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ABSTRACT

The new second generation sequencing technology revolutionizes many biology-related re-
search fields and poses various computational biology challenges. One of them is transcriptome
assembly based on RNA-Seq data, which aims at reconstructing all full-length mRNA tran-
scripts simultaneously from millions of short reads. In this article, we consider three objectives
in transcriptome assembly: the maximization of prediction accuracy, minimization of inter-
pretation, and maximization of completeness. The first objective, the maximization of prediction
accuracy, requires that the estimated expression levels based on assembled transcripts should
be as close as possible to the observed ones for every expressed region of the genome. The
minimization of interpretation follows the parsimony principle to seek as few transcripts in
the prediction as possible. The third objective, the maximization of completeness, requires that
the maximum number of mapped reads (or ‘‘expressed segments’’ in gene models) be explained
by (i.e., contained in) the predicted transcripts in the solution. Based on the above three ob-
jectives, we present IsoLasso, a new RNA-Seq based transcriptome assembly tool. IsoLasso is
based on the well-known LASSO algorithm, a multivariate regression method designated to
seek a balance between the maximization of prediction accuracy and the minimization of
interpretation. By including some additional constraints in the quadratic program involved in
LASSO, IsoLasso is able to make the set of assembled transcripts as complete as possible.
Experiments on simulated and real RNA-Seq datasets show that IsoLasso achieves, simulta-
neously, higher sensitivity and precision than the state-of-art transcript assembly tools.

Key words: algorithms, computational molecular biology, machine learning, probability, se-

quence analysis.

1. INTRODUCTION

The second generation sequencing technology has become an increasingly important tool in

biological and biomedical research areas, such as individual genome sequencing (Wheeler et al., 2008),

gene expression level estimation (Mortazavi et al., 2008), and comparative genomics (Holt et al., 2008).

RNA-Seq, a technology to study the transcriptome via second generation sequencing, was first introduced in

a series of studies in 2008 (Mortazavi et al., 2008; Wilhelm et al., 2008; Lister et al., 2008; Morin et al., 2008;

Marioni et al., 2008; Cloonan et al., 2008; Nagalakshmi et al., 2008) and has quickly become widely accepted
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as a fundamental tool for transcriptome research (Haas and Zody, 2010; Morozova et al., 2009; Wall et al.,

2009; Wang et al., 2009). The revolutionary new sequencing technology allows RNA-Seq to lower se-

quencing cost and increase data throughput substantially, but it also poses many challenging computational

biology problems, one of which is transcriptome assembly and abundance estimation from RNA-Seq reads. A

variety of new algorithms and tools have been developed for this problem (Birol et al., 2009; Yassour et al.,

2009; Trapnell et al., 2010; Guttman et al., 2010; Feng et al., 2010; Trapnell et al., 2009). Some splicing site

discovery tools, for example, TopHat (Trapnell et al., 2009) and SpliceMap (Au et al., 2010), identify new

alternative splicing events by exploring RNA-Seq reads that span different parts of the reference genome under

study. Some de novo assembly tools, such as AbySS (Birol et al., 2009), try to assemble new transcripts solely

from RNA-Seq reads. Other assembly tools—including Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al.,

2010), and IsoInfer (Feng et al., 2010)—map reads to the reference genome and build transcript models (or

isoforms) from these mapped reads.

Among these tools, IsoInfer (Feng et al., 2010) enumerates all possible ‘‘valid’’ isoforms and uses a

quadratic program (QP) to estimate the expression levels of a given set of isoforms. IsoInfer then chooses

the best subset of valid isoforms such that the estimated abundance of every ‘‘expressed segment’’ of the

reference genome (e.g., an exon) is proportional to the observed reads falling into the segment. On the other

hand, Cufflinks (Trapnell et al., 2010) assembles isoforms using a parsimony strategy (i.e., it attempts to

identify the minimum number of isoforms to cover all the reads). To do this, Cufflinks decomposes the

‘‘overlap graph’’ of compatible reads into a smallest path cover, and then calculates the expression levels of

the isoforms (i.e., paths in the cover) using the probabilistic model proposed in Jiang and Wong (2009).

The strategies that IsoInfer and Cufflinks adopted correspond to two different model selection principles:

prediction accuracy and interpretation (Hastie et al., 2009). IsoInfer selects isoforms to maximize the

prediction accuracy (i.e., to minimize the error or discrepancy between the predicted and observed ex-

pression levels in all expressed segments). IsoInfer employs a search algorithm similar to the ‘‘best subset

variable selection’’ algorithm (Hocking and Leslie, 1967) to find the best subset of isoforms. However, the

huge search space prevents the algorithm from doing a thorough search, and many heuristic restrictions

must be applied to make the search tractable. On the other hand, Cufflinks minimizes interpretation,—(in

other words, the number of variables (or isoforms) that are required to explain all the mapped reads. Here,

the prediction accuracy is not considered explicitly during the transcriptome assembly process. By defining

a ‘‘partial order’’ between reads, Cufflinks filters out ‘‘uncertain’’ paired-end reads which may result in a

sub-optimal path cover in the solution, or miss some alternative splicing events. Finally, Scripture

(Guttman et al., 2010) reconstructs all possible isoforms by enumerating all possible paths in the ‘‘con-

nectivity graph.’’ This approach may lead to many incorrect isoforms for complex genes with a large

number of exons, since the number of paths may be huge for such gene models.

