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Abstract
Schizophrenia is a debilitating cognitive disorder. The link between cognitive debilitation and
functional outcome in patients with schizophrenia has prompted research to develop procognitive
therapies. It is hoped that by improving cognition in these patients, their functional outcome will
also improve. Although no established treatments exist as yet, progress has been made toward
understanding how to evaluate putative compounds in the clinic. Genetic mouse models and
pharmacological rat models of cognitive disruption are being developed that may help to evaluate
these putative compounds preclinically. Considering the increased number of genetic mouse
models relevant to schizophrenia, there is a need to evaluate pharmacological manipulations on
cognition in mice. Here we review the current literature on mouse pharmacological models
relevant to schizophrenia. In this review, we discuss where different pharmacological effects
between rats and mice on cognitive tasks are observed and assess the validity offered by these
models. We conclude that the predictive validity of these models is currently difficult to assess and
that much more needs to be done to develop useful mouse pharmacological models of cognitive
disruption in schizophrenia.
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1. Introduction
1.1. Cognitive dysfunction in schizophrenia

Kraepelin (1896) first described as dementia praecox the disorder now known as
schizophrenia. Schizophrenia carries a lifetime risk of 1% (Cannon and Jones, 1996), and
has both a genetic and environmental etiology (lifetime risk for a dizygotic twin of a patient
with schizophrenia is ~40%, (Klaning, 1999; van Os and McGuffin, 2003). Traditional
diagnosis of schizophrenia has been based on characterized positive and negative symptoms
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(Andreasen et al., 1997; Pearlson, 2000). Cognitive deficits are also observed in these
patients however and are recognized as core to the disorder, correlating most closely with
functional outcome (Green, 1996, 2006). Current treatments for schizophrenia are primarily
efficacious at treating positive symptoms, with limited if any efficacy at treating negative or
cognitive symptoms (Carter, 2005; Harvey and Keefe, 2001; Keefe et al., 2007; Mintz and
Kopelowicz, 2007). Given the link between cognitive functioning and functional outcome,
research has begun focusing on developing drugs to improve cognition in schizophrenia
patients (Floresco et al., 2005; Green, 1996, 2006).

To address this great ‘unmet therapeutic need’ in schizophrenia, the United States National
Institute of Mental Health sponsored several initiatives. These initiatives include: 1) the
Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)
group (Marder, 2006; Marder and Fenton, 2004); 2) the Treatment Units for Research on
Neurocognition in Schizophrenia (Buchanan et al., 2007); and 3) the Cognitive
Neuroscience Treatment to Improve Cognition in Schizophrenia project (Carter and Barch,
2007). The MATRICS group developed a consensus clinical test battery (MCCB) in which
positive data for a test compound could be approved as a procognitive treatment in
schizophrenia by the Food and Drug Administration. TURNS was designed to select and
evaluate potential procognitive candidates in the MCCB across several sites. CNTRICS was
and is currently developing novel tasks from the field of cognitive neuroscience to be used
in clinical neuroscience. Because these initiatives have focused primarily on assessing
cognition in humans, while recognizing the need for animal models (Barch et al., 2009;
Floresco et al., 2005; Geyer, 2010; Young et al., 2007; Young et al., 2009), there has been
little consensus from a preclinical perspective on developing animal models relevant to
schizophrenia.

