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Hepatocyte-like cells derived from the differentiation of human

embryonic stem cells (hES-Hep) have potential to provide

a human relevant in vitro test system in which to evaluate the

carcinogenic hazard of chemicals. In this study, we have

investigated this potential using a panel of 15 chemicals classified

as noncarcinogens, genotoxic carcinogens, and nongenotoxic

carcinogens and measured whole-genome transcriptome responses

with gene expression microarrays. We applied an ANOVA model

that identified 592 genes highly discriminative for the panel of

chemicals. Supervised classification with these genes achieved

a cross-validation accuracy of > 95%. Moreover, the expression of

the response genes in hES-Hep was strongly correlated with that

in human primary hepatocytes cultured in vitro. In order to infer

mechanistic information on the consequences of chemical

exposure in hES-Hep, we developed a computational method

that measures the responses of biochemical pathways to the panel

of treatments and showed that these responses were discriminative

for the three toxicity classes and linked to carcinogenesis through

p53, mitogen-activated protein kinases, and apoptosis pathway

modules. It could further be shown that the discrimination of

toxicity classes was improved when analyzing the microarray data

at the pathway level. In summary, our results demonstrate, for the

first time, the potential of human embryonic stem cell–derived

hepatic cells as an in vitro model for hazard assessment of

chemical carcinogenesis, although it should be noted that more

compounds are needed to test the robustness of the assay.

Key Words: carcinogenicity; systems toxicology; risk

assessment; toxicogenomics; computational biology.

The inherent capacity of human embryonic stem cells

(hESC) to grow indefinitely and to differentiate into all mature

cell types of the body makes them extremely attractive for

toxicity testing and other applications, such as regenerative

medicine, tissue engineering, and drug discovery (Thomson et al.,
1998). Although a few factors still limit the general implementa-

tion of pluripotent stem cells for clinical applications, their

opportunities for use in predictive in vitro assays are immense and

fuel further developments of improved cellular models that may

increase their relevance for the human situation in vivo and reduce

the need of experimental animals in testing of drugs, cosmetics,

and other chemical compounds (Jensen et al., 2009).

To improve the assessment of the carcinogenic hazard (and

ultimately the risk) due to the exposure to chemicals is

a major challenge to public health and customer’s safety. It

has been addressed in Europe within the Registration,

Evaluation, Authorization and Restriction of Chemicals

(REACH) initiative aiming to assess toxicity of an estimated

number of 68,000 chemicals (Hartung and Rovida, 2009).

Until now, the majority of tests are based on in vivo assays, in

particular on the 2-year rodent bioassay for carcinogenicity.

Besides the challenge of replacing animal testing (it has been

estimated that full compliance with REACH legislation for all

endpoints of toxicity will require a grand total of 54 million

vertebrate animals and will cost V9.5 billion over the next

decade), it has been argued that the effects of chemical

exposure differ widely in rodents and humans, and this might

lead to a high number of false positive predictions. For

example, cholesterol-lowering drugs, such as atorvastatin,

fluvastatin, and simvastatin among many other pharmaceuti-

cal agents approved as safe drugs for human use by the FDA,

were classified as rodent carcinogens (Ward, 2008). Thus, it

has been understood that human in vitro assays must be

developed for predicting carcinogenic effects of chemicals in

human more reliably (Vinken et al., 2008).

High-throughput technologies such as microarrays have

opened the way to a systemic understanding of toxicology and
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carcinogenicity (Waters and Fostel, 2004). Such systems

toxicology approaches offer the chance for disclosing valuable

mechanistic information on toxic modes of action of substances

in the assay system under study, which obviously is promising

in view of the urgent need to develop better (in vitro) tests for

chemical safety. Mechanistic approaches require the analysis of

whole-genome data at the pathway level incorporating

knowledge on human interaction networks (Kitano, 2002;

Wierling et al., 2007). Pivotal for such approaches is the

availability of sufficient information on human pathways,

related to cancer initiation and progression, along with

computational approaches that combine results from high-

throughput experiments with biological networks (Bader et al.,
2006; Kamburov et al., 2011).

The liver appears a major target for the effect of carcinogenic

compounds in the rodent 2-year bioassay. Although recent

reports evidenced the suitability of human carcinoma cell lines

for classification of chemicals (Jennen et al., 2010), the

applicability of stem cells for such purpose is still unexplored.

The feasibility of differentiating hESC to hepatic cells (hES-

Hep) using a developmental biology approach (Brolén et al.,
2010) has already been shown. In the present work, we

demonstrate the application of a hESC-derived cell assay for

hazard assessment of carcinogenicity with a panel of 15

chemicals from three different toxicity classes (genotoxic

carcinogens [GTX], nongenotoxic carcinogens [NGTX], and

noncarcinogens [NC]) using Affymetrix microarray measure-

ments before and after chemical treatment of the cells. We

applied an ANOVA model that identified 592 genes highly

discriminative for the assayed chemicals. The expression of

these response genes as well as the expression of Phase I–III

genes derived from hES-Hep is strongly correlated with those

in human primary hepatocytes cultured in vitro demonstrating

the metabolic competence of the system. Supervised classifi-

cation analysis with the response genes, also incorporating

additional data, achieved a cross-validation performance of

> 95%. In order to deduce mechanistic information on the

modes of action of the different compounds in hES-Hep, we

assigned numerical scores based on expression data to 1695

manually annotated human pathways originating from several

pathway resources (Kamburov et al., 2011) that reflect the

response of these pathways to the chemicals. Using this

approach, we were able to identify discriminative pathway

modules, both for individual substances and toxicity classes, in

particular in p53, mitogen-activated protein kinase (MAPK),

and apoptosis pathways. Moreover, it was observed that the

discrimination of the toxicity classes was improved when

shifting from the gene to the pathway level analysis of

microarray data.

