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Abstract

Background: Bluetongue virus (BTV) protein, VP1, is known to possess an intrinsic polymerase function, unlike rotavirus VP1,
which requires the capsid protein VP2 for its catalytic activity. However, compared with the polymerases of other members
of the Reoviridae family, BTV VP1 has not been characterized in detail.

Methods and Findings: Using an in vitro polymerase assay system, we demonstrated that BTV VP1 could synthesize the ten
dsRNAs simultaneously from BTV core-derived ssRNA templates in a single in vitro reaction as well as genomic dsRNA
segments from rotavirus core-derived ssRNA templates that possess no sequence similarity with BTV. In contrast, dsRNAs
were not synthesized from non-viral ssRNA templates by VP1, unless they were fused with specific BTV sequences. Further,
we showed that synthesis of dsRNAs from capped ssRNA templates was significantly higher than that from uncapped ssRNA
templates and the addition of dinucleotides enhanced activity as long as the last base of the dinucleotide complemented
the 39 -terminal nucleotide of the ssRNA template.

Conclusions: We showed that the polymerase activity was stimulated by two different factors: cap structure, likely due to
allosteric effect, and dinucleotides due to priming. Our results also suggested the possible presence of cis-acting elements
shared by ssRNAs in the members of family Reoviridae.
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Introduction

Viral RNA-dependent RNA polymerases (RdRps) share a

similar catalytic mechanism as well as a similar structure, including

conserved sequence motifs and catalytic residues [1,2,3,4,5].

Despite these similarities, each RdRp has different ways to

recognize RNA templates, initiate RNA synthesis, elongate the

RNA chains and regulate those activities [6,7,8,9]. For segmented,

double-strand RNA (dsRNA) viruses, including Reoviridae family

members, RNA synthesis by RdRp occurs within a capsid and is

capable of reading both single- and double-strand RNAs in

association with other inner viral proteins (polymerase complex) in

the absence of host factors [2,10,11,12,13,14,15,16,17]. It is

believed that this specific feature of dsRNA viruses allows their

RdRps to synthesize ssRNA transcripts (mRNAs) from viral

genomic dsRNA segments and viral genomic dsRNAs from

ssRNA transcripts without exposing their genomic dsRNA to the

host innate immunity sensors [18]. Recently, it was reported that

dsRNAs which were detected outside the rotavirus viroplasm

seemed to activate PKR [19].

Bluetongue virus (BTV), the etiological agent of Bluetongue

disease of livestock, is a member of the Orbivirus genus of the

family Reoviridae. BTV particles have three consecutive layers of

proteins organized into two capsids, an outer capsid of two

proteins (VP2 and VP5) and an inner capsid or ‘‘core’’ composed

of two major proteins, VP7 and VP3 which encloses the three

minor proteins VP1, VP4 and VP6 in addition to the viral

genome. The viral genome is segmented and consists of ten linear

dsRNA molecules, classified from segment 1 to segment 10 in

decreasing order of size (S1-S10) [20,21]. After cell entry, the outer

capsid is removed to release a transcriptionally active core particle,

which provides a compartment within which the ten genome

segments can be repeatedly transcribed by core-associated

enzymes including VP1, VP4 and VP6 [14,15]. Ten mRNAs

are synthesized from the ten genome segments and released from

the core particle into the host cell cytoplasm where they act as

templates both for translation and for negative strand viral RNA

synthesis to generate genomic dsRNAs [14,22]. Previously, we

demonstrated that purified BTV VP1 is active as replicase

synthesizing dsRNA from positive strand ssRNA in vitro in the

absence of any other viral protein [23,24]. However, the catalytic

activity of VP1 was not further characterized.

The crystal structures of RdRp proteins have been reported for

two members of the family, l3 of reovirus and VP1 of rotavirus

[3,4]. Both RdRp showed a similar cage-like structure with four

well-defined tunnels that allow access of the template RNAs,
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nucleotides and divalent cations to the internal catalytic site, as

well as two distinct exit channels for template RNA and products

[25]. Although the crystal structure of BTV VP1 is not known, a

secondary structure-based three-dimensional model of BTV VP1

revealed structural similarity to other Reoviridae polymerases [26].

Despite this structural similarity, BTV VP1 exhibits two distinct

functional features which distinguish it from rotavirus VP1 [24].

Firstly, BTV VP1 exhibits RNA replicase activity in the absence of

all other virus encoded proteins, whereas rotavirus VP1 requires

VP2, which forms the inner layer of the virus particle, for its

activity [27,28,29]. Secondly, our initial study indicated that BTV

VP1 does not require the 39 conserved region for in vitro dsRNA

synthesis, unlike rotavirus VP1, which recognizes the UGUG

tetranucleotide of the 39 end conserved sequence [4,24,29,30,

31,32,33]. Nevertheless, during virus replication all three proteins,

BTV VP1, reovirus l3 and rotavirus VP1, as well as dsRNA

bacteriophage phi 6 RdRp, essentially perform the same function

[3,5,24,34,35,36,37].