1.2. Assessing the predictive validity of animal models of cognitive disruption in
schizophrenia

One of the greatest difficulties in developing animal models of cognitive disruption in
schizophrenia is that no drugs have been approved for treating these symptoms (Floresco et
al, 2005; Geyer, 2010). Therefore, assessing the pharmacological predictive validity of an
animal model of cognitive disruption in schizophrenia is problematic. The primary
treatments for schizophrenia are antipsychotics, which primarily reduce psychotic
symptoms. The effects of antipsychotic treatment on cognition continue to be debated. First
generation antipsychotics (FGA) share a primary dopamine D2 receptor antagonist
mechanism (Richelson and Souder, 2000) and have traditionally been thought to impair
cognition in patients with schizophrenia (see review (Cassens et al., 1990). FGA-induced
cognitive disruption may have contributed to studies suggesting the superiority of second
generation antipsychotics (SGA), which have diverse actions on dopamine D2, 5-HT2A, and
other receptors (Richelson and Souder, 2000). While some studies report no effects of FGA
or SGA on cognition, (Kunitachi et al., 2009; Nagai et al., 2009; Thomsen et al., 2009;
Wang et al., 2007), other clinical trials (Harvey et al., 2003; Harvey et al., 2004; Kern et al.,
1998; Kern et al., 1999; Purdon et al., 2001; Velligan et al., 2002; Velligan et al., 2003) and
meta-analyses (Harvey and Keefe, 2001; Keefe et al., 1999) reported superiority of SGA
over FGA for treating cognitive symptoms in schizophrenia. Lack of cognitive improvement
from FGAs could be related to co-administration of anti-cholinergic drugs (Keefe et al.,
1999; Paulsen et al., 1995; Spohn and Strauss, 1989), used to counter the extra-pyramidal
side-effects of FGA, because cholinergic antagonists can impair cognitive performance (see
below). Moreover, it has been suggested that the effects reported in some studies may have
been biased by industry support (Heres et al., 2006), or methodological weaknesses (Harvey
and Keefe, 2001). Other studies (Crespo-Facorro et al., 2009; Green et al., 2002; Harvey et
al., 2005; Keefe et al., 2006; Rollnik et al., 2002) and meta-analyses (Mishara and Goldberg,
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2004) have supported similar efficacy for FGA and SGA at improving cognition in
schizophrenia. Several large-scale studies have reported the equal efficacy of FGA and SGA
for treating cognitive disruption in schizophrenia (Jones et al., 2006; Keefe et al., 2007;
Lewis et al., 2006). Several investigators and clinicians have questioned the real-term gains
and clinical relevance of these significant effects of FGA and SGA on cognition (2007). For
example, FGA and SGA improved patients ability to recall a 12-word list by a only a tenth
of a word in these large scale studies (Keefe et al., 2007). Such low effect sizes may have
contributed to the lack of FDA approval for these antipsychotics being indicated as
procognitive. While basic science studies in animal models related to schizophrenia have
assessed the effects of FGA or SGA, rarely have the authors discussed the relevance of the
low to moderate effects of these drugs in patients (Martinez and Sarter, 2008). This
approach becomes a problem when the animal models show full reversals of cognitive
disruptions with antipsychotics – drugs that show minimal improvement in cognitive
symptoms in patients. While testing antipsychotics in mouse models of cognitive disruption
is a valid approach, ideally the model would better predict the dose effect function for low
levels of cognitive enhancement at lower doses of antipsychotics and cognitive-disrupting
effects at higher doses (i.e. an inverted U-shaped dose function), as well as the lack of full
reversals of cognitive impairment. Models showing low to moderate effects of
antipsychotics on cognition may represent a “real life” scenario and enable the evaluation of
add-on therapies with putative cognitive enhancers. This review will highlight studies on
mouse pharmacological animal models of cognitive disruption in schizophrenia; paying
particular attention to differential effects of FGAs and SGAs in the models, as well as when
such treatments result in a full reversal of the cognitive deficits in the model. The predictive
validity of such models will be evaluated (Geyer, 2006; Meyer et al., 2005; Young et al.,
2009) in light of the low to moderate effects of these drugs in patients.

Acetylcholinesterase inhibitors (AChEIs) constitute another class of drugs that have mixed
degrees of efficacy for improving cognition in schizophrenia. Several small-scale, open-
label studies reported positive effects of AChEIs on cognition in schizophrenia (Bora et al.,
2005; Buchanan et al., 2003; Mendelsohn et al., 2004; Stryjer et al., 2003), supported by
some randomized double-blind trials (Buchanan et al., 2008; Schubert et al., 2006). The
majority of larger double-blind randomized placebo designs (Chouinard et al., 2007;
Fagerlund et al., 2007; Ferreri et al., 2006; Keefe et al., 2008; Lee et al., 2007; Mazeh et al.,
2006; Risch et al., 2007; Sacco et al., 2008; Sharma et al., 2006) reported no improvement
of cognition in patients with schizophrenia. In a meta-analysis, it was suggested that AChEIs
may improve short-term memory and attention in patients with schizophrenia (Ribeiz et al.,
2010). Given that a third of the studies in the meta-analysis were from small-scale, open-
label trials, useful meta-analysis focused on large double-blind controlled studies would
provide greater information on the effects of AChEIs on cognition in patients with
schizophrenia. These studies are further complicated by the use of AChEIs as add-ons to
FGA and SGA treatment. Further clarity on the effects of AChEIs on cognition in
schizophrenia would aid the assessment of animal models of cognitive abnormalities in
schizophrenia. In the present review, we will include animal models that have utilized
AChEIs to assess the validity of the model. Hence, although the positive predictive validity
of an animal model for cognitive deficits in schizophrenia cannot be assessed clearly based
on the effects of AChEIs, it is possible to comment on the putative validity of some models.
Until the first treatments for cognitive deficits in schizophrenia are developed, nicotine
could also be used to assess the predictive validity of animal models because it can improve
cognition in normal subjects as well as in patients with schizophrenia (for review see (Levin
et al., 2006), especially for attention/vigilance (Smith et al., 2006). Without a clear
pharmacological tool to assess positive predictive validity, however, 1) basing the
manipulation used in the animal model on clear clinical evidence of pathology (e.g.
decreased frontocortical area predicting working memory span capacity deficits in
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schizophrenia patients (Gutierrez-Galve et al., 2010); or genetic risk, and 2) using tasks with
cross-species construct validity (Sarter, 2006) will be crucial to the refinement of animal
models of cognitive disruption in schizophrenia (Floresco et al., 2005).

