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Abstract

Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among
animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity
of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration
in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are
controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil
lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated
by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in
their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved
ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose
defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of
iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and
concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of
structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic
scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in
lepidopterans by the mid-Eocene.

Citation: McNamara ME, Briggs DEG, Orr PJ, Wedmann S, Noh H, et al. (2011) Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-
Old Moths. PLoS Biol 9(11): e1001200. doi:10.1371/journal.pbio.1001200

Academic Editor: Michael J. Benton, University of Bristol, United Kingdom

Received May 5, 2011; Accepted October 13, 2011; Published November 15, 2011

Copyright: � 2011 McNamara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was funded by an IRCSET-Marie Curie International Mobility Fellowship (www.ircset.ie, http://ec.europa.eu/research/mariecurieactions)
awarded to MEM and by NSF (www.nsf.gov) to HC (PHY-0957680). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maria.mcnamara@yale.edu

Introduction

Structural color has long been of interest to biologists. It is

phenotypically significant in many organisms [1], forms the basis

of diverse inter- and intra-specific communication strategies [2],

and is implicated in pivotal evolutionary transitions [3]. Evidence

of structural color has been reported from some fossil biotas [3–6],

but has received little attention. This limits our ability to recon-

struct the origins of activity patterns, habitat preferences, and

social and sexual signaling mechanisms [7]. This is particularly

problematic in the case of Lepidoptera (butterflies and moths),

which exhibit the most complex and diverse structural colors of

any living group of organisms [8]. Structural colors in extant le-

pidopterans are generated by modification of one or more com-

ponents of the basic scale architecture (longitudinal ridges and

transverse crossribs upon a basal lamella that is supported by

columnar trabeculae in the scale lumen) into a biophotonic nano-

structure of chitin and air [9]. Such color-generating multilayer

structures can arise via specialization of the ridges and their ridge-

lamellae, crossribs, or the scale lumen; the lumen can also exhibit

various other modifications, including complex three-dimensional

photonic crystals. The various color-producing nanostructures in

lepidopteran scales may be related developmentally [9] and all

generate color via interference of scattered light [1], although the

overall visual effect can be influenced by other optical mechanisms

at the level of ultra- and macrostructure [10]. Attempts to recon-

struct the evolution of color-producing nanostructures using

phylogenetic and/or structural evidence have hypothesized that

multilayer structures in the scale lumen are evolutionarily primi-

tive [11,12], but these conclusions are not widely accepted [1,10].

Fossils provide direct evidence of stages in the evolution of

biological structures and can be used to test evolutionary hy-

potheses. The lepidopteran fossil record extends from the Early

Jurassic to the Recent and includes representatives of numerous

extant lepidopteran families [13,14]. Fossil specimens of adult

macrolepidopterans often exhibit light- and dark-toned areas on

their wings [14] and can retain ultrastructural details of their scales

[15]; preservation of pigmentary or structural colors has not been

reported. Most fossil lepidopterans occur as inclusions in amber

and within fine-grained sediments [14]; Baltic and Dominican

amber (Eocene-Oligocene), the lacustrine sediments of Florissant

(Eocene, Colorado), and the offshore marine sediments of the early

Palaeocene Fur Formation (Denmark) are especially rich sources

[14]. Fossil lepidopterans have also been reported (but not

PLoS Biology | www.plosbiology.org 1 November 2011 | Volume 9 | Issue 11 | e1001200



described) from the mid-Eocene Messel oil shale of Germany,

which is celebrated for preserving a diverse paratropical ecosystem

with remarkable fidelity [16]; the biota includes mammals,

reptiles, amphibians, abundant fish and insects, and plants [17],

the last represented by leaves, fruits, and seeds [18]. Messel fossils

are typically well preserved: animals are often well-articulated and

many show evidence of soft tissues (including stomach contents);

insects (especially beetles) may exhibit metallic coloration [16].

Here we use scanning- and transmission electron microscopy

(SEM and TEM), reflectance micro-spectrophotometry, and 2-D

discrete Fourier analysis [1,19] to demonstrate that metallic color

in the fossil lepidopterans from Messel is structural in origin and to

reconstruct their original color.

