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Abstract Organic species are an important but poorly
characterized constituent of airborne particulate matter. A
quantitative understanding of the organic fraction of
particles (organic aerosol, OA) is necessary to reduce some
of the largest uncertainties that confound the assessment of
the radiative forcing of climate and air quality management
policies. In recent years, aerosol mass spectrometry has

been increasingly relied upon for highly time-resolved
characterization of OA chemistry and for elucidation of aerosol
sources and lifecycle processes. Aerodyne aerosol mass
spectrometers (AMS) are particularly widely used, because
of their ability to quantitatively characterize the size-resolved
composition of submicron particles (PM1). AMS report the
bulk composition and temporal variations of OA in the form
of ensemble mass spectra (MS) acquired over short time
intervals. Because each MS represents the linear superposi-
tion of the spectra of individual components weighed by their
concentrations, multivariate factor analysis of the MS matrix
has proved effective at retrieving OA factors that offer a
quantitative and simplified description of the thousands of
individual organic species. The sum of the factors accounts
for nearly 100% of the OA mass and each individual factor
typically corresponds to a large group of OA constituents
with similar chemical composition and temporal behavior
that are characteristic of different sources and/or atmospheric
processes. The application of this technique in aerosol mass
spectrometry has grown rapidly in the last six years. Here we
review multivariate factor analysis techniques applied to
AMS and other aerosol mass spectrometers, and summarize
key findings from field observations. Results that provide
valuable information about aerosol sources and, in particular,
secondary OA evolution on regional and global scales are
highlighted. Advanced methods, for example a-priori con-
straints on factor mass spectra and the application of factor
analysis to combined aerosol and gas phase data are
discussed. Integrated analysis of worldwide OA factors is
used to present a holistic regional and global description of
OA. Finally, different ways in which OA factors can
constrain global and regional models are discussed.
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organic aerosol (POA) . Secondary organic aerosol (SOA) .

Aerosol sources . Aerosol processes . Aerosol life cycle

Abbreviations
AMS Aerosol mass spectrometer
BBOA Biomass-burning organic aerosol
CCN Cloud condensation nuclei
CMB Chemical mass balance
COA Cooking-related organic aerosol
CPCA Custom principal-component analysis
EI Electron-impact ionization
FA-AMS Factor analysis of aerosol mass

spectrometry
HOA Hydrocarbon-like organic aerosol
HR High resolution
HR-ToF-AMS Aerodyne aerosol mass spectrometer

equipped with a high-resolution
time-of-flight mass spectrometer.
It provides mass spectra with mass
resolution of up to ~5000–6000

IVOC Intermediate volatility organic
compounds

LV-OOA Low-volatility oxygenated organic aerosol
LS-AMS Light-scattering aerosol

mass spectrometer
MCA Multiple component analysis
ME Multilinear engine
MS Mass spectra
NOA Nitrogen-enriched organic aerosol
NR Non-refractory
OA Organic aerosol, i.e., the organic

fraction of airborne particulate matter
OOA Oxygenated organic aerosol
PAH Polycyclic aromatic hydrocarbons
PIAMS Photoionization aerosol mass

spectrometer
PMF Positive matrix factorization
POA Primary organic aerosol (emitted

into the atmosphere directly in
the particle phase)

PTR-MS Proton-transfer-reaction mass
spectrometer

Q-AMS Quadrupole-based aerodyne
aerosol mass spectrometer. It provides
unit-resolution mass spectra

SI-AMS Soft-ionization aerosol mass
spectrometers

SMPS Scanning mobility particle sizer
SOA Secondary organic aerosol (created

by chemical reactions leading to a
decrease in species volatility and
increased partitioning to the particle
phase)

SVOC Semi-volatile organic compounds
SV-OOA Semi-volatile oxygenated

organic aerosol
TAG Thermal desorption aerosol gas

chromatography–mass spectrometry–
flame ionization detection

TD Thermodenuder
UMR Unit-mass resolution
VOC Volatile organic compounds
WSOC Water-soluble organic carbon

Introduction

Aerosol particles affect the radiative budget of the
Earth’s atmosphere through scattering and absorption
of light (i.e., direct climate forcing effect) and by
modulating the formation and properties of clouds (i.e.,
indirect climate forcing effect) [1, 2]. Aerosols also have
serious adverse effects on air quality [3], human health
[4], and ecosystems [5]. Organic aerosol (OA, i.e., the
organic fraction of particles) accounts for a substantial
fraction (~10–90% [6–8]) of the global submicron aerosol
burden and thus is a key determinant of aerosol properties
and effects. A thorough understanding of the characteristics,
sources, and processes of OA is necessary to address aerosol-
related environmental issues and to improve the predictive
capability of air quality and climate models.

The characterization of OA chemical composition and
mass concentration is limited by analytical challenges
arising from the fact that atmospheric OA comprises
thousands of compounds with vastly different properties
such as oxidation state, volatility, and hygroscopicity
[7–9]. This compositional complexity of OA is a conse-
quence of the extremely diverse sources and reactions of
organic species in the atmosphere [10]. By a broad
classification of sources, there are primary OA (POA)
emitted directly in particulate form, e.g., from fossil fuel
and biomass burning or mechanical processes, and
secondary OA (SOA) produced from the oxidation of
volatile organic compounds (VOCs) [7]. POA and VOCs
are released from various biogenic, biomass burning,
and anthropogenic sources [10]; SOA formation occurs
via many reaction pathways that convert VOCs into low
volatility species [11]. Furthermore, the composition and
properties of both POA and SOA may change dynamically
throughout aerosol lifetime, because of intertwined pro-
cesses including emission, oxidation, fragmentation, olig-
omerization, gas-to-particle partitioning, and cloud
processing [12–18].

Factor analysis of time and compositionally-resolved OA
data enables the extraction of broad “factors” or “compo-
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nents” representing species that correlate in time. Each
factor extracted in this way typically corresponds to
many individual molecules and contains information
about their sources, processing histories, and/or chemical
properties. Several publications have reported factor
analysis of speciated OA data from filters [19–22],
albeit with low time resolution (typically 24 h) which
obscures some of the contrast in concentration variations
because of the dynamics of the sources, chemistry, and
transport. In recent years, online aerosol mass spectrometers
have enabled chemical analyses of aerosols in real time
with high time resolution (seconds to minutes) [23]. A
range of mass spectrometers using various particle
vaporization and ionization techniques have been developed.
The most common designs include thermal desorption
followed by electron ionization [24, 25] or other types of
ionization [26, 27] and laser ablation [28, 29]. Instruments
based on thermal desorption are mainly configured for
determining ensemble particle properties averaged over
defined time periods, whereas the laser-based instruments
are primarily used for single-particle measurements.
Single-step laser ablation and ionization detection
schemes typically provide qualitative information about
aerosol chemical constituents because the observed
intensities are highly affected by the actual composition
of the detected aerosol particle. Two-step thermal
desorption and linear ionization schemes, on the other
hand, provide quantitative and linearly additive mass
spectra of mixtures (i.e., each mass spectrum that is
observed is a linear combination of the responses from
individual compounds present in the mixture). As
discussed in more detail in the section “Bilinear modeling”,
the factor analysis methods discussed in this review are
based on linear additivity of constant factor mass spectra.
Thus, we focus only on analysis of data from the thermal
vaporization-based aerosol mass spectrometers.