Another important objective in transcriptome assembly is completeness, which requires that all exons

(and exon junctions) appear in at least one isoform in the solution (as done in IsoInfer [Feng et al., 2010]),

or all mapped reads be contained in at least one isoform (as done in Cufflinks [Trapnell et al., 2010]). In

IsoInfer, the completeness is achieved by solving a set cover instance that covers all expressed segments

and exon junctions. Since all the reads represented in the overlap graph are partitioned into disjoint paths in

Cufflinks, they are guaranteed to be supported by at least one isoform (i.e., path). However, some ‘‘un-

certain’’ paired-end reads (i.e., reads that cannot be included in partial order and thus absent in the overlap

graph) may not be covered by the solution. Scripture adopts a conservative approach to enumerate all

possible paths in its connectivity graph, which is guaranteed to cover all expressed segments and exon

junctions. Like Cufflinks, the prediction accuracy is not considered explicitly during the transcript assembly

process of Scripture. Moreover, retaining all possible isoforms clearly leads to a bad interpretation. Table 1

lists all the principles (or objectives) that IsoInfer, Cufflinks and Scripture abide by in the transcript

assembly process.

In this article, we present a new isoform assembly algorithm, IsoLasso, which balances prediction accu-

racy, interpretation and completeness. IsoLasso uses the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm (Tibshirani, 1996), which is a shrinkage least squares method in statistical machine

learning. By adding an L1 norm penalty term to the least squares objective function, LASSO achieves sparsity

by setting the expression levels of unrelated isoforms to zero, thus balancing both prediction accuracy

and interpretation. The LASSO algorithm is widely applied in many computational biology areas, such as

genome-wide association analysis (Wu et al., 2009; Kim et al., 2009), gene regulatory network (Gustafsson

et al., 2005), and microarray data analysis (Ma et al., 2007). In IsoLasso, we expand the quadratic
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programming problem in LASSO to take completeness into consideration. Our experiments demonstrate that

IsoLasso runs efficiently and achieves overall higher sensitivity and precision than IsoInfer, Cufflinks and

Scripture.

The rest of this article is organized as follows. Sections 2.1 and 2.2 present our algorithm for generating

(or enumerating) candidate isoforms and its relationship to minimum path covers used in Cufflinks

(Trapnell et al., 2010). These candidate isoforms will be fed to our LASSO algorithm described in Section

2.3 for estimating isoform expression levels (or, equivalently, for inferring expressed isoforms). Section 2.4

expands the basic LASSO approach to take completeness into consideration. Experimental results are

presented in Section 3, which include comparisons between IsoLasso, IsoInfer, Cufflinks, and Scripture on

simulated and real datasets. Section 4 concludes the article.

2. METHODS

2.1. Enumerating candidate isoforms

IsoInfer (Feng et al., 2010), Scripture (Guttman et al., 2010), and Cufflinks (Trapnell et al., 2010) enumerate

candidate isoforms in different ways. IsoInfer, assuming that expressed segment (or exon) boundaries in a gene

are given, enumerates all possible combinations of segments. Note that it is possible that some lowly expressed

segment are not hit by short reads and thus many of the isoforms enumerated by IsoInfer might have very low

expression levels. Scripture enumerates all possible maximal paths in a connectivity graph; but some of these

isoforms may be ‘‘infeasible’’ because they cannot be assembled from the mapped reads (Fig. 1, right).

Cufflinks tries to build an overlap graph from partially ordered reads and assembles putative transcripts by

decomposing the overlap graph into a parsimonious path cover. However, a strict partial order between reads is

required here. Since the actual sequence between the ends of each paired-end read is unknown, Cufflinks has to

exclude some paired-end reads (called uncertain reads) to maintain the partial order. Removing uncertain reads

may lead to two potential problems: (1) the path cover solution is actually sub-optimal and (2) some alternative

splicing events are missed, if the reads including these events are removed. For instance, Figure 1 (left) provides

an example that removing such ‘‘uncertain’’ reads leaves some splicing junctions undetected. Note that un-

certain reads should be treated separately from repeat sequences or incorrectly mapped reads.

Here, we describe our method of enumerating isoforms based on the connectivity graph (Guttman et al., 2010)

in Algorithm 1, from which the enumerated isoforms will be the set of candidate isoforms to be considered in the

LASSO algorithm. The algorithm first enumerates isoforms from the connectivity graph as in Guttman et al.

(2010) and then uses two additional steps to remove isoforms that are impossible to assemble. We will prove some

important properties of Algorithm 1: if there are no ‘‘uncertain’’ reads, then every isoform output by Algorithm 1

FIG. 1. (Left) Removal of ‘‘uncertain’’ reads may cause splicing junctions undetected in Cufflinks. Three paired-end

reads, p1, p2, and p3, concern different splicing junctions. Both pairs ( p1, p2) and ( p2, p3) are compatible, but the pair

( p1, p3) is not. Removing any of these reads will cause one or more junctions undetected. (Right) ‘‘Infeasible’’ paths in

the connectivity graph. In the example above, there are four possible combinations of segments: ACD, ACE, BCD, and

BCE. However, ACE and BCD are infeasible since they cannot be assembled from the mapped paired-end reads.

Table 1. Transcriptome Assembly Objectives of Each Algorithm

Algorithm Prediction accuracy Interpretation Completeness

IsoInfer Yes Partially Yes

Cufflinks No Yes Partially

Scripture No No Yes

IsoLasso Yes Yes Partially

Although Cufflinks has a transcript abundance estimation step, the prediction accuracy is not considered

explicitly during the assembly process. Also, theoretically both Cufflinks and IsoLasso take completeness into

consideration, but in practice they may not fully guarantee it and thus are marked ‘‘partially’’ in the table.
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can be assembled from a maximal path in the overlap graph given in (Trapnell et al. (2010). Moreover, the

isoforms enumerated by Algorithm 1 form a superset of all possible maximal paths in the overlap graph. In other

words, our LASSO algorithm in general considers more isoforms than Cufflinks in the transcript assembly

process. Before giving a detailed description of this algorithm and proofs of these properties, we first briefly

review some necessary notations first introduced in Trapnell et al. (2010) and Guttman et al. (2010).