The crystal structure of the reovirus l3 and rotavirus VP1 also

showed that there are ‘cap’ binding sites on the surface of the cage-

like structure [3,4], suggesting that the cap appears to be the

primary element by which VP1 docks and recognizes the 59 end of

a plus strand [4,25]. The activity of influenza virus-associated

polymerase, which is well known to have a cap-snatching

mechanism, can be stimulated by cap-1 structures (m7GpppNm)

as well as dinucleotides, such as ApG and GpG [38,39,40,

41,42,43,44,45]. The regulation of transcription by cap structures

was also reported in Bunyaviridae [46]. Unlike dinucleotides, the

cap-1 structure functions as an allosteric regulatory factor, rather

than by priming transcription, with enhanced RNA synthesis by

influenza virus-associated polymerase [40,43,44,45]. Furthermore,

the cell-free system for rotavirus RNA polymerase revealed the

specific priming of minus strand RNA synthesis by a dinucleotide

rather than dinucleoside monophosphate [32], and formation of

the initiation complex with dinucleotide and template, unlike the

RdRp of dsRNA bacteriophage, phi6, which does not require a

primer for initiating dsRNA synthesis but has a ‘‘back-priming’’

initiation mechanism [47,48]. These previous studies strongly

suggest that the cap structure or dinucleotide may have an effect

on the polymerase activity of BTV VP1.

In this study, we investigated the factors that affect BTV VP1 in

vitro catalytic activity including the requirement of RNA sequences

that are recognized by BTV VP1, priming and other co-regulating

factors. We first confirmed the robustness of polymerase activity by

demonstrating that VP1 could synthesize all ten dsRNA segments

from ten individual ssRNA segments in a single reaction. Further,

we showed that in vitro polymerase activity of VP1 is sequence-

independent and could synthesize genomic dsRNAs of the other

orbiviruses or rotaviruses when provided with ssRNA templates of

these heterologous viruses. In contrast, dsRNAs were not

synthesized from non-viral ssRNA templates by VP1, unless those

were fused with some specific BTV sequences, indicating the

presence of cis-acting elements shared by members of the family

Reoviridae. Moreover, our data showed that the activity was

enhanced both in the presence of a cap structure or a dinucleotide;

although their roles appear to be distinct, one appears to be

allosteric while the other is required for priming.

Results

Polymerase activity of BTV VP1 is highly efficient in vitro
BTV VP1 has already been reported to have the ability to

synthesize dsRNA from BTV T7 ssRNA templates [24]. However,

it has not been previously shown that polymerase proteins of any

members of the family Reoviridae can synthesize the complete set of

genomic dsRNA in vitro in a single reaction mixture. Since purified

BTV VP1 alone could synthesize a duplex on a single ssRNA

template, we attempted to assess if VP1 could synthesize all ten

dsRNAs of BTV in a single reaction. Either 1.0 mg of the complete

set of in vitro synthesized ssRNAs from viral cores (core ssRNAs) or

in vitro generated ten ssRNAs from T7 plasmids (T7 ssRNAs)

[49,50], each approximately 0.1 mg, were used as templates

together with approximately 70 ng of purified VP1, significantly

less VP1 than was used previously [24], for in vitro polymerase

assay. Both reactions were carried out at 37uC for 5 h and

dsRNAs were purified from the reaction mixtures. The dsRNA

profiles of each reaction, analyzed by 7% native PAGE gel,

demonstrated clearly that purified VP1 synthesizes all ten dsRNAs

in a single reaction mixture and could utilize efficiently both

authentic core ssRNAs and the T7 ssRNAs (Fig. 1). The amount of

each synthesized segment was not equal. However, when each

single T7 ssRNA template was used for separate reactions, the

dsRNA from each T7 ssRNA was synthesized equally well (data

not shown) [24].

The data also showed that BTV VP1 could efficiently synthesize

all ten dsRNAs in the absence of any other protein, whereas

rotavirus VP1 required VP2 for single dsRNA synthesis,

suggesting that the recombinant BTV VP1 possesses robust

polymerase activity in vitro.

BTV polymerase is capable of synthesizing genomic RNAs
of rotavirus and other members of family Reoviridae

The data above confirms that BTV VP1 is not only functional

on its own and requires no other viral protein but that the activity

is also highly efficient in vitro. Thus, it is possible that VP1 may be

capable of using other related viral ssRNAs as templates. We

selected another member of the Orbivirus genus, African Horse

Sickness virus, AHSV, the genomic RNA segments of which have

Figure 1. Efficient polymerase activity of BTV VP1 in vitro. BTV
core-derived ssRNAs (lane 2), single S8 T7 ssRNA (lane 3) and all ten
segments T7 ssRNAs (lane 4) were used for the in vitro polymerase assay
as described in Materials and Methods and synthesized dsRNA were
analyzed by PAGE. The radiolabeled dsRNAs were detected by
autoradiography using Storage Phospher screen and image analyzer,
Typhoon Trio. The end-labeled BTV1 genome segments were used as
markers (lane 1). Genome segments are indicated.
doi:10.1371/journal.pone.0027702.g001

BTV Polymerase

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e27702



59 and 39 conserved regions similar to those of BTV genomes

(Fig. 2A). For this study, we used the complete set of ssRNAs of

AHSV-4, synthesized in vitro from purified cores, the completeness

of which were confirmed by reverse genetics [51]. In parallel, we

also used several T7 ssRNAs (S4, S5 and S10) of AHSV-4 as

templates for in vitro polymerase assay. Polymerase reactions were

carried out with either the core ssRNA templates or the single T7

ssRNA templates as described above. When purified dsRNAs were

analyzed by 7% native-PAGE gel, dsRNA segments were

detectable from each template (Fig. 2B).