1.3. Rat and mouse models related to schizophrenia: Species differences in
pharmacological response?

Previously, we reviewed rat and mouse pharmacological and genetic models of disrupted
cognition in schizophrenia with a specific focus on reviewing tasks with putative
translational validity for the MCCB (Young et al., 2009). A species disparity is evident in
approaches toward developing animal models of cognitive deficits in schizophrenia insofar
as few pharmacological models are established for mice while few rat genetic models have
been developed. This disparity has been discussed in other reviews of rodent cognitive
testing and/or animal models related to schizophrenia (Brigman et al., 2010a; Neill et al.,
2010; Robbins, 2002). While it has proven difficult to develop mutant genetic rat models,
pharmacological models can be developed readily in either species. Species differences in
pharmacological effects indicate that one cannot necessarily predict drug effects in mice
based on the rat pharmacological literature (or vice versa), suggesting that more emphasis
needs to be placed on understanding the behavioral pharmacology of CNS drugs in mice,
particularly for cognition. Mouse pharmacological studies will aid in drug discovery since a
combined approach of molecular genetics and pharmacology will likely be required for drug
development in schizophrenia. The proportion of one-to-one orthologues within G-protein-
coupled receptors (GPCR) superfamily – which contain many targets for cognitive
enhancement in schizophrenia – is only 70% between rat and mouse, with greater similarity
between mouse and human (86%) compared to rat and human (79%) (Gloriam et al., 2007).
Acknowledging and working around such differences in receptor characteristics between
rats and mice would assist in CNS drug discovery (Geerts, 2009). These differences can
manifest as different binding affinities, where for example the binding profile of
amphetamine is similar in mice and man, but less so when compared to rats (Han and Gu,
2006). The behavioral effects of these differences can also be observed. A widely used
cross-species test of sensorimotor gating in schizophrenia is prepulse inhibition (PPI) of
startle, where a pulse-induced startle reflex is reduced if preceded immediately by a non-
startling pulse (Braff and Geyer, 1990; Graham et al., 1975) . Mice are less sensitive to the
PPI-disruptive effect of dopamine D2 receptor agonists than are rats (Ralph-Williams et al.,
2003; Ralph-Williams et al., 2002; Ralph and Caine, 2005) while the D1 receptor plays a
more important role in the modulation of PPI in mice compared to rats (Halberstadt and
Geyer, 2011; Powell et al., 2003). Effects of other neurotransmitter systems on PPI also vary
by species. For example, indoleamine hallucinogens such as psilocin and 5-MeO-DMT that
act primarily on the serotonergic system increase PPI in mice (Halberstadt and Geyer, 2011)
while decreasing PPI in rats (Krebs-Thomson et al., 2006). Further behavioral
pharmacological differences are described elsewhere for PPI (Powell et al., 2009);
(Halberstadt and Geyer, 2011).

These species differences are less well understood for cognitive tasks pertinent to
schizophrenia research, primarily because fewer pharmacological studies have been
conducted in mice compared to rats. Thus, the potential pharmacological differences
between rats and mice performing cognitive tasks should be considered when generating
pharmacological mouse models of cognitive disruption in schizophrenia. For example,
subchronic phencyclidine (PCP) administration to rats consistently produces deleterious
effects on performance of the attentional set shifting task (ASST) that are specific to the
extra-dimensional (ED) shifting stage (Egerton et al., 2005; Goetghebeur and Dias, 2009;
Goetghebeur et al., 2010; Rodefer et al., 2005). Subchronic PCP in mice (0.63 and 1.3 mg/
kg, 5 days with testing occurring immediately after administration), however, impaired
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simple discrimination and reversal learning as well as ED shifting (Laurent and Podhorna,
2004). Although the mouse data are confounded by the lack of intradimensional (ID)/ED
differences, perhaps because of the limited ID shifts used (see (Young et al., 2009), the
differences in ASST performance with subchronic PCP between rats and mice indicate that
further effort is required to assess pharmacological effects on mouse cognition. In the
present review, we provide an overview of mouse pharmacological models of impaired
cognition related to schizophrenia in order to outline what has been done to date and suggest
directions for future pharmacological studies in mice.

2. Pharmacological mouse models of cognitive dysfunction in
schizophrenia

Psychotomimetic drugs induce hallucinations and psychotic states, and exacerbate
symptoms in patients with schizophrenia (Geyer and Vollenweider, 2008; Javitt and Zukin,
1991; Krystal et al., 1994; Malhotra et al., 1997a; Malhotra et al., 1997b). These drugs
include dopaminergic agonists (e.g. amphetamine), glutamatergic antagonists (e.g. PCP),
and cholinergic antagonists (e.g. scopolamine) and are often used in pharmacological rodent
models of schizophrenia. For example, the glutamate hypothesis of schizophrenia is derived
from evidence that acute administration of N-methyl-D-aspartate (NMDA) antagonists,
including PCP and ketamine, produces schizophrenia-like symptoms in healthy humans
(Javitt, 2004; Javitt and Zukin, 1991). Ketamine has since been used to induce a model of
psychosis in normal volunteers (Abel et al., 2003; Krystal et al., 1994; Malhotra et al., 1996;
Oranje et al., 2002), and to exacerbate symptoms in patients with schizophrenia (Malhotra et
al., 1997a; Malhotra et al., 1997b). While the effects of psychotomimetics described above
occur following acute treatment, subchronic or sensitizing regimens of drug treatment are
also used to assess behavior after a washout period while drug is not on board, avoiding
putative drug by drug interaction confounds (Jentsch et al., 1998; Jentsch and Roth, 1999;
Martinez and Sarter, 2008; Neill et al., 2010; Young et al., 2009). Acute, subchronic,
chronic, and sensitizing regimens of psychotomimetic administration will be covered below.