To summarize, our results demonstrate, for the first time, the

potential of hESC-derived hepatocyte-like cells as an in vitro
model for hazard assessment of carcinogenicity of chemical

compounds and open a new application domain for stem cell

research in toxicology.

MATERIALS AND METHODS

Cultures of hESC and differentiated hepatocytes. This study was

performed with the commercially available product hES-Hep002 (Cellartis

AB, Göteborg, Sweden, http://www.cellartis.com). The hESC line SA002 was

derived, cultured, and characterized as previously described (Heins et al., 2004,

2006) with an additional step of enzymatic passage for further expansion before

the onset of differentiation. Characterization and start of compound incubation

were performed at day 22 after the start of hepatic differentiation.

Other liver cellular models. RNA from five different human liver cell

models was compared with hES-Hep. HepG2 (HB-8065; American Type

Culture Collection, Manassas, VA), human fetal liver polyA þ RNA (Clontech

Laboratories, Inc.), human adult liver tissue, and nonplated and plated adult

human primary hepatocytes (hpHep). All human adult liver samples were

isolated from two different donors and were obtained as described in Brolén

et al. (2010). The isolated human hepatocytes were split into two aliquots. One

of these was immediately directed into RNA (nonplated hpHep), and the other

one was cultured 48 h in vitro before RNA was isolated (plated hpHep).

Immunocytochemistry. Cells were fixed in 4% (wt/vol) paraformaldehyde

for 15 min at room temperature, washed twice with PBS, blocked with 5% skim

milk in PBS for 30 min, and then incubated with primary antibody at the

appropriate dilution in PBS with 1% bovine serum albumin (BSA) and 0.2%

Triton X-100 at 4�C overnight. After washing with PBS, the secondary

antibody, in PBS with 1% BSA and 0.2% Triton X-100, was applied for 1 h. To

visualize the nucleus, 4#,6-diamidino-2-phenylindole at 0.5 lg/ml was included

during the secondary antibody incubation. The following primary antibodies

were used: rabbit anti-albumin (1:500; Bethyl Lab), mouse anti-a-fetoprotein

(AFP) (1:500; Sigma), mouse anti-cytokeratin (CK18) (1:200; DAKO

Cytomation), rabbit anti-a1-antitrypsine (a1-AT) (1:200; DAKO Cytomation),

rabbit anti-Cyp1A2 (1:100; Biomol), rabbit anti-MRP2 (1:50; Santa Cruz), and

rabbit anti-HNF4a (1:300; Santa Cruz). The following secondary antibodies

were used: Alexa Fluor 488 donkey anti-rabbit (1:1000; Molecular Probes) and

Alexa Fluor 488 donkey anti-mouse (1:1000; Molecular Probes). The cells

were finally mounted with DAKO fluorescent mounting medium and visualized

and captured using a Nikon Eclipse TE2000-U Fluorescence microscope and

Nikon Act-1C for DXM1 200C software.

RNA extraction, reverse transcription, and quantitative PCR. Cells were

isolated in RNAprotect Cell Reagent (Qiagen), and total RNA was extracted

using RNeasy Plus Mini Kit (Qiagen) according to the manufacturer’s

instructions. Reverse transcription was performed using 0.6 lg of total RNA

in a final volume of 20 ll together with reverse transcriptase (Roche

Diagnostics), using a High Capacity cDNA Reverse Transcriptase Kit (Applied

Biosystems) and an Eppendorf Mastercycler Gradient. Each RNA sample was

reverse transcribed in duplicate, and appropriate negative controls were

included in each run. TaqMan real-time quantitative PCR (qPCR) assay-on-

demand primers from Applied Biosystems (ABI) were used for the following

genes: CYP1A2, CYP3A4, CYP2C9, OCT1, OATP2, GSTA1, BCEP, and qPCR

were conducted as previously described by Ek et al. (2007). For validation of

the microarray data, TPD52, TNFAIP3, and PDCD4 were purchased from ABI.

Real-time qPCR was conducted as previously described across the panel of

treatments (Brolén et al., 2010).

Cytochrome P450 activity. Cytochrome P450 (CYP) activity assays were

performed by the direct incubation of hES-Hep (day 22) and human primary

hepatocytes (plated for 48 h) in monolayer cultures with a cocktail of substrates,

each one specific for one CYP enzyme, at following final concentrations: 10lM

7-bupropion, 10lM phenacetin, 10lM diclofenac, 5lM midazolam, and 50lM

mephenytoin. After 16 h at 37�C, the supernatant was collected and metabolites

formed by cells during the incubation were quantified by HPLC-MS/MS as

described in Donato et al. (2010) and Lahoz et al. (2008).