To investigate further if VP1 could synthesize dsRNA on an

ssRNA template of another member of the family, we selected

rotavirus ssRNA templates derived from rotavirus double-layered

particles (DLPs), which are equivalent to BTV cores, in vitro.

Rotavirus DLP ssRNAs (11 segments) were generated in vitro from

purified DLPs of SA11, a strain of simian rotavirus, and again

used as templates as described. Surprisingly, although genome

sequences of rotaviruses are different from those of BTV

serotypes (Fig. 2A), BTV VP1 could indeed synthesize dsRNAs

from each rotavirus DLP ssRNAs (Fig. 2C). Similar results were

obtained when rhesus rotavirus DLP ssRNAs or bovine rotavirus

DLP ssRNAs were used as templates (data not shown). These

results confirmed that the in vitro polymerase activity of BTV VP1

is sequence-independent at least within the family Reoviridae.

Alternatively, viruses belonging to the family Reoviridae may share

some motif or elements in their genomic RNAs, which may be

required for polymerase activity. To verify this further, three non-

viral ssRNAs, a luciferase gene ssRNA (,1800 nucleotides), a

puromycin resistant gene ssRNA (PAC, 609 nucleotides) and an

EGFP gene ssRNA (729 nucleotides) (Fig. 3B) were used as

templates. In addition, one chimeric S9-EGFP gene (S9E 277/

657) (Fig. 3A and B), which was established previously as a

functional segment in vivo [50], was also used as a template. None

of the non-viral ssRNAs could serve as templates to generate

correct duplexes (Fig. 3C, lanes 2–4). However, when the

chimeric S9-EGFP gene, in which BTV RNA sequences were

fused with EGFP RNA, was used as a template, a ‘‘perfect’’

chimeric dsRNA was synthesized similar to the wild-type S9

(Fig. 3C, lanes 5 and 6). These data suggested that some

sequence-based character of BTV segments, such as certain

secondary structure of ssRNA, is necessary for polymerase

activity of BTV. It is possible that other members of the family

may also possess similar characteristics.

Does Cap structure of ssRNA stimulate polymerase
activity?

It is known that a 59 cap structure can regulate viral polymerase

activity as well as stabilize ssRNA [40,43,44,45,46]. Additionally,

the crystal structure of reovirus l3 and rotavirus VP1 revealed that

it has cap-binding sites on the surface of its cage-like structure,

close to the entry channel for template ssRNA [3,4]. Similarly, the

study on rotavirus polymerase VP1 suggests that the cap appears

to be the primary element by which VP1 docks and recognizes the

59 end of a plus strand RNA [4]. Previous work has shown that

T7-derived uncapped BTV ssRNAs could serve as templates for in

vitro polymerase reactions but a role for the cap structure as an

enhancing element was not investigated [24]. Since the positive-

sense RNAs of the BTV genome possess a cap structure at the 59

end, we assessed the role of the cap structure on the polymerase

activity of BTV VP1. Thus, the efficiency of dsRNA synthesis was

compared between capped T7 S9 ssRNA and uncapped T7 S9

ssRNA templates. Several serial dilutions (2-fold and 3-fold) of

both types of templates were used for polymerase assay and the

final dsRNA products were analyzed by native PAGE gel as

described above (Fig. 4, upper panel). The radioactivity of each

dsRNA band was quantified by using ImageJ software as described

in Materials and Methods (Fig. 4, lower panel). The yield of

dsRNAs from capped T7 S9 ssRNAs was higher than that from

uncapped T7 S9 ssRNAs (Fig. 4). No significant difference was

observed between the Km value of capped T7 S9 ssRNA and that

of uncapped T7 S9 ssRNA (6.7861.674 vs 5.7563.287, P.0.05),

suggesting that the presence of cap structure at 59 end did not

affect on the affinity of ssRNA template to VP1. However, the

Vmax value of capped T7 S9 ssRNA was approximately six fold

higher than that of uncapped T7 S9 ssRNA (64.3765.88 vs

11.6262.254, P,0.01), suggesting that the presence of cap

Figure 2. Sequence-independent polymerase activity of BTV VP1. A. Schematic representation of conserved regions at both 59 and 39 end of
rotavirus, AHSV and BTV. B. AHSV-4 core-derived ssRNAs (lane 2) and AHSV-4 T7 ssRNAs (S10, lane 3; S5, lane 4; S4, lane 5) were used as templates.
The radiolabeled dsRNAs were detected by autoradiography. The end-labeled genome segments were used as markers (lane 1). Arrows indicate
synthesized dsRNA. Note that AHSV4 S6 migrates slower than AHSV4 S5. C. Simian rotavirus (SA11) DLP ssRNAs (lane 2) were used as templates. The
end-labeled genome segments of simian rotavirus (SA11) were used as markers (lane 1). Genome segments are indicated.
doi:10.1371/journal.pone.0027702.g002
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structure at 59 end of ssRNA template increased VP1 catalytic

activity. Moreover, dsRNA synthesis was saturated by approxi-

mately 0.5 mg of input ssRNA template, regardless of being

capped or not. In addition, although the amount of ssRNA

decreased after 5 h of reaction, uncapped ssRNA still remained

intact after the reaction (data not shown). These results suggested

that the lower efficiency of dsRNA synthesis from uncapped

ssRNAs was not due to template instability. These results support a

model in which the cap structure of the template influences the

catalytic activity of BTV VP1.