2.3. Pharmacologically induced disruption in learning and memory
Several paradigms exist with which to assess learning and memory in mice. Previously we
assessed the validity of novel object recognition tasks, the Morris water maze (MWM), and
the Barnes maze for assessing this domain in mice (Young et al. 2009). In the present review
we will examine pharmacologically induced disruptions in additional tasks that may have
some relevance to learning and memory. For example, NMDA antagonists have been
evaluated in tests of step down latency (long-term fear-related memory), as well as spatial
and non-spatial object recognition (short- and long-term memory). Acute administration of
the non-competitive NMDA receptor antagonist MK-801 (0.25 mg/kg) to mice impaired
their ability to remember to refrain from stepping down from a platform onto a grid that had
delivered a shock 24 hrs previously (Dall'Igna et al., 2003; de Oliveira et al., 2005).
MK-801-induced hyperactivity at this dose may have confounded the step-down behavior of
these mice, although these behaviors may be dissociable because chronic caffeine treatment
(1 mg/ml in drinking water for 7 days) reversed the hyperlocomotor but not step-down
latency (memory) effects of MK-801 (Dall'Igna et al., 2003). When administered at lower
doses in another study however, MK-801-induced (0.01 mg/kg) disruption in step-down
latencies was also attenuated with subchronic caffeine treatment (de Oliveira et al., 2005),
complicating whether these activity/memory effects are dissociable. Further details are
required to specifically address the dissociation of drug-induced effects on activity and
memory in this paradigm.
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Mandillo et al (2003) examined the effects of subchronic (5 days) MK-801 treatment (0.3
and 0.6 mg/kg) in a novel task designed to assess both spatial and non-spatial object
recognition. Consistent with subchronic PCP (5 and 10 mg/kg) and amphetamine (2.5 and 5
mg/kg), MK-801 impaired object recognition during a spatial, but not non-spatial challenge
(Mandillo et al., 2003). The effects of these drugs were assessed the day after treatment
cessation; hence it is unclear whether these effects on spatial memory were due to the
animals going through withdrawal or a fundamental change in their cognitive capabilities
induced by the drug. Another novel task to assess the effects of subchronic PCP (3 mg/kg on
days 1-5, and 8-12 with a 3-day washout period) on spatial recognition memory was used by
Thomsen et al. (2009). Subchronic PCP treatment impaired spatial recognition memory as
measured by increased time spent in a previously unvisited arm with 0 min between forced
sample arm and choice of arms. This effect was reversed by the novel α7 nicotinic
acetylcholine receptor (nAChR) partial agonist (SSR 180711) and attenuated by the
antipsychotics clozapine and haloperidol (Thomsen et al., 2009). While additional dose-
response studies may be needed to further validate this novel task and replicate these
findings, the data from this study are compelling.

Two laboratories have demonstrated on several occasions that non-spatial long-term (24 hr)
object recognition performance was impaired following subchronic PCP (10 mg/kg for
10-14 days) administration in mice even after a 3-day washout period (Hashimoto et al.,
2007; Kunitachi et al., 2009; Nagai et al., 2009; Wang et al., 2007). This subchronic PCP-
induced deficit in performance was reversed via several mechanisms including treatment
with the SGA aripiprazole but not the FGA haloperidol (Nagai et al., 2009), and the AChEI
donepezil but not physostigmine (Kunitachi et al., 2009). Interestingly, a sigma-1 receptor
agonist (SA4503) (Hashimoto et al., 2007) also reversed the subchronic PCP-induced
deficit, while the sigma-1 receptor antagonist NE-100 blocked donepezil-induced
improvement (Kunitachi et al., 2009). This administration regimen also impaired long-term
(24 hr) spatial memory for a single location, which was subsequently reversed by treatment
with the AChEI galantamine and SGA risperidone, both of which were blocked by the
dopamine D1 receptor antagonist SCH23390 (Wang et al., 2007). Interestingly SCH23390
and the serotonin 5-HT1A receptor antagonist WAY100635 blocked aripiprazole-induced
reversal of the long-term memory deficit, but the dopamine D2 receptor antagonist
raclopride did not (Nagai et al., 2009). Thus, dopamine D1 and serotonin 5-HT1A receptors
may contribute to antipsychotic- and or AChEI-induced reversal of PCP-induced
impairment of 24 hr single item memory, while sigma-receptors may be important for
AChEI treatment effects. Given that direct activation of sigma receptors also reversed this
PCP-induced deficit, donepezil may be acting via this receptor. Evidence for direct
cholinergic agonist-induced improvement in long-term memory also exists, via the α7
nicotinic acetylcholine receptor (Hashimoto et al., 2006). One problem with the
interpretation of these studies however, is that neither the vehicle- nor PCP-treated mice in
exhibited a preference (thus memory) for the novel object in several studies when compared
with chance. Thus, with no evidence of a memory trace, it is unclear what the cognitive
relevance would be of a significant difference between subchronic PCP and vehicle treated
mice. As discussed previously, neither risperidone nor AChEIs fully reverse memory
deficits in schizophrenia, raising the possibility that these models may produce false positive
results. The discrepancy between these preclinical data and the clinical data could exist
however, because the novel object recognition paradigm utilized may not be assessing the
same aspect of memory that is assessed in patients with schizophrenia (see below).
Alternatively, the possibility remains that floor and/or ceiling effects may limit the
opportunity to observe modest improvements in performance. The difference of FGA- and
SGA-induced effects could reflect doses used, because low doses may be more efficacious
for improving cognitive symptoms in patients with schizophrenia (Green et al., 2002). That
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said, the data on subchronic PCP administration and object recognition deficits in mice are
promising by virtue of the number and consistency of observed effects.