Compound treatment experiments. Samples were generated by incubat-

ing hES-Hep with 15 compounds of three different toxicity classes that were

chosen from a previously defined body of model compounds causing
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genotoxicity and carcinogenicity (Vinken et al., 2008). Genotoxic carcinogens

(GTX) were 2-nitrofluorene (2NF), benzo[a]pyrene (BAP), 4-(methylnitrosa-

mino)-1-(3-pyridyl)-1-butanone (NNK), aflatoxin B1 (AFL), and cyclophos-

phamide monohydrate (CYC); nongenotoxic carcinogens (NGTX) were

methapyrilene hydrochloride (MPH), piperonylbutoxide (PPX), sodium

phenobarbital (SPB), WY-14,643/pirinixic acid (WYE), and tetradecanoyl

phorbol acetate (TPA); NC were sodium diclofenac (DIC), D-mannitol (DMA),

nifedipine (NFE), clonidine hydrochloride (CLO), and tolbutamide (TOL).

Chemicals were obtained from Sigma Chemical Co, Aldrich Chemical

Company. The hES-Hep were incubated with compounds at IC10 concen-

trations for 72 h (Supplementary table 1) and compared with respective control

samples (hES-Hep cultured in media supplemented with 0.5% dimethyl

sulfoxide [DMSO]). Final concentration of DMSO was 0.5% in all cultures and

assays were run in triplicates using three different cell passages.

Determining final exposure concentrations based on the MTT

assay. The cytotoxicity of the 15 compounds investigated was assessed using

the MTT assay (reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide), following the manufacturer’s instructions (Sigma) (Supple-

mentary figure 1A). Dilution series for each of the 15 chemicals were

performed. hESC-derived hepatocyte-like cells cultured in 0.1% gelatin-coated

24-well plates were incubated for 72 h. Incubated cells and controls were

washed in PBS, and the MTT assay was started by adding 0.4 ml per well of

MTT reagent, dissolved in PBS and diluted to 0.5 mg/ml in phenol red–free

media, and incubated for 1 h at 37�C. The supernatants were collected, and the

spectrophotometric absorbance was read at 550 nm. From these absorbance

data, IC10 at 72 h was calculated and determined with the GraphPad Prism 5

software. The MTT curves displayed data from maximum achievable

concentration to zero and were repeated 3–5 times with cells from different

passages for each concentration and for all 15 compounds.

Microarray data generation. Target preparation and microarray hybrid-

ization of the Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were

performed by standard methods as described in Jennen et al. (2010). The arrays

were scanned by means of an Affymetrix GeneArray scanner. Normalization

quality controls, including scaling factors, average intensities, present calls,

background intensities, noise, and raw Q values, were within acceptable limits

for all chips. Hybridization controls, BioB, BioC, BioD, and CreX, were called

present on all chips and yielded the expected increases in intensities.

Gene expression analysis. Raw microarray data was remapped to the

Ensembl version 55 genome build as previously described in Dai et al. (2005).

Data was preprocessed with the GC-RMA method. For each gene in each

exposure experiment, we computed its detection p value indicating the strength

of gene expression and its fold change (log base 2) based on the average values

of the three treatments and the three control experimental replicates. Fold

changes for all chemical treatments were analyzed with a one-way ANOVA

model in order to identify a response gene set that is able to discriminate

between the three compound classes. The significance of variance ratios was

quantified with the F statistic (p value < 0.05). Additionally, we computed

a one-sample Student’s t-test (p value < 0.05) to judge whether the gene’s fold

changes were consistent within the same toxicity class.

Pathway response analysis. As pathway resource, we used the Con-

sensusPathDB (Kamburov et al., 2011; http://cpdb.molgen.mpg.de), a meta-

database that integrates the content of 22 different interaction databases and that

comprises 2144 predefined human pathways, of which 1695 had more than five

members and were used for pathway response analysis. We computed

a response score Sij for each gene i in each treatment experiment j by

Sij ¼
��log2

�
Rij

���3
��log10

�
Pij

���;

where Rij and Pij are the fold change and the p value, respectively, of gene i

when comparing the treatment j microarray replicates against their control

replicates. The score for each pathway is the average score derived from all

scores of genes assigned to the pathway. In order to make the raw pathway

response scores comparable across different treatment experiments, we

computed the log2 ratios of the pathway response scores for a particular

treatment and the median score of that treatment.

Cross-validation analysis. We used supervised classification and follow-up

cross-validation in order to challenge the response gene set with the problem of

classifying chemicals according to the toxicity classes. The analysis was done

with a support vector machine with a linear kernel and a penalty factor of 10. To

assess the misclassification rates, we used the Leaving-One-Out (LOO) method

by removing and subsequent classification of single compound patterns.

RESULTS

Liver Characteristics of hES-Hep

Differentiation of hESC into hepatocyte-like cells was

carried out as described in ‘‘Materials and Methods’’. The

hES-Hep were grown at day 22 after the onset of differentiation

in homogenous cultures in monolayer displaying a typical

hepatic morphology (Fig. 1A) and were positive for important

hepatocyte markers and liver-related proteins. For example, a1-
AT, AFP, ALB, CK18, and HNF4a were expressed along with

CYP1A2 and visualized by immunocytochemistry (ICC) (Fig. 1B).

Hepatic phase I enzymes (CYP1A2, CYP3A4, and CYP2C9),

phase II enzyme (GSTa1), and phase III transporter proteins

(OCT1, OATP2, and BCEP) were detected on mRNA level by

real-time qPCR (Fig. 1C). Additionally, results from the CYP

activity measurements confirmed the presence of functional

enzymatic activity of the most important hepatic CYP enzymes

(CYP1A2, CYP3A4, CYP2B6, CYP2C9, and CYP2C19; Fig. 1D)

in comparison with hpHep.