Our previous study using a two-transfection reverse genetics

(RG) system had suggested that the cap structure was not

essential for genome packaging in BTV [50]. To further confirm

the role of cap structure in BTV replication, we repeated the

two-transfection RG schedule using for the first transfection

only the genes that are essential for synthesis of the protein

components of the primary replicase complex (S1, S3, S4, S6,

S8, and S9) [50]. In the second transfection, the complete set of

10 ssRNA, all uncapped, were included as described in

Materials and Methods. The lack of the capped RNA in all

ten segments in the second transfection, which provides the

BTV genome templates, reduced the efficiency of virus recovery

(Fig. 5, column 2). However, lack of a cap structure on only the

T7 S9 ssRNA did not reduce virus recovery (Fig. 5 column 3). It

is noteworthy that the amount of VP4 synthesised by the first

transfection of S4 into BSR cells was negligible and was

incapable to form cap structure efficiently at 59 end of an

uncapped ssRNA [50]. These results indicated that, in addition

to the initiation of translation and stabilization of mRNAs

transcribed from core particles, there might be a role for cap

structures for the enhancement of VP1 activity during assembly

of the primary replication complex.

Stimulation of polymerase activity by the 59cap structure
of template ssRNA is not due to priming or initial
recognition of template but likely due to an allosteric
modulation

To further investigate the precise role of the cap structure in

enhanced VP1 activity we made use of various cap analogues to

determine their effect on dsRNA synthesis. Several types of cap

analogue, 39-O-methyl-m7GpppG (Anti-Reverse Cap Analogue,

ARCA), m7GpppG, GpppG and GpppA were added to a

standard reaction mixture containing 0.5 mg of capped or

uncapped T7 S9 ssRNAs. Interestingly, the dsRNA synthesis

from both capped and uncapped T7 S9 ssRNA was enhanced by

the addition of all cap analogues, with GpppG showing the

greatest enhancement (Fig. 6). Together with the kinetics data

shown above, the fact that the presence of cap analogues did not

compete for VP1 activity suggests that the 59 cap structure of

template ssRNA is not the primary element by which VP1

recognizes ssRNA template but that it acts to enhance the activity.

Moreover, although there is the possibility that the enhancement

of polymerase activity is due to artificial direct priming by the cap

analogues, the fact that addition of the cap analogues enhanced

the activity, together with the in vivo data shown above, suggests

that the 59 cap structure may act to stimulate activity in trans.

T7 polymerase has a sequence preference, such as GpGpGp at

the 59 end of nucleotides [52]. To determine whether the

enhancement of polymerase activity was due to sequence

preference at the 59 end of the template ssRNA, we modified

the T7 S9 ssRNA by adding either guanosine (Gp-S9) or

adenosine (Ap-S9) at the 59 end of T7 S9 ssRNA and tested the

efficiency of the dsRNA synthesis from these templates (Fig. 7,

upper panel). In parallel, unmethylated capped T7 S9 ssRNAs

Figure 3. Requirement of cis-acting element for BTV polymerase activity. A. Schematic representation of modified S9 transcripts [50].
B. ssRNA templates were synthesized using T7 polymerase. Lane 1, ssRNA markers; lane 2, luciferase gene (about 1800 nucleotides); lane 3, PAC gene
(about 609 nucleotides); lane 4, EGFP gene (about 729 nucleotides); lane 5, chimeric S9-EGFP, EGFP277/657, (1389 nucleotides) and lane 6, wild type
BTV10 S9 (1049 nucleotides). The numbers on the left indicate the lengths of the markers in nucleotides. C. dsRNA synthesis from luciferase gene
(lane 2), PAC gene (lane 3), EGFP gene (lane 4) and chimeric S9-EGFP, EGFP277/657, ssRNA template (lane 5) was compared with wild type BTV10 S9
(lane 6). The radiolabeled bands were detected by autoradiography. The arrows indicate the bands with the correct size. The end-labeled BTV1
genome segments were used as markers (lane 1). Genome segments are indicated on the left.
doi:10.1371/journal.pone.0027702.g003
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(Gppp-S9) and methylated capped T7 S9 ssRNAs (39-O-methyl-

m7Gppp-S9) were tested for their effects on the dsRNA synthesis

(Fig. 7, upper panel). The amount of dsRNA synthesized from

each template was compared using quantitative autoradiography

as described in Materials and Methods (Fig. 7, lower panel). The

amount of dsRNA synthesized from Gp-S9 was five times more

than that from uncapped T7 S9 ssRNA whereas the dsRNA

synthesized from Ap-S9 did not increase (Fig. 7, columns 1, 4 and

5). Additionally, the dsRNA synthesis from unmethylated or

methylated capped S9 ssRNA was higher than uncapped T7 S9

ssRNA (Fig. 7, columns 1–3). These results suggested that BTV

VP1 has a sequence preference for GpG at the 59 end, which may

mimic the authentic cap structure, GpppG.