A gene sequence S of length n is an ordered character sequence S¼ S1S2 � � � Sn‚ Si 2 fA‚ T‚ G‚ Cg. Define

B(n) as the set of binary vectors of length n. For a vector b 2 B(n), bi indicates the ith element of vector b.

For a subset U � B(n), define OR(U)¼ b 2 B(n) with bi = 1 iff there is an element c 2 U such that ci = 1.

For a binary vector b 2 B(n), define the start (or end) of b as the first (or last) non-zero index of b, and is

denoted as l(b) (or u(b)). Hence, each isoform on gene S could be represented as a binary vector b 2 B(n)
with bi = 1 iff the nucleotide Si is included in this isoform. A single-end or paired-end read mapped to S

could also be represented as an element b 2 B(n) with bi = 1 iff this read contains Si. A paired-end read is

denoted as p = (b1, b2), where b1 and b2 are the two mapped single-end reads, and l(b1) < l(b2). Given a set

of single-end or paired-end reads R, the coverage of Si, or cvg(Si), is the number of reads b with bi = 1.

A single-end read b is compatible with an isoform t, denoted as b*t, iff bi = ti for l(b) £ i £ u(b).

Similarly, a paired-end read p = (b1,b2) is compatible with isoform t, denoted as p* t, iff b1* t and

b2* t. Given a set of single-end (or paired-end) reads R mapped to gene S, the connectivity graph (CG)

(Guttman et al., 2010) is a directed acyclic graph (DAG) G = (V, E), where V ¼fv1‚ v2‚ . . . ‚ vng and

e¼ (vi‚ vj) 2 E iff one of the following conditions is true:

Condition 1. There exists a single-end read or an end of some paired-end read b 2 R such that bi = 1,

bj = 1, and bk = 0, ci < k < j;

Condition 2. cvg(Si) > 0, cvg(Sj) > 0, and cvg(Sk) = 0, ci < k < j.

Note that Condition 2 is designed to connect two mapped reads separated by a coverage gap. Based on the

definition of CG, a path h in the CG could be readily treated as an isoform by defining the isoform t as ti = 1

iff vi 2 h. Therefore, a read b is compatible with h (denoted as b* h) iff b* t. The isoform enumeration

algorithm depicted in Algorithm 1 takes the connectivity graph as the input, and outputs a set of maximal

candidate isoforms T. The algorithm consists of three phases: Enumeration, Filtration, and Condensation. In

the Enumeration phase, all maximal paths in the connectivity graph are enumerated. However, some of

these isoforms are ‘‘infeasible’’ in the sense that they cannot be assembled from the mapped reads (Fig. 1,

right). In this case, the second phase (i.e., the Filtration phase) is required to remove such isoforms. For

each isoform t generated in the Enumeration phase, the Filtration phase first finds all reads that are

compatible with t, and then checks if t can be assembled from these compatible reads (it replaces t

otherwise). Finally, the Condensation phase removes all the isoforms that are not maximal candidates.

Algorithm 1: Isoform Enumeration

input : A CG G = (V, E), and a set of mapped single-end or paired-end reads R

output: A set of isoforms T

begin

Enumeration:

T ) B

for vj 2 V with indeg(vj) = 0 do

Enumerate all possible maximal paths P that begin at vj and end at some vk with outdeg(vk) = 0

T ) T W P

Filtration:

for t 2 T do

Let t0 ¼OR(fb 2 Rjb~tg)
T ) (Ty{t}) W {t0}

Condensation:

for t 2 T do

Let Rt ¼fb 2 Rj‚ b~tg
for t0 2 Tnftg do

Let Rt0 ¼ fb 2 Rj‚ b~t0g
if Rt � Rt0 then

T ) (Ty{t})
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2.2. A connection to Cufflinks

Cufflinks assembles transcripts based on the overlap graph (OG), which is constructed from a set of

mapped single-end or paired-end reads after removing uncertain reads and extending reads to include their

nested reads (Trapnell et al., 2010). It generates transcripts by partitioning the overlap graph into a

minimum path cover, where a path cover is a set of disjoint paths in the overlap graph such that every read

appears in one and only one path. A minimum path cover is a path cover with the minimum number of

paths. We will prove some theorems to establish the relationship between the set of isoforms generated by

Algorithm 1 and the set of transcripts that could be constructed from the overlap graph.

The formal definitions of uncertain reads, nested reads, and the overlap graph are given in Trapnell et al.

(2010) and are reviewed below for the reader’s convenience.

A single-end read b is nested in another single-end read b0 iff bi¼ b0i‚ l(b)pipu(b), and at least one of

the following two conditions is true: (1) l(b) s l(b0) and (2) u(b) s u(b0). A paired-end read p is nested in

another paired-end read p0 iff l( p) ‡ l( p0), u( p) £ u( p0) and at least one of the following conditions is true:

(1) l( p) s l( p0) and (2) u( p) s u( p0). If a single-end read b is nested in b0, b can always be removed safely

without losing any information.