Microarray data from untreated hES-Hep gave insights into

the transcriptome of the cells. Remapping of oligoprobes

yielded 18,394 Ensembl-annotated genes with sufficient

uniquely mapped probe sequences. Of these, 8745 genes

(47.54%) were found expressed in hES-Hep (detection p value

< 0.01). In addition, 2976 genes were expressed at a lower

level (detection p value between 0.01 and 0.1). The actual

number of expressed genes in hES-Hep relates to published

estimates of gene expression in human hepatocytes found

with other technologies. For example, 7475 genes were

previously found expressed in human hepatocytes on the basis

of public expressed sequence tag data (Huang et al., 2007).

Among the expressed genes, we found hepatocyte markers

such as CD44, TM4SF1, DPP4, SERPINA1/a1-AT, ALB, TF,

FOXA2, CYP3A5, HNF4a, CYP1A1, AFP, ABCC2, SER-
PINA7, GSTA1, KRT19, CYP3A4, and CYP2B6. Several

markers that were tested for hepatocyte-like characteristics of

the cells were not detected with microarrays including SLCO1B1,

CYP2C9, ADH1C, CYP1A2, SLC22A1, CYP3A7, ABCB4, TAT,

and CYP7A1 (Fig. 1E). These genes were either not expressed in

the cells, expressed at a level below the detection limit of

microarrays, or were not annotated after remapping of the

oligoprobes. For example, cytokeratin 18 (CK18) is a hepatic

marker that was clearly visible in the ICC screens (cf. Fig. 1B)

but was excluded from microarray annotation because of absence

of uniquely mappable oligoprobes.
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FIG. 1. Hepatocyte-like characteristics of hES-Hep. (A) Phase contrast microscopy demonstrating the typical hES-Hep morphology after 22 days of differentiation.

(B) Cells were positive for hepatocyte markers, such as a1-AT, AFP, albumin, CK18, HNF4a, and CYP1A2. (C) qPCR gene expression of hES-Hep show an expression

of CYP1A2, CYP3A4, CYP2C9, OCT1, OATP2, GSTA1, and BCEP in comparison with HepG2 and undifferentiated hESC. Y-axis shows log2 values relative to HepG2

and hESC (n ¼ 4). (D) CYP activity of CYP1A2, CYP3A4, CYP2C9, CYP2C19, and CYP2B6 further supporting that these cells are hepatocyte-like. Y-axis scale is

Pmoles total log2 (n ¼ 3). hpHep ¼ human primary hepatocytes cultured for 48 h. (E) Significance of gene expression of hepatic markers in untreated hES-Hep. Y-axis

displays the negative log10 of the detection p values of the gene expression signals. Horizontal lines indicate the 0.1 (orange) and 0.01 (red) detection levels.
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Furthermore, we used Gene Ontology annotation (GO;

Ashburner et al., 2000) in order to characterize the functional

content of the gene expression in hES-Hep. Interestingly, 4148

(47%) of the expressed genes were associated with ‘‘metabolic

processes’’ underlining the high level of metabolic competence

of the cells. Closer investigation of the genes associated with

drug metabolism yielded gene expression of important phase

I, II, and III genes (Supplementary table 2). Although there was

fairly consistent expression of phase II and III genes across the

panel of treatments, higher variability was observed in

cytochrome P450 enzyme expression in particular with the

CYP2 family, which is known as a heterogeneous group of

enzymes with highly variable substrate specificities (Nelson

et al., 1996).

Identification and Characterization of Response Genes

The study design of chemical treatments with the hES-Hep is

described in Supplementary figure 1B. We used an ANOVA

model (‘‘Materials and Methods’’) that identified 592 response

genes with significant variation among the three toxicity classes

(F test p value < 0.05; Supplementary table 3). These genes

achieved a high level of discrimination according to the three

toxicity classes (Fig. 2A). The major proportion of response

genes was associated with metabolic processes (234 of 592). A

GO characterization is visualized in Supplementary figure 2.

In order to functionally interpret the gene response, we

performed overrepresentation analysis using the Consensus-

PathDB. Eleven pathways were found overrepresented (Fisher

test p value < 0.05; Table 1) monitoring a significant

genotoxic response in particular with ATM and p53 pathway

modules. This result suggests that the selected gene set

contains a large proportion of genes that act in the interplay

of DNA damage response, p53 signaling, and apoptosis.

Selective validation of microarray results was performed with

qPCR as is shown for PDCD4 (Fig. 2B), TNFAIP3 (Fig. 2C),

and TPD52 (Fig. 2D). These genes are involved in

pathological apoptotic processes in human and were signif-

icantly altered in genotoxic treatments in qPCR as well as

microarray experiments (Fig. 2E). For example, downregula-

tion of the tumor suppressor PDCD4 on the protein level and

its pro-apoptotic effects for TGF-b1-induced apoptosis has

been shown previously in human hepatocellular carcinoma

(Zhang et al., 2006).