Dinucleotides stimulate polymerase activity by priming
the initiation of dsRNA synthesis

Polymerase activities of some viruses, such as Influenza virus,

Bovine viral diarrhea virus, Hepatitis C virus and GB virus-B, are

initiated by dinucleotides due to priming the transcription

initiation [41,53,54,55]. Additionally, the study using rotavirus

open cores showed that GpG, which complements the sequences

of the 39 end of rotavirus G8 ‘plus’ strand RNA, forms initiation

complexes with VP1 and template ssRNA to initiate ‘minus’ strand

Figure 4. Comparison of the dsRNA synthesis between capped
and uncapped T7 S9 ssRNA. Serial diluted (2-fold and 3-fold) capped
or uncapped T7 S9 ssRNAs were added to the reaction mixture
containing 70 mg of VP1 (upper panel). Several serial dilutions of
capped (circle) or uncapped (square) T7 S9 ssRNAs were performed. The
radiolabeled bands were detected by autoradiography. The intensity of
each band was quantified using ImageJ software (NIH: http://rsb.info.
nih.gov/ij/) and plotted on the graph (lower panel). The fitted curves
shown on the graph were calculated using the program Prism
(GraphPad Software, USA). The kinetics parameters were determined
by the Michaelis-Menten equation as described in Materials and
Methods and shown on the graph.
doi:10.1371/journal.pone.0027702.g004

Figure 5. Recovery of BTV from uncapped ssRNA. The recovery of
BTV from RNA generated in vitro was compared using uncapped and
capped ssRNA in the second transfection. BSR cells were transfected
first with 6 capped ssRNAs (S1, S3, S4, S6, S8 & S9) and subsequently
with all capped ssRNAs (column 1), all uncapped ssRNAs (column 2) or
uncapped S9 together with remaining 9 capped ssRNAs (column 3).
Each ssRNA was at 50 ng per transfection. The recovery of virus was
shown as the total number of plaques per well (Mean 6 SD).
doi:10.1371/journal.pone.0027702.g005

Figure 6. The effect of cap analogues on BTV polymerase
activity. Each 20 pmol of cap analogues indicated at the bottom of
each column, was added to the reaction mixture with 0.5 mg of
uncapped (upper panel) or capped (lower panel) T7 S9 ssRNA and
70 mg of VP1. The radioactive intensity of each sample was standardized
by control sample (ctrl), which was added water instead of cap
analogue. The efficiency of dsRNA synthesis of each sample was shown
as a fold of control (Mean 6 SD). Asterisks are showing significant
difference (**P,0.01; *P,0.05).
doi:10.1371/journal.pone.0027702.g006

BTV Polymerase
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synthesis [32]. To determine the effect of dinucleotide on the BTV

polymerase activity, several types of dinucleotides were added to

the polymerase reaction mixture. Three dinucleotides, GpG, GpA

and ApG, which consisted of the same nucleotides as cap

analogues, were tested with 0.5 mg of T7 S9 ssRNA. When the

products were analysed the data showed clearly that GpG and

ApG, which complement only the last nucleotide of the 39 end

sequence of BTV S9 plus strand RNA, strongly enhanced the

polymerase activity (Fig. 8, columns 2 and 4). Similarly, biotinated

pApG (biotin-ApG), which was incorporated only once at the 59-

end, also showed the strong enhancement of polymerase activity

(Fig. 9A). In contrast, GpA did not enhance the observed activity

(Fig. 8, column 3). Subsequently four more dinucleotides, GpU,

GpC, CpU and UpA were tested for their effects on dsRNA

synthesis. Of these, only GpU, which complements the last two

bases of the 39 end sequence of BTV S9 plus strand RNA, strongly

enhanced the dsRNA synthesis whereas GpC, CpU and UpA,

which fail to complement the 39 end sequence of BTV S9 plus

strand, did not exhibit any detectable enhancement (Fig. 8,

columns 5–7). These results suggest that dinucleotides are capable

of stimulating BTV polymerase activity by priming the initiation of

dsRNA synthesis, similar to that observed for rotavirus VP1 [32].

To confirm this further, biotin-ApG was used for the non-

radioactive polymerase assay as described in Materials and

Methods. When biotin-ApG was added to the reaction mixture

containing non-radiolabeled rNTPs, the newly synthesized

dsRNAs were labeled with biotin at the 59 end of the negative

sense RNA and detected at the same position as S9 viral dsRNA

stained with methylene blue (Fig. 9B). Interestingly, GpG always

enhanced polymerase activity more than ApG. Additionally, the

amount of dsRNA synthesized from Gp-S9 was at least five times

more than that of uncapped T7 S9 ssRNA whereas synthesis of

dsRNA from Ap-S9 did not increase (Fig. 7). Thus, while ApG

could stimulate activity by priming, albeit less efficiently than

GpU, GpG was superior, plausibly as a result of direct priming

and allosteric stimulation, as it may mimic the effect of GpppG.

Discussion

We previously demonstrated that BTV VP1 could act as a

replicase in the absence of any other virus or host protein [23,24],

in contrast to rotavirus VP1, which failed to exhibit catalytic

activity in the absence of the inner capsid protein VP2 [29]. In this

study, we further confirmed the robustness and versatility of the

BTV VP1 replicase activity by demonstrating that it could

synthesize all ten dsRNAs simultaneously from BTV core-derived

ssRNA templates in a single in vitro reaction in the absence of any

other virus proteins. In addition, genomic dsRNA segments from

rotavirus DLP-derived ssRNA templates that possess no sequence

similarity with BTV also acted as templates, suggesting that this

assay system could be an advantage for the future studies of

Reoviridae RdRp.