Aerodyne Research aerosol mass spectrometers
(termed “AMS” hereafter) are the most widely used
thermal desorption-based mass spectrometers in aerosol
research. The AMS can quantify the mass concentrations of
non-refractory (NR) species including sulfate, nitrate,
ammonium, chloride, and total organic matter via
thermal vaporization (typically at 600 °C) and 70-eV
electron-impact ionization (EI) [25]. The distributions of
these species as a function of particle size are also
determined on the basis of measurement of particle
velocities inside a vacuum chamber [30]. The HR-ToF-
AMS, i.e., AMS built with a high-resolution time-of-flight
mass spectrometer, is further able to determine the
elemental composition and oxidation states of organic
aerosols [31–33]. From each measurement, the AMS
outputs an ensemble MS of OA that is the linear
superposition of the mass spectra of individual species

weighed by their concentrations. Because most mole-
cules undergo extensive fragmentation during high-
temperature vaporization and high-energy ionization
inside the AMS, the AMS spectra provide information
on the bulk composition of OA with limited molecular
detail [25]. Mass spectral fragmentation can be limited
by using soft-ionization aerosol mass spectrometers
(SI-AMS), which afford increased information about
the molecular composition of OA, although at the
expense of quantifying the total OA mass, and
typically of lower signal-to-noise ratio also [34–37].
The quantitative mass spectra generated by SI-AMS
systems can be used in factor analysis and can provide
more detailed information about OA sources.

This review summarizes the methods of factor
analysis of fast time-resolved linearly additive mass
spectral data, and key results obtained with these
methods about primary sources, secondary formation,
evolution/aging processes of atmospheric OA, and the
global context of OA. One-hundred and twenty-five
papers have been published in this area so far, all but
three of which focus on Aerodyne AMS data; therefore
the review focuses more strongly on AMS results.

Multivariate factor analysis of aerosol mass spectra

An atmospheric field study usually lasts a few weeks to
months, during which an aerosol mass spectrometer
operates continuously to record the temporal variations
of the composition and concentration of the OA in the
form of a mass spectral matrix (denoted “ORG”
hereafter), i.e., an array of m measured mass spectral ion
intensities compiled over t sampling time steps. An ORG
from a typical AMS study, for example, usually comprises
thousands of ensemble spectra acquired with a time
resolution of seconds to minutes.

Bilinear modeling

The objective of multivariate factor analysis is to
deconvolve the observed ORG matrix into unique factors
(Eq. 1). Factor analysis of the data matrices from
quantitative instruments (e.g., AMS and some soft-
ionization aerosol mass spectrometers) usually involves
solving a two-dimensional bilinear model that expresses
mass conservation, such that:

orgij ¼
XP
p¼1

tsipmspj þ eij ð1Þ

where i and j refer to row and column indices, respectively, in
the ORG matrix, orgij is the signal of ion fragment j at time
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step i (for the AMS it is the organic-equivalent mass
concentration of that fragment, in μg m−3), tsip is the
concentration of a given factor p at time step i, mspj is the
fractional contribution of ion fragment j in the mass spectrum
of factor p, and eij is the residual not fit by the model for ion
fragment j at time step i. P is the total number of factors in
the solution. A graphical schematic diagram of the model is
shown in Fig. 1.

Written in matrix form, Eq. (1) and Fig. 1 show that
the bilinear model represents the matrix of data points
(i.e., ORG, dimensions t × m) as the product of two
smaller matrices—one of which comprises the concentra-
tion time series (TS) and the other the mass spectra (MS)
or source profiles of OA factors (total number = P)—plus
a matrix of residuals (E) to account for the unexplained
part of ORG:

ORG ¼ TS�MSþ E ð2Þ

TS ¼ ts1; ts2; . . . ; tsP½ � ð3Þ

MS ¼

ms1
ms2
..
.

msp

2
666664

3
777775

ð4Þ

As illustrated in Fig. 1, tsp is a column vector
representing the time series of any given factor “p” and
msp is a row vector representing its mass spectrum. For the
AMS, each ms is normalized to sum to 1 so that all

elements in ts have units of mass concentration (μg m−3).
An underlying assumption of bilinear modeling is that each
factor has a constant mass spectrum but varying concen-
tration over time. If the true factor spectra are not constant
as assumed by the model, E may be significantly larger
than measurement errors even after all physically meaning-
ful factors have been extracted.

Zhang et al. [40, 41] conducted the first bilinear factor
analysis of the AMS data using a custom principal
component analysis (CPCA) method. CPCA solves Eq. (1)
on the basis of an iterative linear-decomposition algorithm
that is initialized with the time series of two AMS tracer ions
—m/z 44 (mainly CO2

+) and m/z 57 (with a major
contribution of C4H9

+ in urban areas)—as the first-guess of
TS. Especially at urban locations, this algorithm is able to
deconvolve two chemically and physically meaningful OA
factors—an oxygenated OA factor (OOA) that represents
SOA and a hydrocarbon-like OA factor (HOA) that
represents POA associated with urban emissions [40–43].
An expanded version of the CPCA called multiple compo-
nent analysis (MCA) was later developed to separate more
than two factors [44]. Application of MCA to 37 AMS
datasets acquired from various urban, rural, and remote
atmospheric environments revealed that the sum of OOAs is
often larger than the sum of HOA and other POA factors [6,
45–47], indicating that atmospheric OA are dominated by
oxygenated species, mainly of secondary origin [6].

Positive matrix factorization (PMF)

PMF [48, 49] is a standard multivariate factor analysis
model broadly used in the field of air pollution source
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Fig. 1 Schematic diagram of bilinear factor analysis of a mass
spectral matrix of an organic aerosol (ORG). The time series of the
factors (tsn) make up the matrix TS (Eq. 3) and the mass spectra of the
factors (msn) make up the matrix MS (Eq. 4). The differences between

the measurements and the modeled results are represented as the
residual matrix E. (Adapted from Ref. [38]). An example of the factor
results obtained from PMF analysis of an ambient AMS dataset is
shown in Fig. 2
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apportionment. In recent years, it has seen more applica-
tions in factor analysis of quantitative aerosol mass
spectrometry [34, 38, 50–52]. PMF models the data matrix
(ORG) according to Eq. (1) as a positively constrained,
weighted least-squares problem without a-priori assump-
tions for either source (MS) or time (TS) profiles [38, 48].
The researcher chooses the number of factors, P, and the
solution to PMF is the one that minimizes the sum of the
weighed squared residuals (“Q value”, or “PMF quality-of-
fit parameter”):

Q ¼
Xt

i¼1

Xm
j¼1

ðeij=s ijÞ2 ð5Þ

where σij is an element in the t × m matrix of estimated
errors (1σ measurement precisions) corresponding to the
variables (orgij) in ORG (Eq. 1). The purpose of this
scaling is to weigh each variable by its degree of
measurement uncertainty, so that the factor analysis model
can make use of the real information content of the dataset
[48]. Each value in the solution matrices (i.e., MS and TS
in Eq. 1) of PMF is constrained to be positive, reflecting the
real atmospheric situation. The bilinear PMF model can be
solved by several algorithms, with the PMF2 and multi-
linear engine (ME-2) software distributed by P. Paatero [48,
53] being the most commonly used.

If the assumptions of the bilinear model are appropriate
for the dataset and the error estimates are accurate, when
the minimum Q value is achieved all elements in the matrix

are fit to within their expected error, i.e., eij
�� ��=s ij � 1. Then

the expected value of Q (Qexp) should equal the degrees of
freedom of the fitted data [54]:

Qexp ¼ t � mð Þ � P � t þ mð Þ ð6Þ
For AMS datasets, because t � m >> P � ðt þ mÞ,

Qexp ≈ t × m (the number of points in ORG).
Thus, if the bilinear model is appropriate and the errors

are small, the solution with the correct number of factors
should give Q/Qexp near unity [38]. Values of Q/Qexp > > 1
indicate either underestimation of the errors, or variability
in the factor mass spectra that cannot be simply modeled as
the sum of the given number of factors. Q/Qexp < < 1
indicates overestimation of the errors of the input data.