Two single-end reads b and b0 are compatible, denoted as b* b0, iff there exists one isoform t such that

b* t, b0* t, and b and b0 are not nested to each other. If b and b0 are not compatible, we denote b § b0.
Two paired-end reads p and p0 are compatible, denoted as p* p0, iff there exists an isoform t such that

p* t, p0* t and p is not nested in p0 or vice versa. If p and p0 are not compatible, we denote p § p0.
Define a partial order £ between two single-end reads b and b0: b £ b0 iff b* b0 and l(b) £ l(b0). It is

impossible to extend the partial order to paired-end reads, since the sequence within a paired-end read is not

completely known. Alternatively, for two paired-end reads p and p0, define p £ p0 with respect to a given

read set R iff the following conditions are true: (1) p* p0, (2) l( p) £ l( p0), u( p) £ u( p0), and (3) there is no

paired-end read p00 2 R such that p* p0, p* p† but p § p†. Write p £ p†jR if p £ p0 with respect to a given

read set R, or write simply p £ p0 if there is no ambiguity. If reads p, p0 and p† exist such that p* p0,
p0* p† and p § p†, then p, p0 and p† are said to be uncertain since no partial order can be given to these

reads.

Given a set of mapped single-end or paired-end reads R¼fb1‚ b2‚ . . .g, the overlap graph (OG)

(Trapnell et al., 2010) is a DAG G = (V, E), where V ¼fv1‚ v2‚ . . . ‚ vjRjg and e¼ (vi‚ vj) 2 E iff bi £ bj. A

maximal path of length k on the OG is a path h¼fvi1 � vi2 � � � � � vikg on the OG, such that there exists

no path h0 ¼ vj1 � vj2 � � � � � vjk0

� �
with h� h0. Because the vertices in the OG have a one-to-one rela-

tionship with the mapped reads, we also treat vertices in the OG as binary vectors to simplify notations

below. For example, if a path h¼ vi1 � vi2 � � � � � vikf g, we will use OR(h) to denote

OR(fbi1 � bi2 � � � � � bikg).
Let us consider a fixed gene S. Suppose that R is the set of reads mapped to gene S. The following

lemmas will be useful.

Lemma 1. Denote the vertex set of the CG as V ¼fv1‚ v2‚ . . . ‚ vng. For 1 £ i < j £ n, there is a path

from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0.

Proof. We use an induction on n = j - i to prove this lemma. If j - i = 1, then there is an edge between

vi and vj by Condition 2 of the CG’s edge construction. Assume that ck < n, there is a path from vi to vj if

cvg(Si) > 0 and cvg(Sj) > 0, j - i = k. For k = n, if cvg(Sl) = 0 for every i < l < j, then there is an edge

between vi and vj by Condition 2 of the CG’s edge construction. Otherwise, if there exists i < l0 < j such

that cvg(Sl0 ) > 0, then l0 - i < n and j - l0 < n. Using the assumption above, there is a path from vi to vl0

and a path from vl0 to vj. Therefore, there is a path from vi to vj. -

Lemma 2. For any read set Q 4 R, if every two reads in Q are compatible, then there is a maximal

path h in the CG such that 8b 2 Q‚ b~h.

Proof. Let t = OR(Q). We construct h by defining its vertex set V (h) and edge set E(h) separately. For

every 1 £ i < m,ti = 1, if the set {k > ijtk = 1} is not empty, denote j = mink{k > i,tk = 1}. If there is a read

b 2 Q such that bi = bj = 1 and bk = 0, i < k < j, then there must be an edge e in CG from vi to vj by

Condition 2 of CG’s edge construction, and we put e in E(h). Otherwise, there must be a path h0 from vi to vj

by Lemma 1, because cvg(Si) > 0 and cvg(Sj) > 0. We put edges in h0 in E(h). Define V (h) as the set of
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vertices induced by E(h). A trivial case is that j{1 £ i < m,ti = 1}j = 1. In this case, let V (h) = vi,ti = 1 for

completeness.

We claim that all reads in Q are compatible with h. This is because for a single-end read (or an end of

some paired-end read) b in Q, if bi = 1 then vi 2 V(h). If bi = bj = 1 and bk = 0,i < k < j, vi and vj are

directly connected by edge (vi, vj) in h, which means that {vkji < k < j} X V (h) = B. Therefore, b* h.

Once h is obtained, it is easily extended to a maximal path without violating its compatibility with every

read in Q. -

Lemma 3. Suppose that R has no uncertain or nested reads. For every maximal path h on the OG

constructed based on R, OR(h) 2 T .

Proof. Let t = OR(h) and Rt be the set of reads corresponding to path h. By Lemma 2, there is a

maximal path h0 on the CG such that every read b 2 Rt is compatible with h0. Denote the isoform corre-

sponding to h0 as t0. Then, t0 2 T after the Enumeration phase of Algorithm 1 and b* t0.
Let Rt0 ¼ fb 2 Rjb~t0g. For any b 2 Rt‚ b~t0 so b 2 Rt0 , then we have Rt � Rt0 . Furthermore, for any

b0 2 Rt0 ‚ b0~t0, and thus we have b~b0‚ 8b 2 Rt‚ 8b0 2 Rt0 . If there is a read b 2 Rt0 but b=2Rt, the vertex

corresponding to b in the OG could be added to path h, because b is compatible with all the reads in Rt and

b is not a nested or uncertain read. However, this contradicts the assumption that h is maximal. Therefore,

Rt¼Rt0 and t 2 T after the Filtration phase of Algorithm 1. Note that t would not be removed in the

Condensation phase Algorithm 1 because t is maximal. -

Lemma 4. Suppose that R has no uncertain or nested reads. For every isoform t output by Algorithm 1,

there exists a maximal path h on the OG such that OR(h) = t.

Proof. Let t be an isoform enumerated by Algorithm 1 and Rt¼fb 2 Rjb~tg. Since R contains no

uncertain or nested reads, the vertices corresponding to Rt in the OG form a path h. If h is not maximal, it

can be ‘‘expanded’’ to a maximal path h0 by adding some vertices not in h. According to Lemma 3, there is

an isoform t0 2 T such that t0 = OR(h0). Denoting Rt0 ¼ fb 2 Rjb~t0g, then we have Rt � Rt0 . Therefore, t

would be removed in the Condensation phase of Algorithm 1, which contradicts the fact that t is output by

Algorithm 1. -

Lemmas 3 and 4 immediately lead to Theorem 1 and its corollary, Corollary 1, below.