Results and Discussion

The fossils (Table S1) occur as isolated individuals (Figure 1A,

Figure S1) and in coprolites (Figure S1) but have not been

described [20]. Wing venation patterns indicate that specimens are

possibly extinct representatives of the Zygaenidae (burnet and

forester moths), in particular Procridinae (forester moths; see Text

S1). Two taxa are represented; specimens of the smaller taxon are

more complete, and therefore the focus of this study. Electron

dispersive X-ray analyses demonstrate that the fossil scales are

organically preserved: they comprise predominantly carbon and

there is no evidence for replacement of the preserved tissue by

authigenic minerals.

Brilliantly colored scales cover the dorsal surface of the forewing

except for a thin brown (non-metallic) zone along the outer margin

(Figure 1A–C, Figure S1); they are restricted to basal and discal

zones of the ventral surface (Figure S1). The dorsal surface of the

hindwing is predominantly brown but exhibits metallic colors

apically (Figure S1); the ventral surface is not visible in any

specimen. Metallic scales also occur on the body of the insect.

Specimens in glycerine exhibit predominantly yellow colors in

basal and discal to postdiscal zones of the wing; the color grades to

green and then blue in postdiscal to submarginal wing zones, and is

brown along the outer wing margin (Figure 1A–C; Figure S1a–c).

Scales on the abdomen typically exhibit yellow to orange colors in

glycerine. The observed color varies when a fossil is placed in

media of different refractive indices (Figure S2) in a fashion

characteristic of many structurally colored materials [21].

The Fossil Scales Preserve Diverse Anatomical
Ultrastructures

The gross morphology of the scales is difficult to determine as

they overlap and are typically fractured. Ultrastructural evidence

demonstrates that four types are present (Figures 1, 2, Figures S3,

S4). Type A scales, the most common, are the primary contributor

to the observed color. They are cover scales and occur over the

dorsal and ventral surface of the forewing (Figures 1D–J, 2). The

abwing surface of these scales, as in extant lepidopterans [22],

exhibits prominent longitudinal ridges connected by orthogonal

crossribs (typical spacing 1.8–2.5 mm and 510–600 nm, respec-

tively) (Figure 1D). The ridges are up to 1 mm high (Figure 2C).

They comprise overlapping lamellae (each 1.2–3.1 mm long and

110–150 nm wide) inclined at 10–12u to the scale surface and

exhibit short lateral microribs (typical spacing 122–170 nm)

(Figure 1D–G). The ridges and crossribs frame a series of windows

that are typically perforated (Figure 1E–G); the lamina perforation

factor (p) [23] increases from the proximal (p = 0.05) (Figure 1F) to

distal (p = 0.32) parts of a scale (Figure 1G).

The scale lumen contains 3–5 perforated internal laminae that

differ in their structure and thickness (Figures 1E,H, 2). The

uppermost lamina (93–124 nm thick) exhibits densely packed,

bead- to rod-like spacers (60 nm wide and 60–500 nm long)

(arrow in Figure 1E). The next two to four laminae exhibit less

densely packed, bead-like, spacers (typically 60 nm660 nm)

(Figure 1I) and decrease progressively in thickness (from 74–

110 nm to 55–63 nm) towards the adwing scale surface

(Figure 2A,B). In the proximal parts of a scale, the lowermost

lamina in the stack is the basal lamina of the scale. In medial and

distal parts of a scale, however, the stack is supported by additional

pillar-like trabeculae (each 0.6–1 mm high) above a lamina with a

distinctive reticulate texture (55–65 nm thick), which forms the

base (Figure 1J). The ultrastructure of Type A scales (including the

spacing of laminae, which is known to control color in living

lepidopterans) varies according to their color and location on the

wing (see Table S2). Similar variation occurs in extant lepidop-

terans [22,24]. Even non-metallic brown scales in the fossils

preserve ultrastructural details, including the laminar ultrastruc-

ture in the scale lumen (Figures S3, S5). Scale types B, C (‘‘satin-

type’’ [9]), and D are rare and do not contribute significantly to

the observed color in the fossils (see Text S1).

Three-dimensional structures in fossils are vulnerable to

compaction during burial of the host sediments. It is not assumed

a priori that the preserved structure of the laminar array in the

fossil lepidopteran scales is identical to that in vivo, especially as

the trabeculae are typically fractured and now orientated parallel

to, and superimposed upon, the basal lamina of the scale

(Figure 2G). There is, however, no evidence that the laminar

array has been similarly affected. Successive laminae are not

superimposed and the vertical spacers between them are neither

fractured nor flexed. Preferential fracturing of the trabeculae may

have been promoted by their wider spacing and greater height.