The ultimate purpose of the response gene set is to

discriminate chemicals capable of triggering carcinogenesis

in vivo; thus, it is particularly important to analyze the response

of tumor suppressor genes and oncogenes because in vivo
carcinogenesis is a complex process that is driven by tight

interactions between oncogene activation, tumor suppressor

inactivation, and the cell death machinery (Zhivotovsky and

Orrenius, 2010). Among the 592 genes, we found eight tumor

suppressors (PDCD4, BCL2, SMAD3, FHIT, ATM, TCHP,

ITGB5, and RPL10) and five oncogenes (RAB17, RRAS, FAS,

MDM2, and GNA15). Mechanisms relating to these genes have

been shown previously in the literature, for example, the

activation of MDM2 by the downregulation of the tumor

suppressor FHIT (Schlott et al., 1999). Downregulation of FHIT
and upregulation of MDM2 was observable in four of the five

genotoxic treatments (AFL, BAP, NNK, and CYC), whereas

such effects were much weaker or not visible with the

nongenotoxic and noncarcinogenic treatments. These findings

are consistent with recent results from rodent studies, for

example, from primary rat hepatocytes (Mathijs et al., 2009),

where Mdm2 has also been prominently identified as discrim-

inating between genotoxic and nongenotoxic compounds.

Performance of hES-Hep as a Hazard Assessment Assay

In order to test the potential of hES-Hep for classifying

carcinogenic substances, we applied supervised classification

with a support vector machine approach and compared

performance of the response gene set (N ¼ 592) with the

genome-wide approach (N ¼ 18,394). Misclassification rates

were computed with a cross-validation procedure (LOO).

Additional data was introduced using the same 15 treatments at

a lower time point (IC10 at 24 h, see ‘‘Materials and

Methods’’) and a subset of nine of the compounds also with

lower concentrations (50% of the IC10 at 24 h and 72 h). The

misclassification rate using all data (in total, 15 þ 15 þ 9 þ 9

¼ 48 experiments) was 6.25% with whole-genome data and

dropped to 4.17% with the response genes as readouts

(Table 2).

Comparison of Response Gene Expression in hES-Hep and
Other Liver Cellular Models

We compared the expression patterns of the 592 response

genes with Affymetrix microarray data on other liver-like

cellular models. Pearson correlation of the gene expression in

hES-Hep was 0.88 as compared with plated primary human

hepatocytes, 0.83 as compared with HepG2 cells, 0.80 as

compared with human fetal liver, 0.79 as compared with human

adult liver, and 0.76 as compared with nonplated primary human

hepatocytes (Table 3A). The result points to the fact that the

expression of the response genes in hES-Hep highly resembled

human hepatic cell systems and was also similar to HepG2 that

is a widely used in vitro hazard assessment system. Moreover,

correlation of hES-Hep to the other liver systems was even

slightly higher than that of HepG2 in all cases. Furthermore, we

computed correlation of gene expression of 78 selected Phase

I, II, and III genes (cf. Supplementary table 2) and found

a significant correlation of hES-Hep with primary plated

hepatocytes (0.71) and HepG2 (0.79, plots not shown).

Additionally, we have examined whether the expression

signals of the response genes in hES-Hep upon carcinogenic

treatments (GTX and NGTX compounds) resemble expression

patterns in human liver cancer and incorporated publicly

available data (GSE29722) on 10 human liver tumors

(Stefanska et al., 2011). The correlation of expression patterns

with human liver tumor data was 0.80 for the GTX treatments
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FIG. 2. Response genes. (A) Principal component analysis (PCA) with the 592 response genes. Different compound classes are indicated by colors (red ¼
genotoxic carcinogens (GTX), blue ¼ nongenotoxic carcinogens (NGTX), and green ¼ noncarcinogens (NC)). The two principal components explain 66.2% of the

variance (PC1: 56.58%; PC2: 9.595%). PCA was generated with the J-Express 2009 software (MolMine AS, Bergen, Norway). qPCR validation of (B) PDCD4,

(C) TNFAIP3, and (D) TPD52 compared with microarray measurements across the panel of substance treatments. Y-axis displays the log2 ratios in treatment

versus control experiments of qPCR (red bars) and microarrays (blue bars). (E) Scatter plot of all 45 log2 ratios. Treatments are displayed with colors (red ¼ GTX,

blue ¼ NGTX, and green ¼ NC); individual genes are displayed with different shapes (square ¼ PDCD4, triangle ¼ TNFAIP3, and circle ¼ TPD52).

hESC TECHNOLOGY FOR PREDICTING CARCINOGENICITY 283



and 0.82 for the NGTX treatments, with fairly consistent values

for the individual treatments (Table 3B).

Pathway Responses to Chemical Treatments in hES-Hep

We further aimed to quantify the response of hES-Hep to

chemical treatments at the pathway level (‘‘Materials and

Methods’’) using preannotated pathways with at least five

members that were measurable with microarray oligoprobes

(1695 of 2144). Global pathway response was highly variable

among the 15 treatments. Seven substances induced a strong

overall response with respect to many of the 1695 pathways

(CYC, CLO, MPH, TOL, BAP, NNK, and TPA), whereas the

remaining substances induced a far lower response (data not

shown). In order to make the pathway response scores

comparable among the different treatments, we divided for

each chemical treatment the scores by the median pathway

score (see ‘‘Materials and Methods’’). Interpretation at the

pathway level can be driven toward several directions. Firstly,

we observed pathway responses distinguishing carcinogenic

(either GTX or NGTX) from noncarcinogenic treatments, for

example, modules from the apoptosis (Student’s t-test p ¼
0.0076) and MAPK (p ¼ 0.0003) signaling pathways (Fig.