Theorem 1. Suppose that R contains no uncertain or nested reads. If we denote the set of isoforms

constructed by Algorithm 1 as T and the set of the isoforms formed by enumerating maximal paths on the

OG (constructed from R) as TOG, then T = TOG.

Corollary 1. If R contains no uncertain or nested reads, then for every minimum path cover H of the

OG, there exists a set of maximal isoforms T 0 ¼ t1‚ . . . tm
� �

� T such that m = jHj and for every read b on

a path h 2 H‚ b~ti‚ 1 � i � m

Note that each nested read r in R is removed in Trapnell et al. (2010) by extending the reads that r is

nested in. On the other hand, if there are uncertain reads in R, Algorithm 1 may generate some isoforms that

do not correspond to any paths on the OG when these uncertain reads cover some unique splicing junctions

as shown in Figure 1 (left). The following theorem states the relationship between maximal paths on the

OG and the isoforms generated by Algorithm 1 when uncertain reads are present in R.

Theorem 2. Suppose that no reads in R are nested and denote the set of isoforms constructed by

Algorithm 1 as T. For every maximal path h on the OG constructed by removing uncertain reads in R, T

contains an isoform which is compatible with every read on the path h.

Proof. The proof is similar to the proof of Lemma 3. Let t = OR(h) and 1p l1 < l2 < � � � < lmp n

be indices in t such that ti = 1 iff and only if i 2 fl1‚ l2‚ . . . ‚ lmg. Let Rt be the set of reads corresponding to

path h. By Lemma 2, there is a maximal path h0 on the CG such that every read b 2 Rt is compatible with h0.
Denote the isoform corresponding to h0 as t0. Therefore, t0 2 T after the Enumeration phase of Algorithm 1

and b* t0.
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Let Rt0 ¼ fb 2 Rjb~t0g. For any b 2 Rt‚ b~t and thus we have b* t0 and Rt � Rt0 . Furthermore,

t00 ¼OR(Rt0 ) would be in T after the Filtration phase of Algorithm 1 and t† is compatible with every read in Rt.

During the Condensation phase of Algorithm 1, if t† is not removed, the theorem holds. Otherwise, there

must be another t000 2 T such that all reads compatible with t† are also compatible with t0†. In other words,

all reads in Rt would be compatible with t0†. -

2.3. The LASSO approach of estimating isoform expression levels

2.3.1. The mathematical model of RNA-Seq. Typical alternative splicing (AS) events include al-

ternative 50 (or 30) splice sites, exon skipping, intron retention, and mutually exclusive exons, but all these

events can be dealt with in a unified mathematical model where a gene is partitioned into a sequence of

expressed segments (or simply segments) based on exon-intron boundaries (Feng et al., 2010). More

precisely, a gene is divided into a set of segments such that every segment is a continuous region in the

reference genome uninterrupted by exon-intron boundaries. Then, a given set of candidate isoforms

T ¼ft1‚ t2‚ . . . ‚ tNg for a gene can be represented as a binary matrix A¼ (aij)N · M , where M is the number

of segments of the gene. Each isoform corresponds to a row in this matrix such that aij = 1 if isoform ti

includes the jth segment, and 0 otherwise.

If we assume that a read is uniformly sampled from expressed isoforms, then the number of reads falling

into each segment follows a binomial distribution, which can be approximated by a Poisson distribution

( Jiang and Wong, 2009) or Gaussian distribution (Feng et al., 2010) if the number of sequenced reads is

large and the length of segments is small compared with the length of the reference genome. As a result, the

expected number of reads falling into the ith segment, ri, follows a poisson distribution whose parameter

between the comma and ‘‘is’’ is proportional to both the segment length li and the sum of the expression

levels of all isoforms containing the ith segment ( Jiang and Wong, 2009; Feng et al., 2010):

ri ~ poisson +
N

j¼ 1

ajixj

 !
(1)

where xj, the expected number of reads per base in isoform tj, represents the expression level of tj. Note that

the expression level of an isoform can also be measured as RPKM, in other words, Reads Per Kilobase of

exon model per Million mapped reads (Mortazavi et al., 2008). If there are totally E mapped reads, then an

isoform tj with expression level xj has an expression level (in RPKM) 109x j /E.

Notice that compared with the traditional multivariate regression model, the intercept is zero since we

expect no read falling into the ith segment, if none of the isoforms contain the segment, or if the expression

levels of these isoforms are all zero.

We observe that the above model simplifies the real situation. Because of the sequencing errors and

repeat sequences in the reference genome, it is sometimes hard to decide whether a read really comes from

a certain gene or exon (i.e., the so-called multi-read problem, which has been studied recently in Pasxaniuc

et al. [2010]). Recent studies on RNA-Seq data also show that the above binomial model of read distri-

bution may be an over-simplification (Li et al., 2010; Richard et al., 2010). Some more complicated

approaches have been proposed instead, such as using generalized Poisson distribution (Srivastava and

Chen, 2010), considering the locality of bases (Li et al., 2010), and applying ‘‘effective length normali-

zation’’ (Richard et al., 2010; Lee et al., 2010). In particular, the ‘‘effective length normalization’’ model can

be easily incorporated in our model, by replacing the segment length li in Equation (1) with the ‘‘effective’’

segment length l0i, where the length is calibrated by considering repeat sequences in the reference genome (Lee

et al., 2010).