Figure 7. The effect of 59 sequence of ssRNA template on BTV
polymerase activity. Each 0.5 mg of uncapped (Uncapped, column 1),
anti-reverse capped (ARCA, column 2), non-methylated capped (GpppG,
column 3) or 59 extended T7 S9 ssRNAs (GpG, column 4; ApG, column 5)
was added to the reaction mixture. Schematic representation of each
59-modified T7 S9 ssRNA was shown on the upper panel. The
radioactive intensity of each sample was standardized by uncapped
T7 S9 ssRNA sample (lower panel). The efficiency of dsRNA synthesis of
each sample was shown as a fold of uncapped T7 S9 ssRNA sample
(Mean 6 SD). The radiolabeled bands were detected by autoradiog-
raphy. The intensity of each band was counted using ImageJ software.
Asterisks are showing significant difference (**P,0.01; *P,0.05).
doi:10.1371/journal.pone.0027702.g007

Figure 8. The effect of dinucleotides on BTV polymerase
activity. Each 20 pmol of dinucleotide indicated at the bottom of each
column was added to the reaction mixture containing 0.5 mg of either
uncapped (upper panel) or capped (lower panel) T7 S9 ssRNA template.
The radioactive intensity of each sample was standardized by control
sample (ctrl, column 1), which was added water instead of dinucleotide.
The efficiency of dsRNA synthesis of each sample was shown as a fold of
control (Mean 6 SD). Asterisks show significant difference (**P,0.01;
*P,0.05).
doi:10.1371/journal.pone.0027702.g008

BTV Polymerase
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The 39 conserved sequence in rotavirus RNA segments is

essential for polymerase activity [4,29,30,32,33]. In addition,

although the initiation mechanism differs from the family

Reoviridae, the 39 end sequence is important for the pre-initiation

events of bacteriophage phi6 RdRp, which assembles into a

productive binary complex with template ssRNA [56]. However,

in our preliminary study BTV VP1 did not require conserved

termini for its catalytic activity, suggesting that BTV VP1 has

sequence-independent replicase activity [24]. In the present study,

we confirmed its sequence-independent activity by demonstrating

that BTV VP1 could synthesize correct dsRNA segments from

viral genomic templates of other Reoviridae. AHSV has 59 and 39

conserved regions in its genome similar to BTV genomic RNA

whereas rotavirus genomes, especially the terminal conserved

regions, are very different from BTV. Nonetheless, BTV VP1

could synthesize dsRNAs of rotavirus with correct sizes, suggesting

strongly that BTV polymerase activity was sequence-independent

in vitro. The amount of each synthesized segment was not equal.

This phenomenon was also observed in rotavirus open core system

[57]. There may be some structural constraints in certain ssRNAs.

However, the dsRNA was well synthesized from single T7 ssRNA

template of AHSV S4 unlike the AHSV core ssRNA template.

Although further investigations are required, it may be that a

mixture of several ssRNA segments in a single reaction may cause

RNA-RNA interaction, thereby preventing the 39 end of some

ssRNA from reaching at the active site of VP1 and consequently

resulting in uneven dsRNA synthesis. When non-viral ssRNAs

were used as templates, BTV VP1 failed to synthesize dsRNAs of

correct lane sizes. Smearing and many truncated bands were

detected, suggesting premature termination as well as poor

template recognition. This phenomenon is not due to the lack of

cytidine at the 39 end of non-vial ssRNAs as VP1 could still

synthesize dsRNA from S2 mutant, which does not possess

cystidine at 39 end [24]. Several virus polymerase activities are

already known to regulate their transcription by structure-based

cis-acting replication elements in their genomic or subgenomic

RNAs [58,59,60,61,62,63]. In rotavirus replication, the presence

of cis-acting functional elements of rotavirus ssRNAs has been

suggested [30,31,64,65,66]. We previously demonstrated the

presence of cis-acting sequences required for replication or

packaging [50]. When the functional S9-EGFP transcript,

S9E277/656, was added to the reaction, dsRNA synthesis was

efficient, as expected. A role for a conserved feature in the

templates of the family Reoviridae, required for polymerase activity,

is suggested by these results although the precise nature and

location remains to be determined.

The most important role of the 59 cap structure in eukaryotic

mRNAs is in the initiation of translation. However, it is also

known to regulate RNA synthesis in virus replication

[40,43,44,45,46]. The crystal structure of reovirus l3 and

rotavirus VP1 revealed a cap-binding site on the surface of their

cage-like structures [3,4], suggesting that the cap was the primary

element by which VP1 interacts with and recognizes the 59 end of

a positive-strand. The putative model structure of BTV VP1 has a

strong similarity with the RdRp structures of other members of the

family [26] and our data here suggest that this similarity extends to

cap recognition by, and stimulation of, replicase activity in BTV.

As demonstrated by the competition assays with various cap

analogues and kinetic analysis, this effect was not due to direct

VP1 recognition of the 59 end of the ssRNA template that is

suggested for other members of the family [3,4], but it is likely due

to an allosteric modulation. Precise kinetic support for the effect of

cap structure for RdRps activity may come from further

investigation of BTV VP1 and other members of the RdRp

family. Our data also demonstrate that the cap structure is unlikely

to play any role in genome packaging of BTV, although it could be

important for dsRNA synthesis during primary replication. The

influence of the cap structure in virus replication is worthy of

future investigation using additional reverse genetics experiments.