PMF analysis of aerosol mass spectra

Lanz et al. [51] reported the first PMF study on an AMS
dataset acquired in Zurich, Switzerland, in summer 2005
and identified six factors, including an HOA, two OOAs,
and three factors linked to charbroiling, wood burning, and
food cooking sources, respectively. The less oxidized
OOA-2 factor was found to represent less processed, more
volatile SOA [51]. Ulbrich et al. [38] also reported using

PMF for identification of a semivolatile OOA-2 factor, in
addition to a more oxidized, regional OOA-1 and an HOA
in Pittsburgh. These PMF results agree well with the
original two-factor (HOA and OOA) CPCA results of
Zhang et al. [40, 55]. The fact that PMF is able to retrieve a
low-concentration, yet distinct factor (OOA-2) highlights
its strength in extracting information from datasets, e.g.,
resolving factors that make up a small fraction of the total
mass. Based on PMF analysis of synthetic ORG matrices
that were reconstructed assuming variable contributions
from Pittsburgh OOA-1, OOA-2, and HOA factors, Ulbrich
et al. [38] estimated that PMF of quadrupole AMS data
(unit-mass resolution; UMR) can typically retrieve factors
that account for at least 5% of the AMS mass.

The extraction of two distinct OOA subfactors was
achieved later in PMF studies of a large number of other
AMS datasets [13, 14, 18, 56]. Typically, the more oxidized
OOA factor (OOA-1) correlates well with sulfate and is
thought to be more aged and non-volatile. In contrast, the
less oxidized OOA (OOA-2) is thought to be typically
semivolatile because of its diurnal cycles and time trends
that are similar to those of ammonium nitrate and chloride,
both of which dynamically partition between gaseous and
particulate phases depending on ambient temperature and
humidity. The relative volatility characteristics of the two
OOAs were confirmed by thermodenuder measurements
[57–60]. In particular, Cappa and Jimenez [60] reported
volatility distributions for both OOAs and other OA
components for Mexico City. For these reasons, Jimenez
et al. [13] introduced the more descriptive acronyms LV-
OOA (low-volatility) and SV-OOA (semivolatile), respec-
tively, that have become the standard terminology.
However, the terminology LO-OOA and MO-OOA for
less and more oxidized OOA, respectively, is also
appropriate, especially for datasets for which volatility
data are not available. More discussion on the differences
among OOA subtypes is given in the section “OOA
subtypes and interpretation”.

PMF studies have been conducted on AMS datasets
acquired with both UMR and high-resolution (HR) mass
spectrometers. Most of the earlier datasets are UMR but
more HR-AMS-PMF results have been reported recently
[22, 39, 50, 61–68]. A main advantage of the HR-AMS
data is the separate quantification of different ions having
the same nominal mass, enabling more precise character-
ization of the temporal variations of different ion types
(e.g., CxHy

+, CxHyOz
+, CxHyNp

+, and CxHyNpOz
+). The

enhanced chemical resolution, and thus the higher infor-
mation content in the HR-AMS datasets, is useful for
constraining the PMF solutions, reducing their rotational
ambiguity and leading to more easily interpretable
solutions and, potentially, a larger number of interpretable
OA factors. For example Aiken et al. [64] reported that
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HOA and biomass burning OA (BBOA) were better
separated using HR-AMS data as opposed to when the
same data were analyzed as UMR, because their spectra
are somewhat similar in UMR but very different in HR. In
addition, the HR mass spectra of the OA factors also
contain more information useful for interpreting their
sources and processing.

Figure 2 shows an example of typical PMF results from
an HR-AMS dataset, including the time series, HR spectra,
and diurnal patterns of the individual OA factors. The
dataset was acquired in New York City in summer 2009
[39]. Five OA factors were determined, each with distinct
temporal variation and mass spectral patterns:

1. LV-OOA (oxygen-to-carbon atomic ratio O/C = 0.63)
that correlates strongly with sulfate;

2. SV-OOA (O/C = 0.38) that correlates better with
ammonium nitrate and chloride than LV-OOA does;

3. a nitrogen-enriched OA (NOA) with a much higher N/C
ratio (0.052) than other OA components (~0.004–0.011);

4. a cooking-related OA (COA) which has spectral
features similar to those of POA from cooking
emissions and a distinctive diurnal pattern peaking
during lunch and dinner times; and

5. an HOA that represents POA from fossil fuel combus-
tion given its low O/C ratio (0.06) and good correlation
with primary combustion emission species, for example
NOx and EC.

Detailed discussions of the association of each compo-
nent with different sources and processes are given in Sun
et al. [39].

In addition to AMS data, PMF has been applied to the
OA data from other aerosol mass spectrometers. To our
knowledge, there are two published studies, one from a SI-
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AMS and the other from an on-line GC–MS. Because
both techniques determine individual molecules (or
larger fragments or decomposition products) in aerosols,
these analyses may be particularly useful for studying
the sources and source contributions of OA. Williams et
al. [69] performed PMF analysis on hourly time-
resolution data of organic marker compounds measured
with a thermal desorption aerosol GC–MS–FID (TAG)
instrument from a study site in Riverside, California. The
grouping of marker compounds in each factor was used to
identify the presence of several different source types,
including local vehicle emissions, food cooking opera-
tions, biomass burning, regional primary anthropogenic
emissions, biogenic POA sources, several types of SOA,
and semivolatile anthropogenic and biogenic OA. A key
challenge in this type of tracer-based apportionment is to
assign a fraction of OA mass to each factor, because the
tracers account for only a small fraction (<20%) of the OA
mass. Williams et al. [69] performed this step using a
multivariate fit of their OA components to the AMS OA
concentration. Figure 3 shows the diurnal cycles of OA
sources obtained with this method during the summer
study, with SOA (POA) being more important during the
day (evening/night), in agreement with, e.g., the NYC
results in Fig. 2 and AMS results at other locations. An
earlier study applied principal-component analysis (PCA)
on data from the same instrument, and identified several

sources due to transported and local anthropogenic
pollution, transported and local biogenic emissions, and
a local marine or dairy source, for a summer 2004 dataset
in coastal Nova Scotia, Canada [70]. However, PCA
apportions variance, and the resulting time series and mass
spectra of the factors can contain negative values. PCA is
therefore fundamentally different from PMF, which
apportions the mass directly into nonnegative solutions
that are physically meaningful.

Dreyfus et al. [34] used PMF to study the time trends
of 60 organic molecular and fragment ions measured with
a photoionization aerosol mass spectrometer (PIAMS)
with a time resolution of a few minutes. Six factors were
identified and linked to POA sources, including diesel
exhaust, car emissions/road dust, and meat cooking. The
mass contributions of individual sources were subsequent-
ly estimated, similarly to Williams et al. [69], by
combining the PMF results and the EC/OC data. Figure 4
shows the results of a factor attributed to meat cooking
aerosol, based on:

1. the mass spectrum that shows prominent peaks at m/z
values corresponding to the molecular ions of palmitic,
linoleic, stearic, and oleic acids, all of which are tracer
compounds for meat cooking (Fig. 4a);

2. the diurnal pattern that shows two characteristic peaks
consistent with typical mealtimes (Fig. 4b); and

3. the wind rose plot which shows features consistent with
the locations of cooking facilities near the site (Fig. 4c).

Similar diurnal dependences were observed for cooking
aerosol factors identified by factor analysis of AMS
datasets at several locations, as discussed above for New
York City [39, 51, 66, 71, 72].

Evaluation and selection of PMF solutions

Although a major objective of multivariate factor analysis is
to explore underlying covariation of variables in a dataset to
extract physically meaningful factors that can be related to
distinct sources, processes, and/or properties, the solution
algorithms provide only mathematical solutions that require
careful evaluation and interpretation. In this section the
various steps in PMF analysis are illustrated within the
framework of AMS data. Ulbrich et al. [38] conducted a
thorough assessment of PMF modeling of AMS data and
discussed in detail several technical aspects of the analysis,
including error matrix preparation, data pretreatment,
selections of the optimum number of factors (P) and
rotational forcing parameter (FPEAK), and evaluation of
PMF solutions. These steps are summarized in Table 1.
These authors also reported the development of an Igor-
based (WaveMetrics, Lake Oswego, OR, USA) open-
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source PMF Evaluation Tool (PET, available at http://
cires.colorado.edu/jimenez-group/wiki/index.php/PMF-
AMS_Analysis_Guide#PMF_Evaluation_Tool_Software)
that enables systematic probing of the PMF solution space,
automated batch analyses, and user-friendly visualization and
intercomparison of the solutions and residuals [38].