Subchronic methamphetamine administration (1 mg/kg, 7 days with a 7-day washout period)
also impaired 24 hr delay long-term object recognition memory. This effect has so far been
reversed by the SGA clozapine (Kamei et al., 2006), minocycline (Mizoguchi et al., 2008),
the AChEI galantamine (Noda et al., 2010), and the γ-aminobutyric acid (GABA)-A agonist
baclofen (Arai et al., 2009), but not the FGA haloperidol (Kamei et al., 2006). In these
studies, the vehicle-treated mice generally exhibited a preference for the novel object
(suggestive of a memory for the familiar object) thus the methamphetamine-induced
disruption in memory represents a genuine shift in behavior.

Scopolamine-induced disruption in cognition has primarily been utilized in the past as an
animal model of Alzheimer's disease. Schizophrenia and Alzheimer's disease exhibit
impaired cognition in overlapping domains, such as attention, memory, and executive
functioning. In contrast with some PCP and methamphetamine models, acute administration
is normally used in studies using scopolamine. Acute scopolamine (0.3 – 3.0 mg/kg)
impaired novel object recognition (3 hr delay) performance in Swiss mice (Dodart et al.,
1997). Because methylbromide scopolamine (which does not exert CNS effects due to its
blood brain barrier impermeability) did not affect novel object recognition performance
(Dodart et al., 1997), it is likely that scopolamine-induced deficits were mediated centrally.
Scopolamine- (0.63 mg/kg) induced deficits in novel object recognition performance (30
min delay) was attenuated with galantamine (10 mg/kg) treatment (de Bruin and Pouzet,
2006). Reversal of a scopolamine- (2 mg/kg) induced deficit in short- and long-term
memory assessed in the novel object recognition task (1.5 and 24 hr delay) has also been
observed with caffeine (10 mg/kg) pretreatment (Botton et al., 2010). The predictive validity
of scopolamine-induced deficits in this task as an animal model of schizophrenia is complex.
While galantamine – and caffeine – do not necessarily improve cognition in schizophrenia,
the former has been used only as an add-on therapy to FGA or SGAs. Thus, to fully explore
this model, combining scopolamine with FGA or SGAs to impair novel object performance
then reassessing galantamine or caffeine effects may provide a more complete model of a
putative adjunctive treatment study.

While novel object recognition testing is common in part because of its rapidity of use, there
are a number of potential difficulties in the interpretation of data that can limit the predictive
validity of study results. As discussed here and elsewhere, novel object recognition is of
course likely to assess short- (Mori et al., 2011; Niimi et al., 2008) or long-term memory
(Hashimoto et al., 2007; Kunitachi et al., 2009; Nagai et al., 2009; Wang et al., 2007)
depending upon the delay utilized in the protocol. Because of the possible contribution of
other cognitive processes to performance however, researchers have suggested that novel
object recognition specifically measures such processes, e.g. attention (Chuhan and
Taukulis, 2006; Dere et al., 2008; Silvers et al., 2007), working memory (Benice and Raber,
2009; Yamada et al., 2011), episodic memory (Idris et al., 2010; McLean et al., 2010), and
learning (Mori et al., 2011; Yamada et al., 2011). Thus, putting drug study results into
context for human cognitive testing has been difficult and do not readily occur in other tasks
such as the ASST or 5-choice serial reaction-time task (5CSRTT) discussed below that have
greater established validity for specific cognitive domains (Young et al, 2009). The cause of
the uncertainty over the exact cognitive process being measured may be the lack of goal-
directed behavior of the animals, which is in contrast with the ASST and 5CSRTT.
Although object (shape) recognition tasks exist in human procedures which require the
recognition of shapes as being novel or familiar - and for which patients with schizophrenia
exhibit deficits (Bozikas et al., 2006) - these human tasks have explicit instructions and thus
the motivation for recognizing novel shapes is specifiable. Recognition of novel objects in
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the rodent version of the task is inferred by the animal spontaneously engaging with the
novel object but there is no specifiable motivation for the animal to do so. The behavior is
viewed as innate, thus changes to this behavior could indeed reflect memory or changes to
that innate preference. Hence, pharmacological manipulations may in fact alter this
spontaneous novelty preference of the animal as much as its memory for familiar objects,
possibly confounding the interpretation of the data (Young et al., 2009). Nevertheless, such
concerns can be addressed in novelty recognition tasks by including shorter delays, at which
the animals demonstrate intact novelty preference. With this control, an impairment at
longer delays can be interpreted more confidently as being due to the delay and indicative of
impaired memory (King et al., 2004; Wietrzych et al., 2005). Unfortunately few studies –
and none reported here – incorporate such a control to confirm the delay-dependency of the
effect. Future studies investigating animal models with relevance to schizophrenia using
novelty recognition tasks would benefit from incorporating multiple measurements across
different delay intervals.