2.3.2. The LASSO approach. Given all mapped short reads and candidate isoforms of a gene, the

expression levels X¼ x1‚ . . . xNf g of the candidate isoforms can be estimated by minimizing the following

residual sum of squares:

X� ¼ argmin
X

f (X)¼ +
M

i¼ 1

ri

li

� +
N

j¼ 1

ajixj

 !2

(2)

with respect to the restrictions that xj ‡ 0 for all 1 £ j £ N. However, such an approach may have

several potential problems. For example, for a large value of N and a small value of M, the solution
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is not unique. It is also possible that a large number of estimated expression levels are small non-

zero values which damage the interpretability. To address this latter problem, IsoInfer enumerates

combinations of isoforms and chooses a minimum set of isoforms such that the error

+M

i¼ 1
( ri

li
�+N

j¼ 1
ajixj)

2 is in a specified range. To deal with an exponential number of subsets of

candidate isoforms, IsoInfer has to adopt several heuristics to make the algorithm practical. Also,

some ‘‘shrinkage’’ methods which restrict the scale of X can be used, like ridge regression (Hoerl

and Kennard, 1970), LASSO (or its variations like LARS (Efron et al., 2004), and elastic-net (Zou

and Hastie, 2005).

To achieve the minimization of interpretation without going through the exhaustive enumeration step in

IsoInfer, we propose a new algorithm, called IsoLasso, based on LASSO. The LASSO approach minimizes

the following objective function which seeks a balance between minimizing the overall error and mini-

mizing the number of expressed isoforms:

f (X)¼ +
M

i¼ 1

ri

li
� +

N

j¼ 1

ajixj

 !2

þ k +
N

j¼ 1

jxjj (3)

The sparsity of variables (i.e., minimizing the number of isoforms with non-zero expression levels), is

obtained through the addition of an L1 normalization term, k+N

j¼ 1
jxjj, to the original sum of squares. Since

the expression level of each isoform should be non-negative, the above objective function leads to the

following quadratic programming (QP) problem:

min f (X) ¼ +
M

i¼ 1

ri

li

� +
N

j¼ 1

ajixj

 !2

þ k +
N

j¼ 1

xj

s:t: xj � 0‚ 1 � j � N

(4)

which is equivalent to the following ‘‘constrained form’’ (Tibshirani, 1996):

min f (X) ¼ +
M

i¼ 1

ri

li
� +

N

j¼ 1

ajixj

 !2

s:t: xj � 0‚ 1 � j � N

+
N

j¼ 1

xj � c

(5)

The parameter k (or c) controls the number of isoforms with non-zero expression levels in the

solution. In the constrained form of LASSO (Equation (5)), a larger value of c will exert less

restriction on the values of X, which prefer a smaller sum of squares but more non-zero expression

levels. In practice, a proper value of c is selected via the ‘‘regularization path’’ (Park and Hastie,

2007), where several values of c‚ c1‚ . . . ck, are examined. If the values of the objective function in

Equation (5) and the number of non-zero variables are e1‚ . . . ek and L1‚ . . . Lk, respectively, in these

trials, then we define

i� ¼ argmin
1�i�k

fLi : ei � b �minfe1‚ . . . ekgg (6)

and select c¼ ci� , where b is a user-controlled parameter.

2.4. Completeness requirement

To ensure completeness, i.e., each segments (or junction) with mapped reads covered by at least one

isoform, the sum of expression levels of all isoforms that contain this segment (or junction) should be

strictly positive. Formally, we add additional constraints to the above QP:
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min f (X)¼ +
M

i¼ 1

ri

li
� +

N

j¼ 1

ajixj

 !2

(7)

s:t: xj � 0‚ 1 � j � N

+
N

j¼ 1

xj � k

+
N

j¼ 1

xjaji � p‚ if segment i has mapped reads (8)

+
N

j¼ 1

xjajiajk

Yk� 1

h¼ iþ 1

(1� ajh) � p‚ if the junction between segments i and k contains mapped reads (9)

where p is a small positive threshold value to be decided empirically. The constraints (Equation (8) and

Equation (9)) will ensure that all segments and junctions with mapped reads be covered by isoforms with

positive expression levels in the solution of this QP.

The above QP problem can be solved by any standard QP solver, such as the ‘‘quadprog’’ function in

Matlab (The Mathworks, 2004). In practice, however, if a gene contains too many segments and junctions,

then there will be a large number of constraints involved, which make the above QP impractical to solve.

As a compromise, we introduce the above constraints only for segments (or junctions) with expression

levels above a certain threshold.

3. EXPERIMENTAL RESULTS

3.1. Simulated mouse RNA-Seq data

We use UCSC mm9 gene annotation to generate simulated single-end and paired-end reads. An in silico

RNA-Seq data generator, Flux Simulator (Sammeth et al., 2010), is used to generate simulated reads. Flux

Simulator first randomly assigns an expression level to every isoform in the annotation, and then simulates

the library preparation process in a typical RNA-Seq experiment (including reverse transcription, frag-

mentation, and size selection). After that, reads are generated in the sequencing step. Various error models

can be incorporated in these steps; but in our simulations, only error-free reads are simulated to compare the

performance of different algorithms in the ideal situation.

The distribution of the expression levels of all 49409 isoforms in the UCSC mm9 gene annotation is

plotted in Figure 2A.
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FIG. 2. The distribution of simulated isoform expression levels (A), and the expression level estimation accuracies of

IsoLasso (B), IsoInfer without TSS/PAS (C), Cufflinks (D), and Scripture (E). Note that Scripture computes a

‘‘weighted score’’ instead of RPKM value for each predicted isoform.
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3.1.1. Matching criteria. All assembled isoforms (referred to as ‘‘candidate isoforms’’) are matched

against all known isoforms in the annotation (referred to as ‘‘benchmark isoforms’’). Two isoforms match

iff:

1. They include the same set of exons; and

2. All internal boundary coordinates (i.e., all the exon coordinates except the beginning of the first exon

and the end of the last exon) are identical.