A dinucleotide, GpG, had been shown to be incorporated into

the 59-end of the newly synthesized negative sense RNA,

suggesting that GpG primes dsRNA synthesis by forming the

replication initiation complex with template RNA and RdRp in

the early step of rotavirus replication [32]. Our results also showed

that dinucleotides GpG, ApG and GpU could stimulate BTV VP1

replicase activity by priming although priming by either GpG or

ApG resulted in synthesis of artificial dsRNA with the 59-overhang

of negative sense RNA. This indicated that the last nucleotide, ‘G’

of the dinucleotides that complemented the 39 end of the template

sequence was sufficient to prime the activity. This feature of BTV

VP1 is not shared by rotavirus VP1 as ApG failed to prime in

rotavirus open core polymerase assay [32]. There are several

characteristics of BTV VP1 activity that are noteworthy. For

example, dsRNA synthesis from Gp-S9 ssRNA template was more

efficient than that from uncapped S9 ssRNA template and the

GpG was a better stimulator for polymerase activity than that of

ApG. This indicates that in addition to priming, GpG could

Figure 9. The priming activity of ApG. A. The effect of biotin-
labeled ApG (Bio-ApG) on BTV polymerase was compared with non-
labeled ApG (ApG). Each 20 pmol of ApG or Bio-ApG was added to the
reaction mixture containing [a-32P] CTP. B. Priming activity by
dinucleotide, ApG, was detected using biotin-labeled ApG and non-
radioactive polymerase assay as described in Materials and Methods. As
markers, BTV genomic segments was used and stained with 0.02% (w/v)
methylene blue after transferring to the nylon membrane (lane 1). Non-
labeled ApG (lane 2) or biotin-labeled ApG (lane 3) was added the
reaction mixture containing non-labeled rNTP with uncapped T7 S9
ssRNA. Biotin-labeled dsRNAs were detected using Streptavidine-
alkaline phosphatase conjugate as described in Materials and Methods.
Genome segments are indicated on the left.
doi:10.1371/journal.pone.0027702.g009
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enhance the activity by allosteric effect, possibly due to some

similarity to GpppG. Although further study is necessary to clarify

the effect of GpG and ApG, and in addition if they possess

allosteric effect, our results indicated that the replicase activity of

BTV VP1 could be stimulated by dinucleotide priming at the

initiation of replication.

In summary, in this study we showed two stimulation factors of

VP1 replicase activity, allosteric effect of cap structure and priming

effect of dinucleotides as well as the possible presence of cis-acting

element shared by ssRNAs in the members of family Reoviridae.

Our system for polymerase assay could be modified for in vitro

assembly assay of the replication complex to further clarify the

mechanism of BTV replication in the future.

Materials and Methods

Expression and Purification of his-tagged BTV VP1
The his-tagged VP1 was expressed in the Spodoptera frugiperda

(Sf9) cell line (ATCC, Rockville, MD) and purified as described

previously with some modifications [24]. Briefly, Sf 9 cells were

infected with AcBTV10.NHis1 at a multiplicity of infection of 5.0.

At 2 days post-infection, cells were harvested and lysed with VP1

lysis buffer (50 mM sodium phosphate pH8.0, 10% (v/v) glycerol,

0.5% (v/v) Nonidet P-40) containing 16protease inhibitors

(Protease Inhibitor Cocktail Set V EDTA-Free, Calbiochem).

Nuclei and cell debris were removed by centrifugation at 9400 g

for 1 hour (h) at 4uC. The cell lysate was mixed with HIS-SelectH
Nickel Affinity Gel (Sigma) for 1 h at 4uC. After washing the

affinity gel with 50 mM sodium phosphate buffer (pH 8.0)

containing 10% glycerol and 20 mM imidazole, his-tagged VP1

was eluted with 50 mM sodium phosphate buffer (pH 8.0)

containing 10% glycerol and 300 mM imidazole. The eluted

his-tagged VP1 was diluted at one in five with 50 mM Tris-HCl

buffer (pH 8.0) containing 10% glycerol and 1 mM DTT and

further purified by the affinity column, Hi-TrapH Heparin HP

column (GE Healthcare), using AKTA system (GE Healthcare)

with a linear sodium chloride gradient (100 mM-1000 mM).

Preparation of single-stranded RNA (ssRNA) for
polymerase assay and use in reverse genetics recovery
of virus

Single-stranded RNAs (ssRNA) of BTV, African horse sickness

virus (AHSV), simian rotavirus, rhesus rotavirus and bovine

rotavirus were synthesized in vitro using purified core particles or

double-layered particles of each virus (core ssRNA or DLP ssRNA)