There is no evidence (e.g., dessication cracks) that the geometry of

the laminar array was affected by shrinkage of the scales during

diagenetic dehydration of the organic tissue. Nor is there eviden-

ce for diagenetic expansion of the scale structure: spacers are

continuous between adjacent laminae. Collectively, these obser-

vations indicate that diagenetic processes had little or no impact

upon the preserved structure of the laminar array. The preserved

Author Summary

Biological structural colors are generated when light is
scattered by nanostructures in tissues. Such colors have
diverse functions for communication both among and
between species. Structural colors are most complex in
extant butterflies and moths (lepidopterans), but the
evolution of such colors and their functions in this group
of organisms is poorly understood. Fossils can provide
insights into the evolution of biological structures, but
evidence of structurally colored tissues was hitherto
unknown in fossil lepidopterans. Here, we report the
preservation of structurally colored scales in fossil moths
with striking metallic hues from the ,47-million-year-old
(Eocene) GrubeMessel oil shales (Germany). We identify
the color-producing nanostructure in the scales and show
that the original colors were altered during fossilization.
Preserved details in the scales allow us to reconstruct the
original colors and show that the dorsal surface of the
forewings was yellow-green. The optical properties of the
scales strongly indicate that the color functioned as a
warning signal during feeding but was cryptic when the
moths were at rest. Our results confirm that structural
colors can be reconstructed even in non-metallic lepidop-
teran fossils and show that defensive structural coloration
had evolved in insects by the mid-Eocene.

Fossil Moth Colors
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Figure 1. Structurally colored Messel (Eocene) lepidopterans. (A–C) Light micrographs of specimen MeI12269 with details of areas indicated
(B, C). (D–J) Scanning electron micrographs of scales. (D) Surface showing longitudinal ridges and transverse crossribs and microribs. (E) Two
overlapping scales showing windows, perforations, and internal laminae of the upper, fractured, scale. Arrow indicates densely packed bead- to rod-
like spacers in the uppermost internal lamina. (F, G) Windows and perforations in proximal (F) and distal (G) parts of a scale. (H) Oblique fracture
through scale showing successive internal laminae. (I) Surface of internal lamina showing perforations and bead-like spacers. (J) Horizontally fractured
scale showing trabeculae (fractured and lying parallel to the scale surface) and reticulate basal lamina with, inset, intact vertically orientated
trabeculae. Scale bars: (A), 5 mm; (B, C), 1 mm; (D, E, H, J) (including inset), 2 mm; (F, G, I), 1 mm.
doi:10.1371/journal.pbio.1001200.g001

Figure 2. Transmission electron micrographs of the fossil multilayer reflector. (A) Vertical longitudinal section through a stack of four
scales; scales are fractured locally. r, resin; s, sediment. (B) Detail of multilayer nanostructure in a longitudinal section through a single scale. (C)
Transverse section through a scale showing broad ridges and the concave geometry of the interridge surface and of the underlying multilayer
structure. Scale bars: (A, C), 1 mm; (B), 500 nm.
doi:10.1371/journal.pbio.1001200.g002

Fossil Moth Colors
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ultrastructure is therefore considered to be extremely similar, if not

identical, to that originally present in vivo.

The Laminar Array in the Scale Lumen Is a Fossilized
Multilayer Reflector

The ultrastructure of the laminar array was not modified during

fossilization and is therefore a reliable basis for reconstructing the

original colors of the fossil scales. 2-D Fourier analysis of

longitudinal TEM images of the ultrastructure in the lumen of

scales from the basal part of the dorsal forewing reveals two points

of high values aligned above and below the origin (Figure 3A,B).

The dominant periodicity is in the vertical direction; that is, the

preserved structure is highly laminar. Fourier power spectra of

transverse TEM images show a wider distribution of Fourier

power peaks above and below the origin (Figure 3C,D). This re-

sults from the concave geometry of the laminar array in transverse

section and consequent increase in the range of angles over which

the observed color maintains the same peak hue [1]. Radial aver-

ages of the Fourier power spectra demonstrate that the preserved

laminar nanostructure is a multilayer reflector: the peak spatial

frequencies in refractive index lie within the range capable of

producing visible colors by scattering of light (Figure 3E).