Two single-exon isoforms match iff the overlapping area occupies at least 50% the length of each isoform.

Following (Feng et al., 2010), we use sensitivity, precision and effective sensitivity to evaluate the

performance of different programs. Sensitivity and precision are defined as follows: if K out of M

benchmark isoforms match K0 out of N candidate isoforms, then

sensitivity¼K=M (10)

precision¼K 0=N (11)

Note that several candidate isoforms may match the same benchmark isoform.

Effective sensitivity is calculated based on the isoforms satisfying Condition I defined in Feng et al.

(2010). Isoforms satisfying Condition I are those with all segment junctions covered by at least one short

read. If there are S benchmark isoforms satisfying Condition I and K of them are matched, then

effective sensitivity¼K=S (12)

Intuitively, isoforms satisfying Condition I are those that are relatively easy to predict, since all their

segment junctions are covered by short reads. It is shown in Feng et al. (2010) that an isoform with a higher

expression level is more likely to satisfy this condition.

3.2. Comparisons between IsoLasso, IsoInfer, Cufflinks, and Scripture

3.2.1. Sensitivity, precision, and effective sensitivity. In this section, we use the sensitivity, pre-

cision and effective sensitivity defined above to compare IsoLasso with the most recent versions of IsoInfer

(version V0.9.1, downloaded from www.cs.ucr.edu/*jianxing/IsoInfer.html), Cufflinks (version 0.9.1,

downloaded from website http://cufflinks.cbcb.umd.edu), and Scripture (beta version, downloaded from

www.broadinstitute.org/software/scripture/home). We use TopHat (Trapnell et al., 2009) to map all sim-

ulated short reads with multi-reads discarded. Then, the read mapping information serves as the input for all

four programs. Since IsoInfer is based on the assumption that the boundaries of all genes and exons are

known, we infer exon boundaries from mapped junction reads using TopHat and infer gene boundaries by

clustering overlapping mapped reads. Note that IsoInfer is actually designed to take advantage of any

known transcription start site and poly-A site (TSS/PAS) information, although it also works without such

information. Since the other three programs do not use the TSS/PAS information, neither does IsoInfer use

such information in the comparison.

Figures 3 and 4 plot the sensitivity, precision, and effective sensitivity using various numbers of single-

end and paired-end reads, respectively. On single-end reads, all transcriptome assembly tools achieve a

higher sensitivity and precision as more reads are used for the assembly. Among them, IsoLasso outper-

forms all other programs with respect to all three criteria. This is perhaps because IsoLasso is able to
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FIG. 3. Sensitivity (left), precision (middle), and effective sensitivity (right) on single-end reads.
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maintain a good interpretation by filtering out many lowly expressed false predictions (which leads to a

high precision), while keeping highly expressed isoforms and a high effective sensitivity. Scripture seems

to benefit the most when more reads are available. Also, IsoInfer exhibits a sharp increase in precision from

less than 20% to more than 50%, at the cost of decreased effective sensitivity (by about 10%).

On paired-end reads, IsoLasso also achieves the best precision and sensitivity as well as a good balance

between precision and effective sensitivity. However, it is surprising to see that when the number of paired-

end reads increases from 20M to 100M, a less than 10% increase in sensitivity and precision is observed for

all the algorithms. Also, none of the algorithms have a significant increase in effective sensitivity. In fact,

both Cufflinks and IsoInfer see their effective sensitivities decreased a bit when more single-end and

paired-end reads are used. This is because more benchmark isoforms would satisfy Condition I of Feng et

al. (2010) as the sequencing depth increases. In this case, more isoforms are expected to be expressed for

each gene, which result in a more complicated overlap graph for Cufflinks and a larger search space for

IsoInfer.

Cufflinks reaches a high precision by filtering out many lowly expressed isoforms, but this sacrifices the

effective sensitivity. On the other hand, Scripture achieves the highest effective sensitivity by enumerating

all possible paths in the connectivity graph, but its precision is low since many of the paths are false

positives.

3.2.2. Expression level estimation. All programs estimate the expression levels of predicted iso-

forms using different measures. Both IsoLasso and IsoInfer estimate expression levels in RPKM (Mor-

tazavi et al., 2008), while Cufflinks uses the term FPKM (expected number of Fragments Per Kilobase of

transcript sequence per Millions base pairs sequenced) (Trapnell et al., 2010). Scripture does not predict

expression levels directly; instead, it computes a ‘‘weighted score’’ for each isoform to indicate how likely

the isoform is expressed.

Figure 2B–E plots the predicted and true expression levels for all predicted isoforms which are matched

to the benchmark isoforms and have expression levels > 1 RPKM, using the 80M paired-end read dataset.

The plots show that IsoLasso, IsoInfer and Cufflinks estimate expression levels quite accurately (the

squared correlation coefficient between the predicted and true expression levels is R2 > 0.89), while the

‘‘weighted score’’ of Scripture does not directly reflect the true expression level of isoforms (R2 = 0.50).

Cufflinks shows the highest prediction accuracy in expression level estimation (R2 = 0.91) partly because it

uses an accurate iterative statistical model to estimate the expression levels (Trapnell et al., 2010), which

could potentially be incorporated into our method as a refinement step.