Figure 5 shows a summary of key diagnostic plots useful
for evaluating the final PMF results from an AMS
dataset, which should also be useful for other aerosol
mass spectrometers. An important first step of the PMF
analysis is to decide the optimum number of factors that
“best” explain the data. Ulbrich et al. [38] demonstrated
that the trend of the PMF quality-of-fit parameter (Q)
changing with regard to the number of factors can be
useful to identify the minimum number of factors
(Fig. 5a). A large decrease in Q/Qexp with the addition of
a factor indicates that the additional factor is able to
explain a significant fraction of the variation in the data
unaccounted for by the others. In addition, examining the
Q/Qexp contributions per column (m/z) or per row (t) in the
matrix may help identify individual m/z values or time
steps that affect the model lack-of-fit most strongly
(Fig. 5h, i). Depending on the causes, and especially
when non-physical effects (e.g., instrumental issues)
cause extraneous variability that interferes with the

PMF identification of the real components, the
corresponding variables may be properly downweighted
or even removed to reduce disproportionate effects on
the fitting outcome [74].

The model residual time series (i.e., the difference
between the summed measured mass spectrum and its
modeled approximation; Fig. 5g) is particularly useful for
evaluating the solutions of PMF and related methods [38,
41]. The presence of time-dependent structure in the
residual suggests the need for additional factor(s) for better
fitting. However, for ambient datasets (Fig. 5g), it is
common that substantial structure remains in the residual
time series after all physically meaningful factors have been
assigned. A main reason for this is true variations in the
spectra of the factors, which cannot be captured with a
reasonable number of components given the assumption of
constant spectra in bilinear models including PMF [38]. As
Ulbrich et al. [38] pointed out, this assumption of constant
factor mass spectra in bilinear methods can limit the
retrievability of small factors from AMS datasets.

When P is chosen, the stability, uniqueness, and
interpretability of the factor solutions should be checked.
The rotational ambiguity of the solutions may be explored
by changing the FPEAK [48]. Both Lanz et al. [51] and
Ulbrich et al. [38] discussed the variations in factors vs.

Fig. 4 A meat cooking factor obtained via PMF analysis of a
photoionization aerosol mass spectrometer (PIAMS) dataset acquired
in fall, 2007, in Wilmington, Delaware, USA. (a) Apportioned signal
vs. m/z; (b) diurnal profile (error bars show the standard deviation of

the range of values at each time point); (c) wind rose plot for high-
impact periods (outer plot) and all data points (inner plot). (Fig. 3 in
Ref. [34] Copyright 2009. Elsevier, reprinted with permission)
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FPEAK (Fig. 5b). The robustness of the solution may also
be examined by running the PMF algorithm from different

random starting points (SEED parameter). Variations in
different plausible solutions corresponding to different

Table 1 Steps for preparing and choosing the best solution from PMF analysis of AMS datasets

Data matrix Uncertainty matrix Ref.

1. Calculate data and error matrices X X [73]

2. Further data and error treatment

2a. Apply minimum error X [38]

2b. Remove anomalous spikes, if desired X X [41]

2c. Smooth data, if desired X X [38]

2d. Downweight low-SNR data X [38, 74]

2e. Downweight repeated information (m/z 44 and related m/z values) X [38]

3. Run PMF for a range of number of factors (P) and random starts (SEEDs). Examine
Q/Qexp vs. P in solution (Fig. 5a). A steep change in slope indicates the minimum P
to consider for a good solution

[38]

3a. Examine solutions from different random starts for each P. Sort solutions by Q/Qexp

values and compare the factors in each solution
[52, 62]

Are there multiple types of solutions (representing local minima in the solution space)?

If not, proceed and use seed 0

If yes, can any of the solution types be excluded because the factors are not physically meaningful? Proceed,
exploring seeds that have solutions with physically meaningful factors

3b. Try to determine the optimum number of factors by examining multiple criteria: [38]

Look for correlations between factor time series and time series of external tracers [39]
Look for correlations between factor time series and time series of individual m/z values or ions

Consider factor diurnal profiles, meteorological data, etc.

Examine factor mass spectra for tracer ions and fragmentation patterns

Look for signs of “split” factors, considering the correlation of mass spectra and time series
of factors in the same solution. After identifying factors that may have split, explore solutions
with more factors to check for new, physically meaningful factors

3c. Examine solution Q contributions and residuals [38]
Do the residuals and Q values summed to form time series or mass spectra show periods or m/z
values that do not fit well? Is this because the solution needs more factors, because the data do not
fit the model of constant spectra for a given component, or because of instrumental drift, etc.?

Are the distributions of the scaled residuals (xij/σij) for each m/z approximately Gaussian, centered
around 0, with a reasonable standard deviation?

4. For the best solution chosen from step 3, run PMF for a range of FPEAKs such that the range of Q/Qexp

values is at least 3% above the minimum Q/Qexp

[38, 51]

4a. Exclude from further consideration solutions that have unrealistic mass spectra and/or time series [38]

4b. Does changing FPEAK change the solution in a way that would change the interpretation of
the factors from step 3, or do these solutions just represent rotational ambiguity in the solution?

[38]

If the interpretation changes, choose the most representative solution and support this choice

If the differences represent rotational ambiguity, choose the solution at FPEAK = 0

5. Conduct bootstrapping analysis on the final solution from step 4 to estimate uncertainty in the solutions [38]

6. Make and examine key diagnostic plots [38]
6a. Q/Qexp vs. varying P (e.g., Fig. 5a)

6b. Q/Qexp vs. FPEAK for the best P (e.g., Fig. 5b)

6c. Fractions of OA factors vs. FPEAK for the best P (e.g., Fig. 5c)

6d. Correlations among PMF factors for the best P (e.g., Fig. 5d)

6e. The box and whiskers plots of scaled residuals as a function of m/z for the best P (e.g., Fig. 5e)

6f. The time series of the measured OA concentration and the reconstructed organic mass
(= sum of all factors for the best P; e.g., Fig. 5f)

6g. The variations of the residual (= measured − reconstructed) of the fit as a function of time (e.g., Fig. 5g)

6h. The time series and mass spectra of total residuals and Q contribution for the best P solution (e.g., Fig. 5h, i)

6i. Comparisons of the P − 1, P, and P + 1 solutions for the acceptable FPEAK, where P is the best solution
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FPEAK or SEED values may be evaluated to determine
the uncertainties of the PMF solution [38, 49, 75]. In
addition, the uncertainty of the solution corresponding to a
given P and FPEAK can be analyzed quantitatively using
bootstrapping analysis [38]. Finally, the interpretability of
the OA factors should be evaluated on the basis of their
mass spectral features and temporal variation patterns
(details are given in the section “Interpretation of the
extracted OA factors”).

Interpretation of the extracted OA factors

The objective of interpreting the solutions of PMF and
similar methods is to identify and validate the relation-
ships between OA factors and distinct emission sources,

physicochemical properties, and atmospheric processes.
The interpretability of the OA factors is also an
important criterion for evaluating the quality of the
multivariate analysis. The interpretations of the OA factors are
usually based on the following considerations:

1. the temporal correlations of factors with tracer species
representative of specific emissions and processes;

2. the mass spectral features of each factor, for example
peak distribution patterns, signature fragments, and
oxidation state;

3. the repetitive temporal or diurnal variation patterns that
are indicative of specific human activities or meteoro-
logical patterns (for example traffic rush hours, dilution
because of the increase of the planetary boundary layer,
cooking emissions during mealtimes, photochemical
production of secondary species, etc.);

4. the estimated size distributions of OA factors (or tracer
ions) and their evolution patterns;

5. information regarding airmass trajectories and locations
of upwind source regions; and

6. other collocated observations that enable the isolation
of special cases (e.g., new particle formation and
growth events identified according to scanning mobility
particle sizer measurements [40] and well-defined SOA
growth events [42]).