3A). This finding correlates with published results for

genotoxic compounds, for example, for BAP (Chen et al.,
2003). Highest response to MAPK signaling among the NGTX

treatments was observed for WYE, a PPAR-a ligand that is

prototypical for peroxisome proliferators. It has been shown in

primary rat hepatocyte cultures that carcinogenic effects on

proliferation and apoptosis of peroxisome proliferators require

p38 MAP kinase activity (Cosulich et al., 2000), although there

is an ongoing debate whether the carcinogenic effects of

peroxisome proliferators via PPAR-a extrapolate from the

rodent to the human system (Peters, 2008).

Secondly, pathway analysis enables to distinguish low-

responding and high-responding pathway modules for each

toxicity class. High pathway responses among the GTX

treatments were observed for p53 and apoptosis pathway

modules, whereas NGTX treatments exerted their effects

mainly through PI3K/AKT, PPAR, and MAPK signaling

(Fig. 3B). NC treatment responses were less specific. In order

to identify pathways that appear consistently affected by the

different toxicity classes, we computed for each toxicity class

and each pathway the coefficient of variance (CV) among the

compound pathway response scores. Because we were only

interested in responding pathways, we preselected pathways

with a positive average relative score meaning that the

pathway’s response score is higher compared with the median

pathway score on average. With that procedure, we identified

72 pathways ‘‘consistently affected’’ (CV < 0.5) by GTX

compounds, 45 pathways ‘‘consistently affected’’ by NGTX

compounds, and 35 by NC compounds. Among these,

‘‘consistently affected’’ NGTX pathways were, for example,

PPAR signaling (CV ¼ 0.383), glycolysis (CV ¼ 0.258), and

mTOR signaling (CV ¼ 0.309) pointing to important human

in vivo processes of carcinogenesis. An illustrative example of

the gene-wise contributions to the pathway scoring is given

with the PPAR signaling pathway (Fig. 3C).

Thirdly, extrapolating gene expression information to the

pathway level improved the discrimination of the toxicity

classes. We have performed a similar ANOVA approach as for

TABLE 2

Cross-Validation Performance

Experiments n

Whole genome

(N ¼ 18,394)

Response genes

(N ¼ 592)

Misclassification

rate ±

Misclassification

rate ±

24-h exposure 24 20.83 8.47 20.83 8.47

72-h exposure 24 20.83 8.47 4.17 4.17

IC 10/2 concentration 18 27.78 1.86 16.67 9.04

IC 10 concentration 30 26.67 8.21 1.33 6.31

All experiments 48 6.25 3.53 4.17 2.92

TABLE 1

Overrepresentation of Pathways with Respect to the 592 Response Genes

Pathway

Genes in

pathway

Overlap with

response genes p Value (Fisher) Source database Response genes in pathway

Wnt lrp6 signaling 7 (7) 3 0.00349 BioCarta DKK1, FZD1, WNT8A

ATM signaling pathway 20 (18) 4 0.00991 BioCarta ATM, GA45A, MDM2, P73

Hop pathway in cardiac development 4 (4) 2 0.0134 BioCarta NKX25, SRF
Aurora A signaling 33 (31) 5 0.0161 PID GA45A, MDM2, MPIP2, OAZ1, RASA1

Stabilization of p53 5 (5) 2 0.0215 Reactome ATM, MDM2

Glycogen breakdown (glycogenolysis) 14 (14) 3 0.0281 Reactome GDE, PHKG1, PHKG2
Cysteine biosynthesis II 7 (6) 2 0.0313 HumanCyc SERA, SERB

CREB phosphorylation 7 (7) 2 0.0424 Reactome KS6A3, KS6A5

p53 signaling pathway 69 (68) 7 0.047 KEGG ATM, GA45A, MDM2, P73, PPM1D,

SESN1, TNR6
Branched-chain amino acid catabolism 18 (17) 3 0.0471 Reactome AUHM, HIBCH, ODBB

p53 signaling pathway 17 (17) 3 0.0471 BioCarta BCL2, GA45A, MDM2

284 YILDIRIMMAN ET AL.



gene expression patterns with the pathway response patterns and

were able to achieve a complete separation of the 15 compounds

into 3 distinct groups with a subset of 37 pathways (Fig. 3D).

Compared with the grouping achieved on the gene level (cf.

Fig. 2A), the pathway level shows an increase in performance.

Genotoxic Responses in hES-Hep—Benzo[a]pyrene Case Study

Because we measured a strong overall signal from cancer-

related pathways (see above), we were interested whether the

hES-Hep system reproduces genotoxic responses known from

(rodent) in vivo studies and investigated exemplary the effects

of BAP treatment, which is one of the best studied genotoxic

carcinogens. BAP is of particular interest because it requires

metabolic transformation for exerting its genotoxic effects

through BAP diolepoxide by several cytochrome P450

enzymes and, thus, challenges the metabolic competence of

the cell system. Upon BAP treatment, we observed upregula-

tion of cytochrome P450 enzymes CYP1A1 (p ¼ 0.006, fold

change ¼ 3.57) and CYP1B1 (p ¼ 0.0004, fold change ¼ 6.30)

judging the three BAP treatment and control replicates with

Student’s t-test. CYP1A1 and CYP1B1 display similar catalytic

activities in converting B[a]P-7,8-dihydrodiol to mutagenic

metabolites (Chen et al., 2003). Upregulation of these CYPs is

through binding of BAP to AHR, a ligand-activated nuclear

transcription factor (Hockley et al., 2007; Nebert et al., 2004).