3.2.3. More isoforms, more difficult to predict. Intuitively, genes with more isoforms are more

difficult to predict. We group all the genes by their numbers of isoforms, and calculate the sensitivity and

effective sensitivity of the algorithms on genes with a certain number of isoforms as shown in Figure 5

(middle and right). Figure 5 (left) shows the total number of isoforms and isoforms satisfying Condition I

(Feng et al., 2010) grouped by the number of isoforms per gene.

Figure 5 shows that genes with more isoforms are more difficult to predict correctly, as both sensitivity

and effective sensitivity decrease for genes with more isoforms. IsoLasso and Scripture outperform IsoInfer

and Cufflinks in general. IsoLasso has a higher sensitivity and effective sensitivity on genes with at most 5

isoforms, but Scripture catches up with IsoLasso on genes containing more than 5 isoforms.
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FIG. 4. Sensitivity (left), precision (middle), and effective sensitivity (right) on paired-end reads.
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3.2.4. Running time. Figure 6 plots the running time of all four transcript assembly programs using

various numbers of paired-end reads. The time for data preparation is excluded, including mapping reads to

the reference genome and preparing required input files for both IsoLasso and IsoInfer. Surprisingly,

although employing a search algorithm, IsoInfer runs much faster than that of any other algorithm. This is

partly due to the heuristic restrictions that IsoInfer adopts to reduce the search space (e.g., requiring the

candidate isoforms to satisfy Condition I and some other conditions), and the programming languages used

in each tool (IsoInfer, IsoLasso, Scripture, and Cufflinks use C + + , Matlab, Java, and Boost C + + , re-

spectively). All programs are run on a single 2.6-GHz CPU, but Cufflinks allows the user to run on multiple

threads, which may substantially speed up the assembly process.

3.3. Real RNA-Seq data

Reads from two real RNA-Seq experiments are used to evaluate the performance of IsoLasso, Cufflinks

and Scripture. We exclude IsoInfer from the comparison because its algorithm is similar to (and improved

by, as seen from the simulation results) the algorithm of IsoLasso. One RNA-Seq read dataset is generated

from the C2C12 mouse myoblast cell line (NCBI SRA accession number SRR037947 [Trapnell et al.,

2010]), and the other from human embryonic stem cells (Caltech RNA-Seq track from the ENCODE

project [The ENCODE Project Consortium, 2007]; NCBI SRA accession number SRR065504). Both RNA-
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Seq datasets include 70 million and 50 million 75-bp paired-end reads which are mapped to the UCSC mus

musculus (mm9) and homo sapiens (hg19) reference genomes using Tophat (Trapnell et al., 2009), re-

spectively.

Isoforms inferred by programs IsoLasso, Cufflinks, and Scripture are first matched against the known

isoforms from mm9 and hg19 reference genomes. There are a total of 11484 and 12193 known mouse and

human isoforms recovered by at least one program, respectively (Fig. 7A, B). Among these isoforms, 4485

(39%) and 4274 (35%) isoforms are detected by all programs, while 8204 (71%) and 8084 (66%) isoforms

are detected by at least two programs. These numbers show that, although there is a large overlap (more

than 60%) among the known isoforms recovered by these programs, each program also identifies a sub-

stantially large number of ‘‘unique’’ isoforms. Such ‘‘uniqueness’’ of each program is shown more clearly

if we compute the overlap between their predicted isoforms directly (Fig. 7C, D). Each of the three

programs predicts more than 40,000 isoforms on both dataset, but only shares 2–20% isoforms with other

programs. About 49.5% of the mouse isoforms (46% in human) inferred by IsoLasso are also predicted by

at least one of other two programs, which is substantially higher than Cufflinks (27.7% in mouse and 38.4%

in human) and Scripture (4.6% in mouse and 7.4% in human). This may indicate that IsoLasso’s prediction

is more reliable than those of Cufflinks and Scripture since it receives more support from other (inde-

pendent) programs.

Note that among all the isoforms inferred by IsoLasso, Cufflinks, and Scripture, 9741 mouse isoforms

and 11381 human isoforms are predicted by all three programs. These isoforms could be considered as

‘‘high-quality’’ ones. However, fewer than a half of these ‘‘high-quality’’ isoforms (4485 in mouse and

4274 in human) could be matched to the known mouse and human isoforms (Fig. 7A, B). This suggests that

the current genome annotations of both mouse and human are still incomplete. An example of the ‘‘high-

quality’’ isoforms is shown in Figure 7E. Here, an isoform with an alternative 50 end of gene Tmem70 in

mouse is predicted by all three programs but cannot be found in the mm9 RefSeq annotation or GenBank

mRNAs (track not shown in the figure).

4. CONCLUSION

RNA-Seq transcriptome assembly is a challenging computational biology problem that arises from the

development of second generation sequencing. In this article, we proposed three fundamental objectives/

principles in the transcriptome assembly: prediction accuracy, interpretation, and completeness. We also

presented IsoLasso, an algorithm based on the LASSO approach that seeks a balance between these

objectives. Experiments on simulated and real RNA-Seq datasets show that, compared with the existing

transcript assembly tools (IsoInfer, Cufflinks, and Scripture), IsoLasso is efficient and achieves the best

overall performances in terms of sensitivity, precision, and effective sensitivity.

FIG. 7. The numbers of matched known isoforms of mouse (A) and human (B), and the numbers of predicted

isoforms of mouse (C) and human (D), assembled by IsoLasso, Cufflinks and Scripture. (E) An alternative 5† start

isoform of gene Tmem70 in mouse C2C12 myoblast RNA-Seq data (Trapnell et al., 2010). This isoform does not

appear among the known isoforms, but is detected by IsoLasso, Cufflinks, and Scripture. Tracks from top to bottom:

Cufflinks predictions, IsoLasso predictions, Scripture predictions, the read coverage, and the Tmem70 gene in the mm9

RefSeq annotation.
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