtigian et al., 2006) and SIFT (Ng and Henikoff, 2003). A difference between

the two programs is that while SIFT classifies a variant as either deleterious (SIFT scores £ 0.05) or neutral

(SIFT scores > 0.05), Align-GVGD classifies a variant into seven grades from C0 (most likely neutral) to

C65 (most likely deleterious). To convert the seven grades of Align-GVGD into ci values, we arbitrarily

assign ci values from 0.05 to 0.95 in increments of 0.15 to the seven grades. As for converting SIFT scores

into ci values, we assign ci value of 1 to variants whose SIFT scores are £ 0.05 and ci of 0 to other variants.

This is the same conversion used in (Sul et al., 2011).

When LRT uses prior information from Align-GVGD, it yields a p-value of 0.0058, which indicates a

significant association between the group of rare variants and the disease. This result is consistent with

previous findings (Tavtigian et al., 2009; Sul et al., 2011); Tavtigian et al. (2009) and Sul et al. (2011) both

obtained significant p-values when they used outputs of Align-GVGD as prior information. The result

shows that we can apply LRT to real data to discover an association.

LRT yields a non-significant p-value of 0.39341 when it does not use prior information, and this is also

consistent with results of Tavtigian et al. (2009) and Sul et al. (2011); Tavtigian et al. (2009) and Sul et al.

(2011) reported non-significant p-values when they analyzed the data without prior information. When

SIFT scores are used as prior information, LRT similarly reports a non-significant p-value of 0.08384, and

Sul et al. (2011) also obtained a non-significant p-value. However, the analysis of Tavtigian et al. (2009)

with SIFT scores showed a significant association. According to Sul et al. (2011), the reason for this

difference may be that LRT and RWAS need to know the relative degree of how deleterious a variant is to

better detect an association. However, it may be difficult to know this relative deleteriousness of variants

with SIFT scores because variants are either deleterious or neutral. Thus, this experiment shows that more

informative prior information such as the seven grades of Align-GVGD may yield better results with LRT.

4. DISCUSSION

We developed a likelihood ratio test (LRT) to increase power of association studies on a group of rare

variants. The power of statistical methods that group rare variants depends on which rare variants to group

or to exclude from the group because including non-causal variants in the group decreases power (Sul et al.,

2011). Although prior information of variants from bioinformatics tools provides information of how likely

each variant is functional or deleterious, determining whether a variant is causal or not only from prior

information is often infeasible. LRT takes advantage of data to identify causal variants, and when it is not

possible to identify causal variants from prior information, we showed that LRT outperforms previous

methods.

We then showed decision boundaries of LRT and one of previous grouping methods, Optimal Weighted

Aggregate Statistic (OWAS). The two methods have the same linear decision boundary when datasets

contain only causal variants, and thus they achieve the same power. When only a subset of them is causal,

OWAS still has a linear decision boundary since its statistic is computed as a linear sum of differences in

mutation counts. However, the decision boundary of LRT becomes nonlinear in this case because LRT

places more emphasis on a variant that causes a large difference in mutation counts between cases and

controls than a variant that causes a small difference. We showed by simulations that the nonlinear decision

boundary detects more associations than the linear decision boundary. Hence, this suggests that LRT is a

more powerful approach in finding associations with a group of rare variants because it is capable of

changing its decision boundary depending on causal statuses of variants to better detect associations.

To evaluate LRT on real data, we used mutation screening data of the ATM gene (Tavtigian et al., 2009).

Tavtigian et al. (2009) and Sul et al. (2011) both found the significant association in the data, and we

showed that LRT also detected the association using the output of Align-GVGD as prior information of

variants. This shows that LRT can be applied to detect an association in real association studies.

One of the two assumptions that we made to efficiently compute the LRT statistic and its p-value is the

independence between variants. Several studies suggest that there would be very low linkage disequilib-

rium between rare variants due to their low occurrences (Li and Leal, 2008; Pritchard and Cox, 2002;

Pritchard, 2001). However, if non-negligible LD is expected between variants, especially when common
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variants are in linkage disequilibrium in the group, we can change our permutation test as follows to take

into account LD and to correctly control the false positive rate. Instead of separately sampling Np̂þi of each

common variant from the normal distribution, we sample Np̂þi of all common variants from the multi-

variate normal distribution (MVN). This approach is similar to the approach of Han et al who used the

MVN framework to correct for multiple testing on correlated markers (Han et al., 2009). The covariance

matrix of the MVN we create consists of correlations (r) between common variants, and hence Np̂þi
sampled from this MVN takes into account LD between variants. For rare variants, we use our proposed

method that samples Np̂þi of each rare variant from the hypergeometric distribution because LD between

rare variants is expected to be very low.