The visual properties of extant lepidopteran scales can be

influenced by scale tilt (the angle between the scale and the wing

membrane) [10], scale curvature [2], the number and thickness of

laminae [25], the degree of overlap of ridge lamellae [21], the

spacing of the ridges [21], microribs [21], and crossribs [26], and

the lamina perforation factor [23]. Scale tilt and curvature are not

preserved in the fossils. The number (up to five) of laminae and

their different thicknesses indicate that the fossil multilayer re-

flector is non-ideal (i.e. reflects much less than 100% of incoming

light) [27]. The ridge lamellae in the fossils do not overlap

sufficiently [28] to have a significant impact on the observed color.

Closely spaced microribs or crossribs in satin-type scales can also

generate diffraction [26] and play a secondary role in the gener-

ation of blue and violet colors in lepidopteran scales [19,23]. The

spacing of the microribs (140 nm) in the fossil satin-type scales,

however, is significantly less than the wavelength of visible light

(approx. 350–700 nm); conventional diffraction theory indicates

that zero-order diffraction (i.e. specular (directional) reflectance)

will be produced. Further, the satin-type scales are restricted to the

inner margin of the forewing in the fossils, precluding their having

a significant impact on the observed color. Collectively, these

observations indicate that the primary color-producing nanos-

tructure in the fossils is the multilayer reflector in the scale lumen.

The optical properties of the fossil scales are, however, influ-

enced by the perforation factor and concave geometry of the

laminae, and by the spacing of the ridges. In extant lepidopterans,

iridescence, spectral bandwidth, and total reflectance are reduced

at higher perforation factors (between 0.2 and 0.4) relative to scales

with lower perforation factors [23]; this generates a purer (albeit

less intense) color that is visible over a wider range of angles. In the

fossils the exposed (medial and distal) parts of the overlapping

scales typically have perforation factors of 0.32. Concave distor-

tion of laminar arrays also reduces iridescence [1]; the arcuate

geometry of the fossil multilayer reflector in transverse section

would have enhanced the iridescence-reducing effect of the per-

forated laminae. Multilayer reflectors typically generate direc-

tional (specular) color that flashes at specific observation angles

[29]; this effect can be modified by diffraction. Ridge periodicities

of between 0.85 mm and 4 mm generate diffraction [21,30,31]; a

strong diffractive effect has been reported for periodicities of ca.

1.3 mm [31] and 1.7 mm [30]. The ridges in the fossils are spaced

1.8–2.5 mm apart and therefore probably constitute diffraction

elements that render the color generated by the multilayer re-

flector visible over a wide range of observation angles, but do not

contribute to the observed hue [31].

The Original Colors of the Fossils Are Not Preserved But
Can Be Reconstructed

Scales from the dorsal surface of the basal part of the forewing

exhibit a measured reflectance peak of 473 nm (Figure 3F) that

corresponds to their blue color in air. The predicted peak of

reflectance (with lmax = 565 nm) calculated from the radial

averages (using refractive index values of 1.56 and 1.0 for the

high- and low-index layers, respectively), however, indicates that

Figure 3. 2-D Fourier analysis and reflectance microspectro-
photometry of structurally colored scales from the basal part
of the dorsal forewing. (A, C) Transmission electron micrographs of
longitudinal (A) and transverse (C) sections. (B, D) 2-D Fourier power
spectra of nanostructures in (A) and (C), respectively. Color scale (blue
to red) indicates the relative magnitude of the squared Fourier
components, which are dimensionless quantities. Direction from the
origin indicates the direction of the 2-D component waves in the image,
and the distance from the origin indicates the spatial frequency (cycles/
nm) of each Fourier component. (E) Radial average of power spectrum
in (B). Shaded area indicates the range of spatial frequencies that
produces coherent scattering of visible wavelengths. (F) Measured and
Fourier predicted reflectance spectra for nanostructure in (A). Scale
bars: (A, C), 500 nm.
doi:10.1371/journal.pbio.1001200.g003
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the dorsal surface of the basal part of the forewing was originally