Another task of learning and memory is the MWM. In the MWM, animals are in pool of
opaque water with only one escape – a platform located just below the surface of the water.
The MWM is therefore an aversively (stress) motivated spatial learning and memory task.
While the MWM has several possible confounds to interpreting data including thigmotaxis
(swimming near the wall) and floating behaviors (hence the need to measure path length to
finding the platform as well as latency (D'Hooge and De Deyn, 2001), it has been used
extensively to assess spatial learning and memory in mutant mouse models related to
schizophrenia (Young et al., 2009). Fewer studies have been performed examining
pharmacological challenges, however. Subchronic PCP treatment (0.5 mg/kg for 12 days) of
mice in the MWM impaired spatial learning at a dose that did not affect swimming
performance (although 2 and 4 mg/kg treatment did affect swimming; (Beraki et al., 2008).
Training in the MWM occurred during the final 4 days of treatment; hence performance may
have been confounded by acute effects of PCP as well as withdrawal during probe sessions.
Repeated clozapine treatment blocked the PCP-induced impairment, while haloperidol did
not (Beraki et al., 2008). In a separate study, subchronic PCP (0.5-2 mg/kg for 7 days)
impaired learning the MWM 24 hour after PCP cessation (Beraki et al., 2009). This effect of
PCP was measured as altered latencies to find the platform, however, while the path length
taken by the mice did not differ. Given that 2 mg/kg adversely affected swimming
performance (Beraki et al., 2008), it is possible that the increased latency was due to floating
behaviors rather than impaired memory. There are now several human virtual reality
versions of the MWM in which patients with schizophrenia have been tested (Folley et al.,
2010; Weniger and Irle, 2008). To date the efficacy of SGA and FGA on improving
performance in patients with schizophrenia have yet to be compared in such a paradigm, but
such a study could prove very useful in assessing the predictive validity of the PCP/MWM
model described above.

2.4. Pharmacologically induced disruption in executive functioning and attention
Many cognitive deficits apparent in patients with schizophrenia appear to be largely
frontally mediated (working memory, attention, executive functioning, speed of processing),
but object recognition (Yee, 2000) and MWM (de Bruin et al., 1994) performance are not
frontally mediated ((Barker et al., 2007; Hannesson et al., 2004a; Hannesson et al., 2004b)
but rather involve the hippocampus and peri-rhinal cortex. For example, long- (24 hr) but
not short- (5 min) term memory assessed in mice using the novel object recognition task
requires a functioning hippocampus (CA1 region; (Hammond et al., 2004). Peri-post-rhinal
lesions impacted both long- (24 hr) and short-term (15 min) memory, although hippocampal
lesions did not affect long-term memory in rats in this task (Winters et al., 2004). Lesion
studies have determined that the hippocampus (Gerlai et al., 2002; Morris et al., 1982),
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habenula (Lecourtier et al., 2004), and fimbria-fornix (Liu and Bilkey, 2002) contribute to
learning in the MWM.

There have been few pharmacological studies in mice in tasks that are putatively frontally
mediated. As described above, Laurent and Podhorna (2004) assessed the effects of
subchronic PCP (0.63 and 1.3 mg/kg, 5 days with testing occurring immediately after
administration) in mice on the ASST. The ED shift and reversal learning components of the
mouse ASST require the medial prefrontal and orbitofrontal cortices, respectively
(Bissonette et al., 2008). The ASST procedure employed by the two groups differed
however as Laurent and Podhorna, (2004) used only one ID shift while Bissonette et al
(2008) used four, with the latter demonstrating an ID/ED shift indicating an attentional set
was formed, although ID/ED shifts can be observed with one ID shift (DeSteno and
Schmauss, 2008; Young et al., 2010). The lack of ID/ED shift would suggest that the PCP-
induced impaired ED shifting, simple discrimination, and reversal learning in mice observed
by Laurent and Podhorna (2004) may not reflect set-shifting deficits in patients with
schizophrenia (Young et al., 2009), or consistency with reports on PCP-induced ED shifting
deficits in rats (Egerton et al., 2005; Goetghebeur and Dias, 2009; Goetghebeur et al., 2010;
Rodefer et al., 2005). While mice readily dig in bowls for a reward (as in the ASST), mice
can also use visual cues and a touch-screen apparatus to perform reversal learning tasks
(Bussey et al., 2001; Izquierdo et al., 2006), although ASST using this apparatus has not
been successful to date (Brigman et al., 2005). Subchronic PCP (5 mg/kg twice daily for
seven days with a 7-day washout period) did not affect reversal learning in this visual touch-
screen paradigm (Brigman et al., 2009), which is consistent with several rat ASST studies in
which no deficits in reversal learning were observed following PCP (Egerton et al., 2005;
Goetghebeur and Dias, 2009; Goetghebeur et al., 2010; Rodefer et al., 2005). Reversal
learning can be modulated in mice in the visual touchscreen via pharmacological or genetic
inactivation of the serotonin transporter (Brigman et al., 2010b), suggesting that this assay is
sensitive to detect experimental manipulations. Thus, more work is required to assess the
effects of subchronic PCP in reversal learning paradigms in mice. Acute MK-801 (0.05 and
0.1 mg/kg) administration to mice impaired spatial reversal learning in a water T-maze,
where the location of the escape platform was relocated to the other arm after the location
was learned initially. MK-801-induced disruption of performance was reversed by the
AChEIs physostigmine and donepezil, but not galantamine (Csernansky et al., 2005). These
findings may relate to the primary action of physostigmine and donepezil as AChEIs
because some studies suggest galantamine primarily acts as a direct nAChR agonist
(Wilkinson et al., 2004). As described above, more information on the effects of FGA or
SGAs on the AChEI-induced reversal of this MK-801-induced deficit would be required to
fully explore this as an animal model of schizophrenia. Other tasks can be utilized to
investigate NMDA-induced disruption of reversal learning including the serial reversal
learning paradigm (Dickson et al., 2010).