The correlations between the time series of OA factors
and those of independent external tracer species (i.e.,
species not included in ORG) are especially important for
addressing the physical meaning of the OA factors. High
time resolution of the OA factors greatly facilitates
interpretation of their physical meaning, and this is
probably the most important reason for the rapid acceptance
of factor analysis by the research community. The fast
measurements capture the dynamic variations caused by
true changes in aerosol sources and transport, while
minimizing the uncertainties caused by apparent correla-
tions with tracer species because of longer time averages in,
e.g., filter analyses.

An important step of factor interpretation is to compare
the extracted factor spectra with reference spectra sampled
from various source types, a large number of which have
been published in the literature [14, 76–84] and are publicly
available in the AMS Spectral Database at http://cires.
colorado.edu/jimenez-group/AMSsd/. An especially useful
set of spectra for ambient HOA, SV-OOA, LV-OOA, and
OOA were reported by Ng et al. [14] by averaging OA
factors determined from a large number of ambient AMS
datasets. The similarity between two mass spectra (or two
time series) can be evaluated using Pearson’s R, the
coefficient of determination (R2), or the uncentered corre-
lation coefficient. In addition to comparisons of the full
mass spectra, examining the correlations among peaks
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above m/z 44 can avoid biases caused by small m/z ions that
generally dominate the mass spectra [38, 51]. At times,
however, unrealistic factors can have spectra which look
similar to those in the database, so this criterion is not
sufficient for supporting the identification of a factor [38].
The presence of key marker ions, for example m/z 44 for
OOA or m/z 60 for BBOA, is another useful criterion for
factor interpretation [14].

Examples of established tracer-factor relationships are
discussed here. A large number of studies have
demonstrated the dominant association of OOA with
SOA, based on observations that OOA generally
correlates well with:

1. secondary inorganic aerosol species—sulfate, nitrate,
and/or non-refractory chloride (e.g., ammonium chloride)
[6, 38–40, 42, 66, 72, 85, 86];

2. water-soluble organic carbon (WSOC) concentrations
[87]; and

3. gas-phase photochemically-produced species such as
odd oxygen Ox ¼ NO2 þ O3ð Þ [88, 89] or glyoxal [42].

The association of HOA with OA from primary sources
has been supported by collocated measurements of
tracer species associated with combustion emissions,
including CO, NOx, polycyclic aromatic hydrocarbons
(PAH), and black or elemental carbon (BC/EC). Specific
evidence includes:

1. good correlation between the concentrations of HOA and
combustion tracer species [6, 38–41, 64, 66, 72, 85, 128];

2. estimated emission ratios of HOA against EC, NOx, and
CO (i.e., HOA/EC, HOA/NOx, or HOA/CO) consistent
with source measurements [6, 39, 40, 43, 64]; and

3. consistency between HOA and POA concentrations
estimated using tracer-based approaches, for example
the EC tracer method, the CO tracer method, and the
chemical mass balance (CMB) model using organic
molecular markers [40, 43, 63, 64].

In addition, the mass spectra of HOA from various
studies generally show fragmentation patterns characteristic
of long-chain hydrocarbons and are very similar to those of
diesel exhaust, lubricating oil, and freshly emitted traffic
aerosols observed in urban areas [14, 41]. HOA appears
chemically reduced with average oxygen-to-carbon (O/C)
ratio typically less than 0.1 [13, 14, 31, 39, 40].

The identification of OA factors associated with biomass
burning (i.e. BBOA) has been supported by correlations of
this factor with biomass burning emission tracers (e.g.,
acetonitrile, levoglucosan, potassium, and non-fossil EC),
elevated peaks at m/z 60 (C2H4O2

+) and 73 (C3H5O2
+) in

the mass spectra of the factor, and model dispersion
analyses from the locations of known forest fires [22, 65,
79, 80, 83, 85, 90].

COA has been identified in several studies as
discussed above. In other studies, especially those using
UMR data, it is often not separately identifiable and
may be part of the HOA and/or BBOA factors [72],
because of the similarity b the COA spectra (especially the
UMR spectra) and the HOA and BBOA spectra [83].
External tracers of food cooking are not usually available,
but the diurnal profiles of the factors show that HOA
peaks during rush-hour periods whereas COA peaks
during typical meal times. Sun et al. [39] suggested that
the C5H8O

+, C6H10O
+, and C7H12O

+ ions in the HR-AMS
spectra may potentially be useful as AMS-spectral
markers for COA. In addition, the COA and HOA factors
could be differentiated on the basis of the signal ratio of
m/z 55 to m/z 57 as the COA spectrum tends to show
substantially higher m/z 55 to 57 ratio [39, 83, 84].

Nitrogen-enriched OA or local OA factors (NOA or
LOA) have been reported in several studies [39, 58, 64].
The NOA or LOA mass spectrum has important
contributions from many nitrogen-containing fragments
not observed in other factor mass spectra, and consistent
with reduced nitrogen species such as amines, amides,
or nitriles [39]. Although no external tracers have been
identified to help link NOA components to a particular
source or process, NOA factors tend to have spiky time
series and are, therefore, likely be the results of more local
emissions, i.e., if NOA was emitted or produced farther
away, it would disperse in the atmosphere and have a
smoother time series.

Analysis of the air mass trajectory histories and
comparisons with the results of other source apportion-
ment techniques may provide further support for the
interpretation of the OA factors [22, 41, 63, 72, 91, 92].
In addition, the chemically-resolved size-distribution data
from the AMS are valuable for elucidating the sources and
processes of OA factors. For instance, the frequently-
observed similarity between the size distribution of m/z 44
(AMS tracer for OOA) and sulfate supports the association
of OOA with SOA [39, 40, 43, 93–96]. Zhang et al. [40]
estimated the size distributions for OOA and HOA based
on measured size distributions of m/z values 44 and 57 and
the mass spectral patterns of OOA and HOA using a UMR
AMS dataset acquired in Pittsburgh in 2002, as shown in
Fig. 6. The size distribution of HOA shows a distinct
ultrafine mode that is commonly observed for primary
particles from fresh combustion emissions [12, 76, 97]
most prominently during morning rush hours and at night
when boundary layer height is low and atmospheric
dilution of the primary emissions is weak. In contrast,
OOA is concentrated in the accumulation mode peaking
between 400 and 600 nm (in vacuum aerodynamic
diameter; dva [30]) and seems to be mostly internally
mixed with sulfate, a secondary inorganic species. The
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short lifetime of ultrafine particles supports the association
of HOA with more local sources. In contrast, the diurnal
variations of OOA and sulfate are relatively weak, both in
terms of size distributions and concentrations, indicating
strong effects from regional sources and processing. The
fact that OOA and sulfate correlate well both in concen-
tration and size distribution strongly supports the domi-
nant secondary contribution to OOA, and may also be
indicative of the effect of cloud processing on SOA
production similar to that on sulfate. Furthermore, an
additional piece of evidence for the secondary nature of
OOA is that the evolution pattern of OOA size distribution
during an intense new particle formation and growth event
clearly indicates growth of OOA via surface condensation
(i.e., gas to particle conversion) [40, 95].