yellow-green. The color in air today and the measured reflectance

peak are artefacts, probably a result of alteration of the bio-

molecular composition of the scale cuticle, and thus its refractive

index, during fossilization; most fossil arthropod cuticles are

chemically altered during diagenesis [32]. Furthermore, recent

experiments using extant butterfly scales demonstrated that

alteration of the original organic material results in a shift in the

reflectance peak without altering the scale ultrastructure signifi-

cantly [33]. Calculation of reflectance peaks for scales from other

parts of the wings (see Figure S5) allows the original colors of the

fossil lepidopterans to be reconstructed (Figure 4; Table S3). Scales

in postdiscal to submarginal wing zones have predicted reflectance

peaks lmax<515 nm and lmax<440 nm, respectively; scales

along the wing margins have a predicted reflectance peak

lmax<750 nm, and scales from the abdomen have a predicted

reflectance peak lmax<550 nm (Figure S5). The fossil lepidopter-

ans therefore originally exhibited yellow-green hues in basal and

discal to postdiscal zones of the wing; the color graded to green-

cyan and then blue in postdiscal to submarginal wing zones, and

was brown along the outer wing margin. Scales on the abdomen

were yellow to yellow-green.

Functional Ecology of the Structural Color
Structural colors in extant butterflies function primarily in

species and mate recognition [29]; the function of structural colors

in extant moths, however, has not been investigated. The fossil

moths described here are colored most highly on the dorsal

surfaces of the forewings (the surfaces which are exposed in most

extant moths, including zygaenids, when they are at rest [34]),

suggesting that the Eocene moths, like extant zygaenids, were

diurnal. The visual ecology of the structural color in the fossil

moths can therefore be compared with those in extant diurnal

lepidopterans. The fossil moths were characterized by a yellow-

green dorsal coloration that was visible over a wide range of angles

but not highly reflective. The visual signal lacked certain pro-

perties, e.g. strong iridescence, brightness, and color contrast

within the wing, that are important in conspecific communication

[30]. Instead, the optical characteristics of the fossil scales, notably

their original yellow-green hue and suppression of iridescence,

indicate a primary defensive function. In extant lepidopterans,

reduced iridescence enhances presentation of visual signals for

protective purposes [35]. Structural green coloration functions

cryptically in extant butterflies [24,29] and beetles [36,37]. In

particular, a combination of a structural green hue with reduced

iridescence provides particularly efficient color matching with a

diffuse leafy background [36,37].

A cryptic function for the structural color in the fossil lepi-

dopterans is consistent with the ecology of extant zygaenid moths:

many Procridinae species with green scales are cryptic except

when feeding on flowers [38], when they can be highly con-

spicuous (Gerhard Tarmann (Tirolier Landesmuseen, Austria),

personal communication) [39]. The latter feature is inconsistent

with cryptism: high chromatic contrast with the background

environment is characteristic of an aposematic (warning) signal

[40]. However, an aposematic function for the structural color

while feeding does not necessarily conflict with a cryptic function

in a foliaceous environment: dual-purpose visual signals are known

in extant lepidopterans [41–43]. The visual signal generated by the

structurally colored scales in the fossil lepidopterans probably

served two functions: cryptic when specimens were at rest, and

aposematic during nectaring. It is possible that this dual function is

evolutionarily conserved in Procridinae and that aposematism and

diurnality are ancestral traits of zygaenids. Further, defensive

behavior in the fossil moths is consistent with the use of chemical

defense: extant zygaenids, including taxa that are largely cryptic

[28], can synthesize cyanide for defense by enzymatic breakdown

of cyanoglucosides [24,44,45].

Wider Implications
The discovery of structural color in Messel lepidopterans con-

strains the timing of the origin of several important evolutionary

novelties. Different scale types in extant lepidopterans arise via

subtle modifications of a common membrane-folding develop-

mental process dominated by self-assembly [9,22,46]. The pre-

sence of different scale types in the fossils confirms that such plastic

developmental processes had evolved in moths by the mid-Eocene.

The complexity of the iridescence-reducing nanostructure in the

fossil moths indicates that sophisticated optical mechanisms for

interspecific signaling were in use at this time. Predator-prey

interactions are recognized as a major stimulus in insect evolution

[47]; the use of cryptic and aposematic signals by the fossil moths

described here supports the evidence of other fossils from Messel

[48] that sophisticated mechanisms for avoiding detection by

visually hunting predators had evolved in insects by the mid-

Eocene. The striking resemblance of the fossil moths to some

extant zygaenids and the cryptic/aposematic function of their

structural color suggest that dual-purpose visual signals, and

especially aposematism, may be evolutionarily conserved in this

group of moths, originating early in the history of the group and

persisting to the present day. Preservation of ultrastructural detail

in all scales in the fossils, even non-metallic brown examples, offers

the possibility of reconstructing the original colors and patterning

of even lepidopteran fossils that lack obvious structural color.