In the 5CSRTT which assesses sustained attention (Carli et al., 1983; Humby et al., 1999),
acute doses of PCP disrupted the performance of C57BL/6N (3 mg/kg) and DBA/2 (1.5 mg/
kg) mice (Greco et al., 2005). The multivariate approach to measuring 5CSRTT
performance enables the interpretation of pharmacologically induced changes in
performance beyond that of altered attention however (Robbins, 2002). This PCP-induced
impairment may have been driven by a general disruption of responding not specific to
attentional processes, because premature and time-out responses were also affected. This
PCP-induced effect was attenuated by administration of the metabotropic glutamate 2/3
agonist LY379268 (Greco et al., 2005), a current target for treating positive symptoms and
cognitive disruption in schizophrenia (Patil et al., 2007). Acute amphetamine (1 mg/kg) also
increased premature responding in C57BL/6J but not DBA/2J mice, and did not disrupt
accuracy, omissions, or mean correct response latencies in either strain (Loos et al., 2010).
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Acute scopolamine (0.02 - 2 mg/kg) impaired attention in several strains of mice (C57BL/6,
DBA/2, 129/Sv, as well as C57BL/X129/Sv and C57BL/6XDBA/2 hybrids) in the 5CSRTT
(de Bruin et al., 2006; Humby et al., 1999; Pattij et al., 2007). Scopolamine reduced
accuracy, increased response latencies, premature responses, and omissions in second
generation C57BL/6X129/Sv hybrid mice at doses as low as 0.08 mg/kg (de Bruin et al.,
2006). Not all strains were identical in effect however, for example DBA/2 mice were
hypersensitive to scopolamine-induced disruption in accuracy (affected at 0.1 mg/kg unlike
C57BL/6 or 129/Sv mice) but their omission levels were unaffected (again unlike C57BL/6
or 129/Sv mice (Pattij et al., 2007). C57BL/6XDBA/2 hybrids were more sensitive to the
scopolamine-induced detrimental effects of accuracy and omissions when compared with
C57BL/6X129/Sv mice (Humby et al., 1999). These studies support evidence that DBA/2
mice may be an interesting strain to study in terms of poor cholinergic regulation for
schizophrenia research (Singer et al., 2009; Stevens et al., 1996). Moreover, these studies
support the notion that cholinergic antagonist-induced disruption of cognition may still be an
appropriate model for deficits in schizophrenia (Friedman, 2004; Lieberman et al., 2008;
Martin et al., 2004; Scarr and Dean, 2008; Terry, 2008). Interestingly, acute scopolamine
(0.075 mg/kg) treatment to rats reduced accuracy and increased omissions, but did not affect
premature responses or response latencies (Waters et al., 2005), although older rats exhibited
slower latencies with scopolamine (0.03 and 0.075 mg/kg; (Jones et al., 1995). In another
study, PCP (1 – 3 mg/kg) affected all these measures in rats but also increased premature
responding (Le Pen et al., 2003). Thus, while there are similarities between mouse and rat
studies in the 5CSRTT, there are as many differences between the two species as within rat
studies to date. In mice, the acute scopolamine-induced deficit in 5CSRTT performance was
similar with that of PCP-induced deficit in terms of generalized disruption in performance
rather than a specific effect on accuracy or omissions. Acute amphetamine selectively
increased premature responding only. Thus, there have yet to be examples of
pharmacological manipulations that have selectively impaired attentional measures in mice
in the 5CSRTT with relevance to schizophrenia.