AHR was also found upregulated in hES-Hep (p ¼ 0.002, fold

change ¼ 1.93). In total, 673 genes were differentially

regulated upon BAP treatment (p value < 0.01). These genes

monitored carcinogenic response at the interplay of apoptosis

(IRAK1/2, BIRC3, FAS, PIK3R2, TNFRSF10D, and IL1B), p53

signaling (FAS, NOXA, RRM2B, PPM1D, DDB2, SESN1/2,
PIDD, YWAS, GADD45A, and RIR2B), and DNA damage

pathways.

At the pathway level (cf. previous section), the highest

response scores to BAP exposure were observed for modules

of the apoptosis pathway in particular its induction by FAS
ligand and caspase activation (CASP8). Fourteen pathways had

a highly elevated pathway score, seven of which were

associated with apoptosis (Supplementary table 4). This strong

apoptotic response in the human cells reproduced previous

findings, for example, in rat liver epithelial cell lines (Huc

et al., 2006). Furthermore, we performed Student’s t-test with

the pathway response scores and compared all carcinogenic

treatments (GTX and NGTX) with the noncarcinogenic

treatments (NC). It can be seen in Supplementary table 4 that

the apoptotic response observed in BAP-treated cells was fairly

stable among other carcinogenic treatments as well, for

example, for ‘‘FasL/CD95L signaling’’ (p ¼ 0.085), ‘‘sodd/

tnfr1 signaling pathway’’ (p ¼ 0.045), and ‘‘death receptor

signaling’’ (p ¼ 0.054).

DISCUSSION

In this study, we have used an in vitro model based on hESC

differentiated to hepatocyte-like cells (hES-Hep). It has been

previously published by us and others that such cells show

similarities as well as differences, depending on the differen-

tiation protocol, compared with HepG2 and different fetal and

adult liver samples. hES-Hep were studied at day 22 after onset

of differentiation when the cells show an attractive hepatic

TABLE 3

Correlation of Expression Patterns of Response Genes in Liver-Like Systems

A

hES-Hep Adult liver Fetal liver HepG2 Nonplated PHH Plated PHH

hES-Hep 1 0.7866 0.8049 0.8300 0.7648 0.8790

Adult liver 0.7866 1 0.8967 0.7493 0.9796 0.9084

Fetal liver 0.8049 0.8967 1 0.7910 0.8798 0.8728

HepG2 0.8300 0.7493 0.7910 1 0.7524 0.8442

Nonplated PHH 0.7648 0.9796 0.8798 0.7524 1 0.9028

Plated PHH 0.8790 0.9084 0.8728 0.8442 0.9028 1

B

GTX NGTX GSE29722

GTX 1.0000 0.9818 0.8040

NGTX 0.9818 1.0000 0.8237

GSE29722 0.8040 0.8237 1.0000

2NF 0.9867 0.9914 0.8099

AFL 0.9917 0.9823 0.8013

BAP 0.9935 0.9656 0.7924

CYC 0.9771 0.9292 0.7659

NNK 0.9924 0.9832 0.8036

MPH 0.9719 0.9941 0.8167

PPX 0.9748 0.9948 0.8140

SPB 0.9749 0.9950 0.8186

TPE 0.9783 0.9889 0.8137

WYE 0.9750 0.9921 0.8270
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morphology and express many liver markers at gene, protein,

and functional level (Fig. 1). hES-Hep, in general, express

higher levels of CYP expression as compared with HepG2 but

lower levels in comparison with hpHep, however, still

confirming the metabolic competence of the system. An

interesting outcome of this study is that the correlation of

expression of the response genes in hES-Hep is mostly

correlated to that in plated hpHep among the five hepatic cell

models used (Table 3). It is worth mentioning, though, that

these data monitor the expression of hES-Hep in the untreated

state and, thus, give no evidence per se that either of the

models is a valid assay system for carcinogenicity hazard

prediction because each system can respond differently to

chemical treatment.

We challenged the hES-Hep model with a panel of 15

substances from three different toxicity classes. Although these

substances exerted different modes of action and different

strengths of effects, we were able to identify discriminative

classifier sets on the gene (592 genes) and the pathway (37

pathways) levels. In particular, genotoxic substances induced

the largest effects in the cells. We exemplified this with

benzo[a]pyrene, but similar results were obtained with other

GTX compounds. Strong pathway responses were observable

in DNA damage response, p53 signaling, and, in particular,

apoptosis. It is evident that the prediction of nongenotoxic

carcinogenic effects is far more difficult compared with

genotoxic and, thus, that the hES-Hep model, as presumably

most in vitro models, has a prevalence for the identification of

directly acting genotoxins. On the other hand, we observe clear

effects related to the hallmarks of cancer (Hanahan and

Weinberg, 2011) induced by nongenotoxic substances what

emphasizes the usefulness of the cellular model for prediction

of carcinogenicity. Additionally, hierarchical clustering of the

expression matrix derived from the 592 genes and the 15

treatment experiments (Supplementary figure 3A) revealed five

main clusters of genes (Supplementary figure 3B). Among

these, cluster 2 (C2, N ¼ 176) exhibited genes basically

unaffected by GTX treatments and predominantly upregulated

with NC and NGTX substances.