Materials and Methods

Fossil Material
Specimens are held by the Senckenberg Forschungsinstitut und

Naturmuseum, Forschungsstation Grube Messel, Germany.

Figure 4. Reconstruction of the original colors of the dorsal
surface of the fossil lepidopterans. The dominant hue of basal and
discal to postdiscal zones of the wing is blue today (in air) but was
originally yellow-green. Postdiscal to submarginal wing zones were
originally green-cyan and blue, and the outer wing margin, brown.
doi:10.1371/journal.pbio.1001200.g004

Fossil Moth Colors
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SEM and TEM Analysis
Small (2–3 mm2) tissue samples were removed using sterile tools

and, for TEM, placed in the following ethanol:glycerine mixtures,

each for 24 h under rotation: 10%, 25%, 50%, 75%, 100%

ethanol. For SEM, samples were dehydrated using HMDS or

under vacuum, mounted on aluminum stubs, carbon- or gold-

coated, and examined using a FEI XL-30 ESEM-FEG microscope

equipped with an EDAX energy disperse X-ray spectrometer.

Observations were made at an accelerating voltage of 15 kV, with

acquisition times of 60 s for EDS spectra of carbon-coated sam-

ples. For TEM, samples were washed in propylene oxide twice,

each for 1 h, and impregnated with Spurr’s resin under vacuum in

the following resin:ethanol mixtures, each for 24 h: 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% resin. To ensure

optimal orientation for sectioning, a 10 mm3 block of resin con-

taining the sample was extracted, re-orientated, and re-embedded

in 100% resin. Ultrathin (80–90 nm thick) microtome sections

were placed on formvar-coated Cu grids, stained using uranyl

acetate and lead citrate, and examined using a Zeiss EM900 TEM

at 80 kV with an objective aperture of 90 mm diameter.

Reflectance Microspectrophotometry
Reflectance spectra were recorded from samples in 100%

glycerine, 100% ethanol, and in air (the latter from only the basal

part of the dorsal forewing to minimize damage due to drying)

using an epi-illumination Nikon Optiphot 66 microscope, an

Ocean Optics HR2000+ spectrophotometer, and a tungsten-

halogen light source; spectra were collected from a 70 mm spot. All

recorded spectra were normalized against the spectrum of the light

source recorded from a white standard.

2-D Fourier Analysis
Nanoscale spatial periodicity in the refractive index of a material

results in constructive interference of scattered light; structural color

is generated where such scattering occurs in the visible part of the

spectrum. Herein we use an established analytical method [13] of

analyzing the periodicity and optical properties of structurally

colored biological tissues using the discrete Fourier 2-D transform.

Digital TEM micrographs of scales from the fossil lepidopterans

were analyzed using MATLAB (version 7.11.0) and a 2-D Fourier

tool freely available as a series of MATLAB commands (http://

www.yale.edu/eeb/prum/fourier.htm). Variation in the refractive

index of nanostructures in the fossil scales was analyzed using the

procedure described in ref. [1].

Reconstruction of Original Colors
The reconstruction of the original colors of the fossil

lepidopterans is based upon the preserved ultrastructure of the

multilayer reflector in the scale lumen and the assumption that the

original refractive index of the fossil scale cuticle was similar to that

in modern lepidopterans (i.e. ,1.56). Only the original colors of

the dorsal surface of the specimens were reconstructed: (1) only

this surface is exposed at rest and (2) the ventral surface of the

hindwing is not visible in any specimen. TEM images of the

multilayer reflector preserved in Type A scales of different colors

were analyzed using 2-D Fourier analysis. Predicted wavelength

values scales from different locations on the wing are based on 2–4

replicate analyses. Wavelength data for predicted reflectance

peaks were converted to RGB values. Calculation of precise RGB

values for a specific wavelength, however, is difficult [49]. RGB

values for predicted wavelength data were therefore calculated

using three different methods: (1) using the ‘‘Wavelength to RGB’’

application available from http://miguelmoreno.net/sandbox/

wavelengthtoRGB/ (downloaded December 28, 2010), (2) using

the ‘‘Spectra’’ application available from www.efg2.com/lab

(downloaded December 28, 2010), and (3) using the ‘‘Wavelength

to RGB’’ converter available online at www.uvm.edu/,kspartal/

Physlets/Lecturedemo/LambdaToRGB.html (accessed December

28, 2010). The three methods yield similar RGB values; the colors

depicted in the reconstruction are based on the averages of the

values obtained.