Advanced factor analysis of aerosol mass spectra

In addition to standard PMF bilinear modeling, more
advanced factorization approaches have been applied to
aerosol mass spectrometry data to improve the specificity
and interpretability of the solutions. Slowik et al. [50]
successfully performed PMF analysis on a combined
matrix of the OA mass spectra acquired with a UMR
AMS and the mass spectra of volatile organic com-
pounds acquired with a proton-transfer-reaction mass

spectrometer (PTR-MS) during winter in Toronto. The
uncertainties used in PMF for each instrument were
scaled to result in similar weights in the PMF analysis.
Six factors characteristic of charbroiling, traffic, aged
SOA, local SOA, oxygenated POA, and a local point
source were identified, with information on the temporal
and source profiles of both OA and VOCs for each
factor (Fig. 7). According to the authors, PMF analyses of
separated AMS or PTR-MS datasets were not able to
identify as many factors, because of effects (e.g., collo-
cated emissions and meteorological variations) that blur
the distinctions between primary and secondary species in
the same phase, thus enhanced variance in the unified
AMS/PTR-MS dataset was thought to have enabled the
distinction of more similar factors. Another important
advantage of incorporating the VOC data was the simulta-
neous and coherent apportionment of VOCs to the same
emission sources and atmospheric processes represented by
the OA factors. The availability of both VOCs and OA
profiles also facilitated the interpretation of the factors.
However when atmospheric aging is more important than in
this winter Northern latitudes dataset, the VOC profiles are
strongly distorted by the photochemistry in a time-dependent
manner which is inconsistent with PMF’s assumptions [98],
and a similar joint AMS + PTR-MS analysis has not been
reported under those conditions.
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Lanz et al. [85] factored an AMS dataset collected in
Zurich during a period dominated by wintertime inversions.
Because of the high residence time of air masses, species
from different sources co-varied to such a extent that
standard PMF analysis could not separate physically
meaningful source profiles. This is because of an inherent
limitation of the PMF and similar algorithms, which have
difficulty resolving factors that are either too similar in
mass spectra or time series. To enable the extraction of

physically meaningful factors, Lanz et al. [85] incorporated
estimated source profiles and solved the bilinear model by
use of multilinear engine (ME-2) software [53, 99]. ME-2
uses a different algorithm that can solve the “standard”
bilinear PMF, and many other factorization models. The
introduction of a-priori source profiles in the fitting, which
is not a requirement when using ME-2, can be viewed as a
hybrid of the PMF and the chemical mass balance (CMB)
model, which determines the relative source contributions
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a

b

Fig. 7 PMF analysis results of a
unified dataset of AMS and
PTR-MS measurements
acquired in winter, 2007, from
Toronto, Canada. Mass spectra
(a) and time series (b) of the
PMF factors (black traces, left
axis) and selected tracer species
(colored traces, right axis). The
time series of PTR-MS m/z 69 is
plotted in arbitrary units.
(Figure 11 in Ref. [50],
reprinted with permission)
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of OA factors using fixed known source and/or mass
spectral profiles [100]. Using the MS of POA from diesel
bus emission experiments as the first-guess a-priori profile
and allowing the profile to partially deviate from the a-
priori one, three distinct OA factors, including an OOA
mostly representing SOA, a factor representing BBOA
from wood combustion, and a traffic-related HOA, were
identified from the Zurich dataset [85]. Figure 8 shows
how the spectral similarities between hybrid and reference
OA factors change as a function of the regularization
parameter (“a-value”), which defines the degree of
constraint of the HOA factor. An “a-value” of 0 means
that the a-priori profile (i.e., the mass spectrum of the
HOA factor) is not allowed to change during iterative
fitting. This figure indicates that a=0.6 is a good

compromise for this dataset because it allows flexibility
in the solution while the factor spectra still show high
similarity to reference profiles.

DeCarlo et al. [62] reported the application of PMF
to flight data from the Mexico City region, when fresh
urban and biomass burning emissions mixed and
underwent very strong photochemical aging. In this
case PMF identified HOA, BBOA, SV-OOA, and LV-
OOA factors, but evidence such as ratios of components
to tracer species indicated the combined effect of urban
and biomass burning sources in several factors. These
authors applied a “postprocessing” step to the PMF
output in order to apportion fractions of some of the
components to urban and biomass burning sources,
based on ratios of components to tracers and the
observed variations between days with and without the
effect of intense biomass burning.

Ng et al. [101] first reported the application of full CMB
modeling to AMS data using experimentally determined
aerosol source profiles as fixed input mass spectra. A
main advantage of CMB is the ease of solution using a
simple linear decomposition algorithm, which can be
performed on data acquired in real-time without waiting
for a sufficiently large dataset for PMF analysis.
Consistent with the discussion of the previous study,
CMB may also be able to separate factors that correlate
strongly in time, because of the collocations of emission
sources and/or meteorological effects. However, CMB is
only suitable when appropriate and complete source
profiles are available. Average mass spectral profiles for
ambient HOA, OOA, LV-OOA, and SV-OOA have
recently been determined by Ng et al. [14] by averaging
those observed in many studies. When performing CMB
of several datasets, the component concentrations were
typically within 30% of those determined using full
PMF analysis.

Recently, Ulbrich et al. (2011) reported for the first
time the application of two three-dimensional factoriza-
tion models (“PARAFAC” and “Tucker-1”), solved with
the PMF3 [102] and the ME-2 [53] algorithms, to the
size-resolved mass spectral dataset from an HR-ToF-
AMS. In contrast with quadrupole AMSs, AMS systems
using time-of-flight mass spectrometers are able to
acquire full mass spectra of OA for each particle size,
i.e., to determine the size distributions of each individ-
ual m/z in the spectrum. By applying 3D factorization,
Ulbrich et al. [52] determined the size distributions of
four OA factors HOA, OOA, BBOA, and a nitrogen-
enriched factor (NOA or LOA). These factors were
consistent with source measurements and previous
estimates of the component size distributions, and
enabled identification of cases when, e.g., HOA-
containing particles grew strongly because of the

Fig. 8 Results from hybrid PMF-CMB analysis of an AMS dataset
acquired during wintertime in Zurich, Switzerland. (a) Spectral
similarity (R2) of the retrieved HOA factor spectrum to the reference
mass spectra representing urban combustion POA and the
changes of the HOA factor as a function of the regularization
parameter (“a-value”), which is the degree of deviation from the
initial spectrum allowed for the HOA factor. Similarity (R2) of the
mass spectra of wood burning (b) and OOA (c) factors to reference
mass spectra representing BBOA and OOA, respectively, as a
function of the “a-value”. The values in the parentheses before the
line symbols are the numbers of references cited in that paper. (Fig. 3
in Ref. [85]. Copyright 2008. American Chemical Society, reprinted
with permission)
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condensation of secondary species. An important aspect
of this work is that the 3D factorization approaches,
methodologies, and considerations are generally appli-
cable to multi-dimensional mass spectral datasets such
as those from thermal-desorption mass spectrometers or
hyphenated aerosol mass spectrometers (e.g., coupled
with chromatography for chemical separation).

Insights into organic aerosol sources, processes,
and properties

Overview of OA factors and their spatial distribution

An important advantage of factor analysis is that it
reduces the extremely complex OA composition to a
limited number of chemically and physically meaningful
components that can be linearly combined to reproduce
the observed time and chemical variations in ambient
OA. A broad overview on the chemistry, variability, and
evolution characteristics of atmospheric submicron OA
is emerging from the analysis of a large number of
AMS datasets acquired from worldwide locations.
Zhang et al. [6] performed an integrated analysis of 37
AMS datasets collected from three continents (North
America, Europe, and Asia) and concluded that oxygen-
ated OA species (surrogate for SOA) are ubiquitous and
dominant in the Northern Hemisphere. PMF analyses of
these worldwide AMS datasets further led to the compilation
of a global picture on the oxidation states and dynamic
evolution of multiple OA factors [13, 14, 103], which
complements those obtained by use of other techniques
[104]. In addition, two recent studies discussed the spatial
distribution of aerosol chemical composition and the
evolution of OA in Europe based on measurements of
aerosol chemical composition across the continent [18, 56].