It has been emphasized that toxicity pathways leading to

carcinogenesis in humans are not yet fully characterized

(Cohen, 2010) and inherently different from those in rodents

(Ward, 2008). Carcinogenic effects induced in rodents by

specific compounds might thus not easily been extrapolated

to the human situation leading to a large amount of false

positive predictions. This is particularly true for the class of

nongenotoxic carcinogens that show a diversity of modes of

action, tissue and species specificity, and absence of genotox-

icity what makes predicting their carcinogenic potential

extremely challenging (Hernandez et al., 2009). For example,

FIG. 3. Pathway response analysis. (A) Response scores for apoptosis (top) and MAPK (bottom) pathways distinguishing carcinogenic from noncarcinogenic

treatments (red ¼ GTX, blue ¼ NGTX, and green ¼ NC). Y-axis shows relative response with respect to the median response in the respective treatment

experiment (log2 scale). (B) Response scores for FAS (top) and PPAR (bottom) distinguishing toxicity classes. (C) Illustration of pathway scoring with PPAR

signaling after WYE treatment. 61 genes (x-axis) were measured with microarrays. Bars (y-axis) show the log2 ratio of WYE treatment signals versus controls.

Bars are shadowed according to significance of the fold changes when judging the three replicate measurements (dark ¼ significant). Genes with significant fold

change (p < 0.05) are displayed with an asterisk on top of the bar. The red circles display the gene score that was computed from the fold change and significance

p values as described in ‘‘Materials and Methods.’’ The horizontal lines mark a 1.33 deregulation. (D) PCA derived from 37-pathway response patterns for the

15 substance treatments yields a perfect separation of the toxicity classes. Total variance explained is 69.5% (PC1: 49.9%; PC2: 19.6%).
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WYE and SPB are both compounds with clear carcinogenic

effects in rodents but with no consensus regarding the human

situation. In our pathway analysis, these compounds were

jointly highly responding to the BioCarta pathway ‘‘srebp
control of lipid biosynthesis’’, among others, which potentially

links their expression responses to human cancer. It has been

shown that several steps in lipid synthesis promote tumor

development, for example, through involvement of mTOR

signaling (Hsu and Sabatini, 2008; Laplante and Sabatini, 2009).

Statistical classification is the standard way of judging the

quality of a hazard assessment assay, however, the panel of

substances must be enlarged for such an approach. Although

there is a considerable risk of overfitting the data because of the

small number of compounds, our results serve as a proof of

principle demonstrating that toxicity classes can be discrimi-

nated with the hES-Hep system with high confidence (Table 2).

An alternative to the statistical approach would consist in the

development of discriminative mechanisms based on prese-

lected genes. We have shown evidence that the identified

response gene set exhibits multiple carcinogenic effects and

even increases cross-validation performance compared with the

genome-wide approach.

Furthermore, following-up the discriminating pathways will

stimulate future mechanistic approaches. Pathway scoring

(Fig. 3C) increases the performance of compound discrimination

as can be seen by comparing Figures 2A and 3D. This increase

of performance is effected by the pregrouping of expression

patterns that copes better with the inherent variation of gene

expression measurements and confirms previous similar find-

ings, for example, in the context of disease classification (Lee

et al., 2008). We have shown that different pathway modules

could be associated with individual chemicals and toxicity

classes. These pathway modules were highly discriminative, and

they were linked to carcinogenesis comprising, for example,

apoptosis (p ¼ 0.0065), MAPK (p ¼ 0.0013), and PPAR (p ¼
0.0157) signaling. The role of PPAR signaling for rodent

carcinogenesis is evident due to the fact that PPAR-a activation

leads to increased proliferation, decreased apoptosis, and

activation of reactive oxygen species leading to hepatocellular

carcinoma as a long-term response, whereas in human, this

effect has not been proven so far (Michalik et al., 2004). On the

other hand, non–DNA reactive mechanisms, such as production

of active oxygen species and lipid peroxidation that are

influenced by PPAR signaling, can induce genotoxicity in

humans by secondary effects (Ellinger-Ziegelbauer et al., 2009).

We also checked the consistency of expression of the

response genes within each toxicity class with a one-sample

Student’s t-test. 421 (of 592) genes were identified as

consistently differentially expressed (Supplementary figure 4).

These genes indicate potential mechanisms of carcinogenesis,

for example, FBXW7, a known tumor suppressor whose

activation could be interpreted as a cell protection mechanism,

TAP1 that was related to E2F and the apoptosis pathway in

HepG2 liver cells (Li et al., 2010), TRIAP1 that was related to

p53 signaling (Felix et al., 2009; Park and Nakamura, 2005), or

CXCL10 that was related to prolonged tumor growth delay in

CT26 and 4T1 tumor models (Wang et al., 2010). Furthermore,

301 (of 592) genes were selectively altered within a specific

toxicity class; of these, 153 (51%) were specific for GTX, 60

(20%) for NGTX, and 88 (29%) for NC substances. These

genes build a rich basis for extrapolation of further mechanistic

information and ultimately, a mechanistic response model, for

chemical carcinogenesis in the hES-Hep model.

To summarize, we have demonstrated that hESC technology

has high potential for developing in vitro hazard assessment

assays for carcinogenicity of chemicals as was shown with

three representative toxicity classes. We have quantified and

identified discriminative carcinogenic pathway responses based

on modules of the apoptosis, MAPK, and p53 signaling

pathways that build the basis for a mechanistic understanding

of chemical carcinogenesis. Although the hES-Hep model

needs further refinement and, additional challenges with more

compounds, in order to meet a broader acceptance, this study

paves the way toward use of stem cell–derived liver cells for

toxicity testing. In the future, this may lead to less use of

animal experiments and increased possibilities to avoid

bringing harmful chemicals to the market.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.
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