Supporting Information

Figure S1 Structurally colored lepidopteran fossils and forewing

venation patterns. (a–d) Light micrographs of specimen MeI

11792 (a), MeI 14861 (b), MeI 641 (c), and MeI 11808 (d, e) (a

coprolite). Note that the forewings are incomplete in MeI 11792.

(e) shows detail of area indicated in (d). (f) Reconstruction of the

forewing venation based on specimens MeI 641 and MeI13556,

with nomenclature of the wing veins. A, anal; CuA, anterior

cubitus; CuP, posterior cubitus; M, media; R, radius; Rs, radial

sector; Sc, subcosta. Scale bars: (a–d), 10 mm; (e), 2 mm; (f),

1 mm.

(TIF)

Figure S2 Variation in observed color and in reflectance spectra

of scales in media of different refractive index. (a, b) show the same

area from the basal forewing of specimen MEI 14861. Scales

appear yellow-orange when in glycerine (a) and blue in air (b). (c)

Measured reflectance spectra of scales from the area shown in (a,

b). Peak wavelength is 603 nm in glycerine and 473 nm in air.

Scale bars in (a, b), 250 mm.

(TIF)

Figure S3 Scanning electron micrographs of fossil lepidopteran

forewing scales and wing membrane. (a) Basal region of Type

A scale from discal zone of the wing, showing closely packed

microribs and absence of windows. (b) Surface of brown non-

metallic Type A scale from the outer margin of the wing, showing

ridges, microribs, and perforations. (c) Transverse fractured

section through Type B (cover) scale (B) and Type D (ground)

scale (D) from discal part of the forewing. Note wing membrane

(W) underlying ground scale. (d) Detail of area indicated in (c),

showing weakly laminar nanostructure in the lumen of the Type D

scale, and well-defined laminar structure in the lumen of the Type

B scale. Note the granular layer underlying the laminar structure

in the Type B scale. (e) Surface of Type D scale. (f) Surface of Type

C (cover) ‘‘satin’’ scale from the inner margin of the discal zone of

the wing, showing closely spaced microribs. (g) Transverse

fractured section through Type C scales, showing granular texture

in scale lumen. (h) Type A scale from coprolite, showing surficial

ridges and microribs, laminae in scale lumen, and basal reticulate

lamina. (i) Wrinkled texture of wing membrane. Scale bars: (a),

5 mm; inset in (a), 1 mm; (b–h), 2 mm; (i), 10 mm.

(TIF)

Figure S4 Schematic reconstructions of the various scale types

preserved in the fossil lepidopterans. (a) Type A scale showing

longitudinal ridges (R) with transverse crossribs (C) and microribs

(M) on the scale surface; the scale lumen comprises a stack of

perforated laminae underlain by trabeculae (T). Note perforations

(P) in, and bead-like and rod-like spacers on, each lamina. (b) Type

B scale. The stack of laminae is underlain by granular material;

trabeculae are absent. (c) Type C scale showing closely spaced

crossribs; the lumen comprises granular material. (d) Type D scale

showing poorly defined microribs and laminae in the scale lumen.

(TIF)
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Figure S5 Ultrastructure and predicted wavelength of Type A

scales of different color and from different locations on the wing.

(a, c, e) Transmission electron micrographs of scales from

submarginal (a), postdiscal (c), and outer marginal (e) wing zones,

and from the abdomen (g). Scales appear blue (a), green (b), brown

(e), and yellow-orange (g) in glycerine. (b, d, f, h) Fourier predicted

reflectance spectrum for the nanostructures in (a), (c), (e), (g),

respectively. Predicted reflectance peak is ,440 nm in (b),

,515 nm in (d), ,750 nm in (f), and ,550 nm in (h). Scale bars:

(a, c, e, g), 500 nm.

(TIF)

Table S1 List of specimens studied.

(PDF)

Table S2 Ultrastructural details of scales exhibiting different

colors and (in the case of intact individuals) from different parts of

the forewing.

(PDF)

Table S3 Conversion of wavelength data for predicted reflectance

peaks to RGB values.

(PDF)

Text S1 Systematic paleontology; color and reflectance spectra

of scales in media of different refractive index; preserved scale

types and other ultrastructural features; and supplementary

references.

(DOC)
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