Figure 9 shows a summary of the results from PMF
analysis of 43 worldwide datasets. Usually 2–5 OA
components were extracted for each study, consistent with
those discussed above. It is important to note that the mass
spectrum corresponding to any given factor is similar but
not identical across multiple sites [14]. From Fig. 9 it is
clear that the average mass concentrations and compo-
sitions of submicron particles vary substantially across
sites. Whereas both HOA and OOA loadings decrease
with distance from urban sites, the decrease of HOA is
much more pronounced and the average OOA concen-
trations are often of the same order in various
atmospheric environments [6]. The relative contribution
of OOA evolves from an average of 63% of the organic
matter in submicron particles at urban locations to usually
more than 90% in rural and remote locations [6]. This
difference in relative contributions reflects the spatial

differences in the sources of HOA and OOA, respectively.
Primary sources of OA (particularly HOA) are highest in
urban centers and are quickly diluted when advected away
from their sources. SOA is thought to be produced on time
scales of a day or more in amounts that greatly exceed the
urban HOA [10], so OOA corresponds not only to locally
produced SOA but also SOA produced downwind of
polluted areas and thus has a larger footprint (i.e., over
wider regions). In addition, the source region for SOA
precursors has additional sources with a more regional
footprint, including regional biogenic emissions and
biomass burning emissions.

Figure 10 provides a clear example of this difference in
HOA and OOA source footprints. The data points shown in
the figure correspond to AMS and CO2 (as a combustion
tracer) gradient measurements downwind of a highway
source (I-93 in Somerville, MA, USA) reported in
Canagaratna et al. [12]. The measurements were made
aboard a mobile laboratory equipped both with instruments
that responded rapidly to aerosols and with gas phase
instruments, with AMS measurements performed every few
seconds [105]. The OOA concentrations were not signifi-
cantly affected by the highway source and no gradient was
observed. The gradient in HOA concentrations, on the other
hand, mirrors the decreasing CO2 concentrations, and is
indicative of the effect of dilution as the pollution plume is
mixed with ambient air.

When HOA particles mix in with background air,
they can also become coated with background second-
ary aerosol material (i.e. species such as ammonium
sulfate, ammonium nitrate, and secondary organic
species). Cross et al. [106] used PMF analysis of single
particle mass spectra measured with the single particle
light-scattering AMS (SP LS-AMS) to show that HOA
particles, which were likely to be emitted as POA from a
near-by highway, quickly become internally mixed with
secondary inorganic and organic compounds after emis-
sion. Canagaratna et al. [12] determined the effective
densities of the single particles examined in the Cross et
al. [106] study and confirmed that they were consistent
with their PMF-based classification as “pure” and “mixed”
HOA single particles. Taken together, these results
indicate that coating processes are likely to modify HOA
particles and lead to an evolution of their properties and
effects with time.

OOA subtypes and interpretation

In environments in which chemical variation in the
OOA is not significant, either because of lack of change
in the meteorological conditions (e.g., ambient temperature),
source effect, or photochemical age distribution, only one
OOA is extracted [14]. However, in environments where
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OOA is subject to continuous evolution, several OOA
factors which represent the end points of a relatively
continuous chemical variation arising from different levels

of aging are observed [14, 18, 39, 91]. In many cases LV-
OOA and SV-OOA, which appear to be surrogates for
regional/more-aged and fresher/less-aged SOA, respectively,
are observed [38, 39, 51, 62–64]. The volatilities of OOA
subtypes were confirmed by measurements of aerosol
volatility using a thermodenuder to remove semivolatile
species in a temperature-dependent manner [58, 107] or
inferred according to their correlations with ammonium
sulfate (suggesting low volatility) and with ammonium
nitrate and chloride (suggesting semi-volatility) [101].
Whereas the separation of LV-OOA and SV-OOA is
frequently reported, especially during summer time, a few
studies have reported OOA factors with different O/C ratios
but similar volatility [66, 72, 91]. In these cases the SV-OOA
and LV-OOA terminology is not appropriate, and that of
more and less oxygenated OOA (MO-OOA and LO-OOA)
should be used instead. The different OOA factors may also
reflect other sources or processing factors that cause differ-
ences in the spectra of groups of oxygenated species. In
particular, at some locations affected by distinguishable
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biogenic and anthropogenic impact periods, for example
Chebogue Point, Nova Scotia [82], Whistler Peak, British
Columbia [108], and the Egbert rural site 70 km north of
Toronto [67], the less oxidized OOA component seems to
be associated with biogenic emissions (i.e., a surrogate
for biogenic SOA) whereas the more oxygenated OOA
seems to be associated with air masses transported from
polluted regions (i.e., a surrogate for anthropogenic and
anthropogenically controlled biogenic SOA).

Ng et al. [14] studied the aging of OA components in
the atmosphere by examining differences between the
mass spectra of LV-OOA and SV-OOA on the basis of
two main OOA ion fragments at m/z 44 (CO2

+) and m/z
43 (mostly C2H3O

+). The composition differences between
the OOA components are reflected in the different
intensities of these two ions. As shown in Fig. 11, the
LV-OOA component spectra have a higher f44 (ratio of m/z
44 to total signal in the component mass spectrum) and
lower f43 (defined similarly) than SV-OOA. When f44 (a
surrogate for O/C ratio and an indicator of photochemical
aging) is plotted against f43, ambient OOA components lie
within a well-defined triangular region. The different
OOA components in Fig. 11 offer snapshots of the
continuum of evolving OOA properties in ambient
aerosol. Morgan et al. [18] have shown a similar
continuum of AMS OOA components in aircraft
measurements over Europe. The less aged SV-OOA
occupies the broader base of the triangle, which is
likely to reflect the variable composition of fresher SOA
formed from site-specific precursors and sources. The
LV-OOA, on the other hand, occupies the narrowing top

region of the triangle. LV-OOA factors are spectrally
similar to fulvic acid and HULIS sample spectra [14].
This, together with the fact that high values of f44 in AMS
spectra are indicative of acid groups [109, 110], suggests
that the highly oxidized LV-OOA is likely to contain
polyacidic or acid-derived moieties.

A key implication of Fig. 11 is that photochemically
aged SOA converges towards the same highly oxidized
endpoint regardless of its original source. The common
features of the OOA evolution shown in Fig. 11 potentially
enable a simplified description of the oxidation of OA in
the atmosphere. In fact, Jimenez et al. [13] recently used the
PMF results from the datasets shown in Fig. 9 together with
laboratory data to propose a two-dimensional modeling
framework to map the evolution of OA. The two axes are
volatility and O/C ratio. Because both of these axes can be
experimentally obtained, this 2D model provides a useful
framework for describing OA evolution that can be
constrained by measurements [111]. O/C ratios of OA can
be obtained, for example, directly from HR-ToF-AMS
measurements [31] and OA factor volatilities can be
measured with thermal denuders [57, 60]. Recent thermal
denuder measurements indicate that ambient POA is more
volatile than assumed in current models whereas ambient
SOA becomes increasingly less volatile with photochemical
aging, and is much less volatile than the SOA produced in
smog chambers [58–60].

Recent studies have also investigated the climate-
relevant properties of ambient OA factors such as their
cloud condensation nuclei (CCN) activity [112–116] and
hygroscopicity [13, 59, 117]. A consistent picture is
emerging from the different measurements, in which fresh
HOA seems to be non-hygroscopic and more oxygenated
species take up more water as their O/C increases. In ship-
based measurements, for example, Quinn et al. [114]
showed that the variation in the critical diameter for CCN
activation of marine, urban, and industrial ambient aerosol
CCN activity at a supersaturation of 0.44% was correlated
with the HOA mass fraction in particles with dva<200 nm.
Raatikainen et al. [59] have also shown that the hygro-
scopicity of ambient OA factors increases with increasing
oxidation, which is consistent with laboratory and field
measurements that show a positive correlation between
hygroscopicity and overall O/C ratio [13, 117, 118].