3. Discussion
There have been great strides accomplished in developing genetic mouse (Arguello and
Gogos, 2010) and rat pharmacological models of cognitive disruption in schizophrenia
(Young et al., 2009). Our understanding of mouse pharmacological models is far more
limited, however (Brigman et al., 2010a). As reviewed here, although the number of studies
in mice assessing pharmacological disruptions and improvements in tasks such as novel
object recognition, MWM, reversal learning, and the 5CSRTT is increasing, more work
needs to be done to further explore and validate these models. While it is tempting to assume
there will be consistency between rats and mice in drug effects, the pharmacological and
genetic differences between rats and mice in other behaviors such as PPI (described above;
(Geerts, 2009; Gloriam et al., 2007; Halberstadt and Geyer, 2011; Powell et al., 2009)
suggest that we should be cautious with such assumptions. Thus, there is a need to
understand the behavioral effects of drug manipulations in mice that produce
neuropathological abnormalities consistent with schizophrenia (Behrens et al., 2008). Such
knowledge will prove useful if future mouse models with susceptibility genes are combined
with pharmacological or developmental models relevant to schizophrenia.

5.2 Future directions for mouse pharmacological models
In this review we describe various studies examining mouse pharmacological models of
cognitive dysfunction in schizophrenia. The majority of these studies investigated the
domain of visual learning and memory and assessing putative treatment effects, while there
have been few studies examining the attention, reasoning and problem solving, or speed of
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processing domains identified by MATRICS as being impacted in schizophrenia. The
procognitive efficacy of some drugs to treat these domains have been tested extensively in
patients and to date have not resulted in approved medications and have yielded only low to
moderate effects at best, e.g. antipsychotics at doses required to treat positive symptoms
(Keefe et al., 2007; Mintz and Kopelowicz, 2007) and AChEIs as adjunctive therapy to
antipsychotics (Chouinard et al., 2007; Fagerlund et al., 2007; Ferreri et al., 2006; Keefe et
al., 2008; Lee et al., 2007; Mazeh et al., 2006; Risch et al., 2007; Sacco et al., 2008; Sharma
et al., 2006). While we cannot assess the pharmacological predictive validity of a model
directly given that no drugs have been approved for the procognitive treatment of
schizophrenia, we have identified where several of these animal models were successfully
treated with antipsychotic and AChEI administration (Kunitachi et al., 2009; Nagai et al.,
2009; Thomsen et al., 2009; Wang et al., 2007). As discussed above, the procognitive
efficacy of FGA, SGA, and AChEI drugs have been reported as weak at best. Ideally, an
animal model of cognitive disruption in schizophrenia would model these weak effects,
providing an opportunity for adjunctive therapies to be tested. While demonstrating weak
procognitive effects of these drugs while assessing adjunctive would require large sample
sizes, such studies are possible at least in rats (Horiguchi et al., 2011). From a practical
viewpoint these studies may require too much effort when simply examining a mechanism
of action in an animal model, but perhaps before a drug is moved into preclinical testing
such larger scale studies should be completed. Thus, for many of the pharmacological mouse
models described here with SGA- and AChEI-induced full reversal of cognitive deficits,
further investigation is required if they are to be used to screen for procognitive drugs.
Investing time and money into more complete preclinical models may offset the large cost
of clinical trials to test treatment efficacy (Nolen et al., 2007).

It is important to note that animal models of cognitive disruption in schizophrenia are
produced by 1) the measure (i.e. performance of a cognitive task) and 2) the manipulation
(i.e. administration of drug to impair performance). The greater the cross-species
translational validity the cognitive task has for measuring that domain in patients (e.g.
construct validity), the higher the chances that the pharmacological effects observed in
animal models will translate across species (Floresco et al., 2005; Moore, 2010; Sarter,
2004, 2006; Young et al., 2009). Moreover, the greater the validity the manipulation has to
what causes impaired cognition in patients, again the higher the chances that the effects of a
model will be consistent with patients with schizophrenia (Geyer and Markou, 2002;
Markou et al., 2008; Moore, 2010; Young et al., 2009). Therefore, the procognitive effects
of SGA and AChEIs described above could be due in part to the limited translational
validity of the task (e.g. novel object recognition testing) for assessing memory as occurs in
patients (Floresco et al., 2005; Moore, 2010; Sarter, 2004; Young et al., 2009). Thus,
developing and validating mouse tasks with cross-species translational validity should be a
priority (Moore). As mentioned previously, nicotine may be a useful tool with which to
assess the predictive validity of animal models to detect improvements in cognition in
normal subjects (for review see (Levin et al., 2006), and in patients with schizophrenia
(Radek et al., 2010; Smith et al., 2006).

One further consideration is that a true model for cognitive disruption in schizophrenia
should include treatment with a dopamine D2 receptor antagonist since it is extremely likely
that cognitive treatment will be an add-on therapy to current antipsychotic medications
(Buchanan et al., 2005; Marder, 2006; Young et al., 2009). Such an inclusion of models
assessing add-on therapies, in addition to combining genetic and pharmacological insults,
may prove more fruitful for future tests of cognition enhancement in mice. Although a
daunting experimental prospect, for applicability to the heterogeneous group of
schizophrenia disorders, such studies may well be required in the future.
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• Reviews mouse pharmacological models pertinent to cognitive disruption in
schizophrenia

• Assesses the validity of such mouse models

• Discusses the limitations of assuming pharmacology in mice will be consistent
with rats

• Offers future directions for validation and combined genetic/pharmacological
models
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