as described previously [51,67,68,69]. For synthesis of ssRNA with

T7 RNA polymerase (T7 ssRNA), T7 plasmids constructed

previously [49,50] were used. All BTV genome sequences were

deposited in GenBank (Accession numbers: FJ969719, FJ969720,

FJ969721, FJ969722, FJ969723, FJ969724, FJ969725, FJ969726,

NC006008, NC006015, FJ969727 and FJ969728). For synthesis of

59 extended S9 ssRNAs, EGFP ssRNA and puromycin N-

acethyltransferase (PAC, puromycin resistant gene) ssRNA, PCR

products were used as templates. The following primers were used

for the PCR amplification: T7EGFP-F (59- taatacgactcactatagg-

gATGGTGAGCAAGGGCGAGGA), T7PUR-F (taatacgactcac-

tatagggATGACCGAGTACAAGCCCAC), T7GS9-F (59-taatac-

gactcactataGGTTAAAAAATCGCATATGTC), T7AS9-F (59-

taatacgactcactataAGTTAAAAAATCGCATATGTC), EGFP-R

(59-tttccatggTTACTTGTACAGCTCGTCCA), PUR-R (59-ctaa-

gatctTCAGGCACCGGGCTTGCGGG) and S9-R (59- GTA-

AGTGTGAAATCGCCCTACGTCA). For synthesis of luciferase

ssRNA, control linear DNA from RiboMAX Large Scale RNA

Production System-T7 kit (Promega) was used. Capped T7

ssRNAs were synthesized using mMESSAGE mMACHINE T7

Ultra Kit (Ambion) according to manufacturer’s protocols. For

synthesis of uncapped T7 ssRNAs and unmethylated capped T7

ssRNA, RiboMAX Large Scale RNA Production System-T7

(Promega) was used according to the manufacturer’s procedures.

The unincorporated nucleotides and cap analogues were removed

using Illustra MicroSpin G25 columns (GE Healthcare) during

standard phenol/chloroform purification methods. The synthesized

ssRNAs were dissolved in nuclease-free water, and stored at 280uC.

Polymerase assay
Polymerase assay was performed as described previously with

some modifications [24]. Briefly, 70 ng of his-tagged VP1 and

several amounts of ssRNA templates were added to 50 ml of

reaction mixture (50 mM Tris-HCl pH7.4, 6 mM magnesium

acetate, 600 mM Manganese chloride, 320 mM ATP, 320 mM

GTP, 320 mM UTP, 2 mM CTP, 0.2 mCi/ml [a-32P] CTP (Perkin

Elmer), 2% (w/v) PEG4000, and 1.6 U RNasin plus (Promega) in

presence and absence of 20 pmol of cap analogues (New England

Biolabs) or 20 pmol 59-hydroxyl dinucleotides (IBA). Note that

ssRNA templates were not denatured. After incubation for 5 h at

37uC, synthesized dsRNAs were purified using a standard phenol/

chloroform method and analyzed using native-PAGE. Note that

the dsRNA synthesis in the VP1 reactions proceeded in a linear

manner for at least 5 h [24]. As markers, end-labeled- dsRNA

genomes purified from virus-infected cells were used as described

previously [24]. Gels were dried and exposed to Storage Phospher

screen (GE HEalthcare). The radiolabeled dsRNAs were detected

using the image analyzer, Typhoon Trio (GE HEalthcare), and

each radiolabeled band was quantified using ImageJ software

(NIH: http://rsb.info.nih.gov/ij/).

The experimental data was then fitted by a nonlinear regression

method using the program Prism (GraphPad Software, USA). The

kinetics parameters were determined by the Michaelis-Menten

equation:

v~Vmax S½ �= Kmz S½ �ð Þ

where [S] is the substrate concentration (ng/ml); Km is the apparent

Michaelis-Menten constant; and Vmax is the maximal rate attained

when the enzyme active sites are saturated by substrate (quantified

radioactive count/min).

Transfection of cells with BTV transcripts
BSR monolayers in twelve-well plates were transfected twice

with BTV mRNAs using Lipofectamin 2000 Reagent (Invitrogen)

as describe previously [50]. BTV transcripts were mixed in Opti-

MEM (Invitrogen) containing 0.5 U/ml of RNasin plus (Promega)

before being mixed with Lipofectamin 2000 Reagent in Opti-

MEM containing 0.5 U/ml of RNasin plus. The transfection

mixture was incubated at 20uC for 20 min and then added directly

to cells. The first transfection was performed with a standard of

50 ng of each T7 transcript (S1, S3, S4, S6, S8 and S9), and a

second transfection, again with 50 ng of each of the ten T7

transcripts, at 18 h post first transfection. At 6 h post second

transfection, the culture medium was replaced with 1.5 ml overlay

consisting of DMEM, 2% FBS, and 1.5% (wt/vol) agarose type

VII (Sigma) and the plates were incubated at 35uC in 5% CO2 for

3 days to allow plaques to appear.

Priming assay
A modified method of polymerase assay was used for measuring

dinucleotide priming. Briefly, 70 ng of His-tagged VP1 and 0.5 mg

BTV Polymerase
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of T7 S9 ssRNA were added to 50 ml of reaction mixture (50 mM

Tris-HCl pH7.4, 6 mM magnesium acetate, 600 mM Manganese

chloride, 320 mM ATP, 320 mM GTP, 320 mM UTP, 320 mM

CTP, 2% (w/v) PEG4000, and 1.6 U RNasin plus (Promega)) in

presence of 20 pmol of biotin-labeled ApG (IBA). After separation

by native-PAGE gel, samples were transferred to the positive-

charged nylon membrane, Hybond N+ (GE Healthcare) and

Biotin-labeled dsRNA bands were detected using Streptavidine-

alkaline phosphatase conjugate (Sigma) and BCIPH/NBT Alkaline

Phosphatase Substrate (Sigma) by the same method as with the

Biotin Luminescent Detection Kit (Roche Applied Science). As

markers, purified dsRNA genomes were used and stained with

methylene blue solution (0.02% (w/v) methylene blue, 0.3 M

sodium acetate, pH 5.0) after transferring to the nylon membrane.
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