Use of factor analysis results in regional and global
modeling

Despite recent advances, better descriptions of the proper-
ties and evolution of both primary and secondary OA are
needed in regional and global models [7, 10, 11]. For
instance, the emission inventories and the evaporation upon
dilution of POA are not well constrained [119]. Explicit
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modeling of all important SOA chemical reactions and
species are computationally prohibitive for large-scale
models, and simpler modeling based on laboratory experi-
ments often does not reproduce the observed concentration
or dynamic evolution of SOA in polluted regions [42] while
performing better over clean biogenic regions [67]. Thus,
there is a continuing need for field data that can be used to
accurately constrain and test model predictions.

In this context, the reduced complexity in OA factor
analysis results is particularly useful for development
and evaluation of air quality and climate models. OA
factors extracted from factor analysis of highly time-
resolved aerosol mass spectra correspond to lumped
groups of molecules that are linked to each other by
similar sources or processes. Thus, the observed mass
concentrations and bulk composition (e.g. O/C) of these
factors provide useful information for constraining
theoretical predictions of the spatial and temporal
evolution of key OA sources. For example, the factor
analysis results of AMS data acquired from multiple
stationary and aircraft platforms during the MILAGRO
2006 experiment in Mexico City have been used to
evaluate box and regional scale models [120–123]. The
concentrations of POA components (= HOA + BBOA)
measured during the MILAGRO experiment have been
used to constrain and evaluate the accuracy of the Mexico
City emission inventories for primary sources [123] and
several recent SOA modeling approaches have been tested
against measured mass concentrations of OOA [120, 121,
124]. As an example, Fig. 12 shows a comparison of 3D
model results using three different SOA modeling
approaches and measurements obtained in MILAGRO
[120]. The “REF” model reports the POA and SOA
expected from primary emission inventories assuming that
the primary emissions can be modeled as completely non-
volatile and that SOA is dominated by aromatic precur-
sors. The “ROB” model (based on Ref. [119]) treats
primary emissions as semi-volatile species (SVOCs) that
can evaporate from the particle phase after emissions and
then react to form less volatile SOA. This model also
includes intermediate volatility gas phase species
(IVOCs), which are not typically measured or included
in standard models, as precursors for measured SOA. The
“GRI” model (based on Ref. [125]) has a similar structure
to the “ROB” model, but with updated terms. Figure 12
indicates that the models that include SVOCs and IVOCs
are generally in better agreement with measured factor
concentrations. However, the fact that neither the “ROB”
or “GRI” predictions fully captures the observations
indicates the need for improved models.

The worldwide factor analysis results from the AMS
data shown in Fig. 9 were recently used to constrain SOA
sources using a global chemical transport model [126]. In

this case the observed OOA concentrations were used to
optimize the SOA source strengths from lumped biogenic,
anthropogenic, and biomass burning sources. IMPROVE
network measurements were then used to independently
verify the optimized SOA predictions. The optimized

a bT0 T1

Fig. 12 Average diurnal profiles of the model simulations (red, blue,
and green lines) and the AMS measurements (black dots) at the (a) T0
(urban center site) and (b) T1 (downwind suburban site) for the
MILAGRO field experiment in Mexico City for the concentrations of
HOA, BBOA, OOA, and total OA. The REF model case represents
POA as non-volatile and only accounts for SOA formation from
aromatic species. The ROB (red line) and GRI (green line) cases
consider POA as semi-volatile and also account for SOA
formation from semivolatile and intermediate volatility species
(see text). The variability associated with average observations
and ROB model predictions is given in the gray shaded area and
red vertical bars, respectively. (Adapted from Ref. [120], reprinted
with permission)

3062 Q. Zhang et al.



model yields a global SOA source of 140 Tg SOA a−1.
Of this source, 7% (10 Tg a−1) is estimated to be
anthropogenic SOA from urban and/or industrial VOCs,
64% (90 Tg a−1) is estimated to be anthropogenically
controlled SOA formed primarily from biogenic VOCs,
and 9% (13 Tg a−1) is estimated to be SOA of biogenic
origin without anthropogenic input. SOA from biomass
burning VOCs account for 3% (3 Tg a−1) of the global
SOA source, and oxidation of POA (mostly BBOA)
accounts for 16% (23 Tg a−1) of the SOA source. The
scatter plots of measured vs. modeled OOA concentrations
using the initial (biogenic SOA-dominated) and final
optimized models are shown in Fig. 13. Most of the field
measurements included in this study were obtained in the
northern hemisphere. Thus, the usefulness of this ap-
proach for constraining global SOA sources will be further
enhanced when more factor analysis results from the
southern hemisphere become available.

In addition, the OA factor results from six AMS field
measurement campaigns were used by Ervens et al. [115] to
evaluate the extent to which simple assumptions of OA
composition and mixing states can reproduce measured CCN
number concentrations in ambient air. These authors con-
cluded that a simple treatment of CCN composition and/or
mixing state as a function of distance from sources predicts
CCN concentration and cloud drop concentration with
reasonably good accuracy (~15%). This finding may have
important implications on large-scale modeling of aerosol–
cloud interactions. Furthermore, Wex et al. [127] reported the
utilization of the global OA factor results shown in Fig. 9 for
evaluating global-scale CCN predictions.

Conclusions and future research

The development in recent years of quantitative aerosol
mass spectrometers capable of reporting highly time-
resolved organic aerosol composition data has enabled a

new application of factor analysis techniques. The most
useful techniques are based on mass conservation and
enable estimation of the time series and mass spectra of OA
factors, representing the contributions of hundreds of
different chemical species, and which can be associated
with different sources and/or processes. Aerodyne AMS
instruments have so far dominated this field, with only
three publications using data from other real-time aerosol
mass spectrometers. PMF is a positively constrained, error-
weighed variant of the bilinear model and is most
commonly used in factor-analysis applications. The criteria
for selecting the optimum PMF solutions are complex, and
have been summarized here. The uncertainty of the PMF
factors may be evaluated on the basis of variations in
plausible solutions obtained with different FPEAK and
SEED values or via bootstrapping analysis with replace-
ment of mass spectra. Some advanced applications have
been reported using, e.g., a unified dataset combining
aerosol mass spectrometry and gas-phase VOC data,
additional constraints on the mass spectra, or three-
dimensional models. The components most commonly
identified in the data include several primary emissions
factors, for example hydrocarbon-like OA, biomass-burning
OA, and cooking OA, and several secondary process-
related factors under the umbrella of oxygenated organic
aerosols (OOAs). Fresh OOAs are more variable whereas
aged OOAs seem to converge into non-volatile and highly
oxygenated OAs which are likely to be acid-dominated.
The results from these analyses are being used to evaluate
multiple models including both aerosol process and
regional and global chemical-transport models.

Some methodological aspects require further research, for
example improvement of error estimates, better methods for
determining proper relative weights when mixing datasets,
and methods to account for the variability in component mass
spectra. Factor analysis of datasets acquired with improved
soft ionization aerosol mass spectrometers, which retain
information of individual organic molecules and larger frag-

Fig. 13 Scatterplot of simulated (GLOMAP) versus observed (AMS;
data shown in Fig. 9) OOA data using (a) the initial biogenic
dominated model and (b) the final optimized model. Observation
locations are classified as urban (black circles), urban-downwind (blue

triangles), and rural and/or remote (red squares) as in Zhang et al. [6].
The 1:1 line (solid), 2:1 lines (dashed), and 10:1 lines (dotted) are
shown. (Figs. 3d and 4d, respectively, in Ref. [126]. Copyright 2011,
reprinted with permission)
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ments, and of multidimensional datasets (e.g., acquired from
thermodenuder–AMS and fast chromatography–MS) might
enable further resolution of some of the current
uncertainties associated with OA sources and processes.

Finally, more efforts should be placed on integrated
analysis and interpretation of the factor analysis results of
worldwide aerosol mass spectrometry datasets acquired
across very wide geographic locations and on different time
scales. These results enable the development of holistic and
simplified views on OA climatology necessary for con-
straining global and regional models and for advancing
current knowledge of the roles of aerosols in global climate
change and degradation of human health and ecosystems.
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