The other assumption of our method is the low disease prevalence, and this assumption does not

influence the false positive rate of our method while it may affect the power. The false positive rate of LRT

is controlled even though the disease we consider is highly prevalent because we perform the permutation

test. Therefore, LRT can still be applied to association studies involving diseases with high prevalence

while its power may not be as high as the power it achieves on diseases with low prevalence.

APPENDIX

5.1. Computation of L(D + , D - jvj) in LRT

We show how the likelihood of haplotypes under certain causal statuses of variants, L(D + , D - jvj), can

be computed. Let Hk denote kth haplotype, and Hk¼fH1
k ‚ H2

k ‚ . . . ‚ HM
k g. Hi

k ¼ 1if ith variant in kth

haplotype is mutated, and Hi
k ¼ 0 otherwise. Let pi denote population minor allele frequency (MAF) of

ith variant, and we can compute the probability of a haplotype Hk under the assumption of no linkage

disequilibrium as

P(Hk)¼
YM
i¼ 1

p
Hi

k

i (1� pi)
1�Hi

k (11)

Then, we define the likelihood of haplotypes as

L(Dþ‚ D� jvj)¼
Y

Hk2Dþ

P(Hkj þ ‚ vj)
Y

Hk2D�
P(Hkj � ‚ vj) (12)

where + and - denote case and control statuses. In order to compute P(Hkj + / - , vj), we first denote F as

disease prevalence and cHk
vj

as the relative risk of kth haplotype under vj. We define cHk
vj

as

cHk

vj
¼
YM
i¼ 1

c
vi

jH
i
k

i

Let H0 denote the haplotype with no variants, and using Bayes’ theorem and independence between Hk and

vj, and between disease status ( + and - ) and vj, we can define the P(Hkj + / -, vj) as

P(Hkj þ‚ vj)¼
P(Hk‚ þ jvj)

P(þ )
¼ P(þ jHk‚ vj)P(Hk)

F
¼

cHk
vj

P(þ jH0‚ vj)P(Hk)

F
(13)

P(Hkj �‚ vj)¼
P(Hk‚ � jvj)

P(� )
¼ (1�P(þ jHk‚ vj))P(Hk)

1�F
(14)

P( + jH0, vj), or the probability of having a disease given no variants in the haplotype under jth causal

statuses, can be computed as

+
2M � 1

k¼ 0

cHk

vj
P(þ jH0‚ vj)P(Hk)¼F

P(þ jH0‚ vj)¼
F

+2M � 1

k¼ 0
cHk

vj P(Hk)
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5.2. Decomposition of likelihoods of haplotypes into likelihoods of variants in LRT

First, we consider two variants case. We have 4 possible causal statuses, denoted as v00, v01, v10, v11 and

4 possible haplotypes, denoted as H00, H01, H10, H11. Let p1 and p2 denote population MAF of two variants

and pþ1 and pþ2 are MAF of case individuals at two variants. The original LRT statistic based on (Equations

2 and 3) compute the following likelihoods

L0¼ (1� c1)(1� c2)
Y

Hk2Dþ

P(Hkj þ‚ v00)
Y

Hk2D�
P(Hkj � ‚ v00)

L0þ L1¼ (1� c1)(1� c2)
Y

Hk2Dþ

P(Hkj þ‚ v00)
Y

Hk2D�
P(Hkj � ‚ v00)

þ (1� c1)c2

Y
Hk2Dþ

P(Hkj þ‚ v01)
Y

Hk2D�
P(Hkj � ‚ v01)

þ c1(1� c2)
Y

Hk2Dþ

P(Hkj þ‚ v10)
Y

Hk2D�
P(Hkj � ‚ v10)

þ c1c2

Y
Hk2Dþ

P(Hkj þ‚ v11)
Y

Hk2D�
P(Hkj � ‚ v11) (15)

Our first assumption for decomposition is that F or disease prevalence is very small. Then, we can

decompose P(Hkj - , vj) for all causal statuses j, as

P(Hkj � ‚ vj)¼ p
H1

k

1 (1� p1)1�H1
k · p

H2
k

2 (1� p2)1�H2
k ¼P(Hkj þ‚ v00) (16)

Then, we decompose P(Hkj + , vj) for different vj, and first, let’s consider v11 where two variants are both

causal. We make another assumption here, which is the independence between rare variants; there is no

linkage disequilibrium (LD) (Li and Leal, 2008; Pritchard and Cox, 2002; Pritchard, 2001). If variants are

independent, P(H00j + , v11) can be formulated as

P(H00j þ‚ v11)¼ P(H00)

P(H00)þP(H10)c1þP(H01)c2þP(H11)c1c2

¼ (1� p1)(1� p2)

(1� p1)(1� p2)þ p1(1� p2)c1þ (1� p1)p2c2þ p1p2c1c2

¼ (1� p1) · (1� p2)

((1� p1)þ p1c1) · ((1� p2)þ p2c2)

¼ (1� pþ1 )(1� pþ2 )

The last derivation comes from (Equation 6) where pþi ¼
pici

(1� pi)þ pici
. Similarly, we can define the proba-

bilities of other haplotypes (H01, H10, H11) as

P(H01j þ‚ v11)¼ (1� pþ1 )pþ2
P(H10j þ‚ v11)¼ pþ1 (1� pþ2 )

P(H11j þ‚ v11)¼ pþ1 pþ2

Combining these probabilities, we have the following decomposition of P(Hkj + , v11).

P(Hkj þ ‚ v11)¼ pþ1
H1

k (1� pþ1 )1�H1
k · pþ2

H2
k (1� pþ2 )1�H2

k (17)

Using the similar derivation, decomposition of P(Hkj +, v01) and P(Hkj +, v10) is

P(Hkj þ‚ v01)¼ p1
H1

k (1� p1)1�H1
k · pþ2

H2
k (1� pþ2 )1�H2

k (18)

P(Hkj þ‚ v10)¼ pþ1
H1

k (1� pþ1 )1�H1
k · p2

H2
k (1� p2)1�H2

k (19)

By the 4 decompositions (Equations 16, 17, 18, and 19), we can finally decompose the likelihoods of

haplotypes (Equation 15) as
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L0¼ (1� c1)(1� c2)
Y

Hk2Dþ

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

L0þ L1¼ (1� c1)(1� c2)
Y

Hk2Dþ

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

þ (1� c1)c2

Y
Hk2Dþ

p1
H1

k (1� p1)1�H1
k pþ2

H2
k (1� pþ2 )1�H2

k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

þ c1(1� c2)
Y

Hk2Dþ

pþ1
H1

k (1� pþ1 )1�H1
k p2

H2
k (1� p2)1�H2

k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

þ c1c2

Y
Hk2Dþ

pþ1
H1

k (1� pþ1 )1�H1
k pþ2

H2
k (1� pþ2 )1�H2

k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k p

H2
k

2 (1� p2)1�H2
k

L0þ L1¼ (1� c1)
Y

Hk2Dþ

p
H1

k

1 (1� p1)1�H1
k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k

 

þ c1

Y
Hk2Dþ

pþ1
H1

k (1� pþ1 )1�H1
k

Y
Hk2D�

p
H1

k

1 (1� p1)1�H1
k

!

· (1� c2)
Y

Hk2Dþ

p
H2

k

2 (1� p2)1�H2
k

Y
Hk2D�

p
H2

k

2 (1� p2)1�H2
k

 

þ c2

Y
Hk2Dþ

pþ2
H2

k (1� pþ2 )1�H2
k

Y
Hk2D�

p
H2

k

2 (1� p2)1�H2
k

!
(20)

If we generalize Equation (20) to M variants, we have the likelihood of M variants as in Equations (4)

and (5).

5.3. Reformulation of L0 and L1 in LRT for an efficient permutation test

First, computation of L0 (Equation 4) can be reformulated as

L0¼
YM
i¼ 1

(1� ci)
Y

Hk2Dþ

pi
Hi

k (1� pi)
1�Hi

k

Y
Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

( )

¼
YM
i¼ 1

(1� ci)
Y

Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

( )

¼
YM
i¼ 1

(1� ci)p
2Npi

i (1� pi)
2N� 2Npi

n o
b
YM
i¼ 1

Xi

Similarly, we can reformulate L1 as

L1¼
YM
i¼ 1

(1� ci)
Y

Hk2Dþ

pi
Hi

k (1� pi)
1�Hi

k

Y
Hk2D�

pi
Hi

k (1� pi)
1�Hi

k

(

þ ci

Y
Hk2Dþ

pþi
Hi

k (1� pþi )1�Hi
k

Y
Hk2D�

p�i
Hi

k (1� p�i )1�Hi
k

)

¼
YM
i¼ 1

Xiþ cip
þ
i

Np̂þ
i (1� pþi )N�Np̂þ

i p�i
Np̂�i (1� p�i )N�Np̂�i

n o

¼
YM
i¼ 1

Xiþ ci(1� pþi )N pþi
1� pþi

� �Np̂þ
i

(1� p�i )N p�i
1� p�i

� �Np̂�i
( )
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Using the fact that Np̂þi þNp̂�i ¼ 2Npi under permutations,

L1¼
YM
i¼ 1

Xiþ ci(1� pþi )N(1� p�i )N pþi
1� pþi

� �Np̂þ
i p�i

1� p�i

� �2Npi �Np̂þ
i

( )

¼
YM
i¼ 1

Xiþ ci(1� pþi )N(1� p�i )N p�i
1� p�i

� �2Npi pþi
1� pþi

� 1� p�i
p�i

� �Np̂þ
i

( )

b
YM
i¼ 1

XiþKiY
Np̂þ

i

i

n o
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