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Abstract

The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-

renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for 

these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly 

understood. Promoter CpGs, with methylation measured by microarray, were classified by the 

direction of methylation change with normal myeloid maturation. In AML cells, the methylation 

pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial 

maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-

specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. 

In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually 

hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. 

Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation 

decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE 

promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and 

methylation significantly decreased at CpG that are less methylated in immature cells. High 
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expression of lineage-specifying factor and aberrant epigenetic repression of some key late-

differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting 

differentiation and methylation responses to decitabine.

INTRODUCTION

An important goal in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) 

research is to develop treatment that is more selectively detrimental to MDS/AML cells and 

relatively sparing of normal hematopoietic stem cells (HSC). One such potential therapeutic 

is the deoxycytidine analogue decitabine, which at low, non-cytotoxic concentrations can 

deplete the chromatin modifying enzyme DNA methyl-transferase 1 (DNMT1) and 

hypomethylate DNA CpG (1–5): in a number of studies from different groups, decitabine 

and histone deacetylase inhibitors (HDACi, another class of drug that inhibit chromatin 

modifying enzymes) have been shown to maintain or increase normal HSC self-renewal (6–

15); in contrast, decitabine and HDACi induce terminal differentiation of AML primary 

cells and cell lines encompassing the wide morphologic and cytogenetic spectrum of disease 

(5;16–24). The basis for these contrasting cell fate responses of AML cells and normal HSC 

to chromatin-relaxing drugs is poorly understood, impeding rational and optimal clinical 

translation of this mode of therapy. Since a major effect of decitabine is to hypomethylate 

DNA, pre- and post-decitabine patterns of DNA methylation could provide an insight into 

underlying mechanisms. However, changes in promoter CpG methylation are also an 

important and usual aspect of hematopoietic differentiation (25). Therefore, to better 

understand and interpret DNA methylation patterns before and after treatment with 

decitabine, promoter CpGs, with methylation measured by microarray and mass 

spectrometry, were categorized by the direction of methylation change with normal myeloid 

maturation. The methylation levels of maturation-responsive CpG were then compared in 

normal, MDS and AML cells. The methylation analyses were complemented by gene 

expression measurements of key lineage-specifying and late-differentiation transcription 

factors (TF), which together drive progressive myeloid maturation. These analyses exposed 

differences in baseline maturation and epigenetic context between AML cells and normal 

HSC that likely contribute to and explain contrasting cell fate and methylation responses to 

decitabine.

MATERIALS AND METHODS

Cells from human subjects and cell lines

Informed consent for sample and data collection was obtained according to protocols 

approved by the Cleveland Clinic Institutional Review Board. Bone marrow aspirates were 

collected from MDS and AML patients between 2002 and 2007. High risk disease was 

defined as MDS or AML with ≥5% myeloblasts (n=130), and low risk disease as MDS with 

<5% myeloblasts (n=27). Clinical annotation of samples used for promoter CpG methylation 

analysis by microarray was described in detail in a previous publication (26). Normal total 

bone marrow (NBM) were aspirates from healthy individuals (n=42). Six AML cell lines 

were studied, of which K-562 and TF1 are described as erythro-leukemia cell lines, and 

KG1, TF1 and Kasumi-1 express CD34. A model of ‘first-hit’ abnormality (pre-leukemia) 
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was also examined: cord blood CD34+ cells transduced with retrovirus to express the 

leukemia fusion protein RUNX1-ETO, as previously described and characterized (27).

Promoter CpG methylation measurement by methylation array

The Methylation Cancer Panel I and GoldenGate Assay kit with UDG (Illumina, San Diego, 

CA) was used for microarray methylation analysis of 1505 CpG sites mostly in the 5′-

regulatory regions of 807 genes (known oncogenes, tumor suppressor, X-linked and 

imprinted, DNA repair, cell cycle control, differentiation and apoptosis genes) (28). DNA 

was bisulfite converted using the EZ DNA methylation kit (Zymo Research, Orange, CA). 

For each CpG site, there were two pairs of probes corresponding to either the methylated or 

unmethylated state of the CpG site. Through allele-specific extension and ligation, PCR 

templates were generated and then amplified by PCR using fluorescently labeled common 

primers. The resulting PCR products were hybridized to a bead array at sites bearing 

complementary address sequences. These hybridized targets contained a fluorescent label 

that denotes a methylated or unmethylated state for a given locus. Methylation status of the 

interrogated CpG site was then calculated as the ratio of fluorescent signal from one allele 

relative to the sum of both methylated and unmethylated alleles (β-value).

Our verification of the precision of the array, by analyzing technical replicate samples on 2 

separate arrays, and our validation of microarray results with another method for measuring 

methylation levels, has been published previously (26).

The β-value provides a continuous measure of levels of DNA methylation at a CpG site, 

ranging from 0 for completely unmethylated sites to 1 in completely methylated sites (28). 

Three categories of CpG sites were defined (raw methylation data uploaded to GEO 

Datasets, GSE29047):

i. CpG that undergo a significant (p<0.001, t-test) increase in methylation from 

normal bone marrow CD34+ (NCD34, n=9), with 95–99% immature CD34+ cells, 

to normal total bone marrow (NBM, n=42), with <2% immature CD34+ cells 

(‘hypomethylated in NCD34’, 108 CpG, table S1);

ii. CpG that undergo a significant (p<0.001, t-test) decrease in methylation from 

NCD34 to NBM (‘hypermethylated in NCD34’, 162 CpG, table S1);

iii. CpG that do not undergo a statistically significant change in methylation status 

between normal NCD34 and NBM (‘no methylation change’, 1236 CpG).

The image extraction and statistical analysis were done with Beadstudio and Genomestudio 

Methylation Module (Illumina). All Illumina recommended control oligos were used. 

Statistical significance of the difference between mean and median values of methylation 

level for different samples/groups was assessed using Beadstudio Methylation Module 

software (Illumina) and SAS V8 (SAS, Cary, N. Carolina). Hierarchical clustering was 

performed by Euclidean distance metric and centroid linkage (ArrayStar 3, DNAStar).
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CEBPE promoter CpG methylation analyses

CEBPE promoter methylation was measured with the Sequenom MassARRAY Compact 

System (www.sequenom.com/). Gene-specific amplification of bisulfite-treated DNA was 

followed by in vitro transcription and analysis by matrix-assisted laser desorption ionization 

time-of-flight (MALDITOF) mass spectrometry (29). DNA (1 μg) was bisulfite converted 

using EZ DNA Methylation kit (Zymo Research). PCR primers specific for bisulfite 

converted DNA were designed (Epidesigner Online Tool -http://www.epidesigner.com/). 

Each reverse primer contained a T7-promoter tag for in vitro transcription (5′-

cagtaatacgactcactatagggagaaggct-3′), and the forward primer was tagged with a 10mer to 

balance Tm (5′-aggaagagag-3′). Primer sequences used for the CEBPε promoter are; CEBPε 

F (5 ′-aggaagagagTGGGTTTGGTTAAAGTATTTGGTTA) and CEBPε R (5′–

cagtaatacgactcactatagggagaaggctAAACTTCTCAAACCTCACAAAAAAA). The genomic 

coordinates for the CEBPε promoter region analyzed are chr14:23,588,987-14:23,589,309. 

Mass spectra were acquired using a MassARRAY MALDI-TOF MS (Bruker-Sequenom) 

and peak detection, signal-to-noise calculations, and quantitation of CpG methylation 

performed using proprietary EpiTyper software v1.0 (Sequenom). Differentiation-responsive 

CpG within this region were identified by time-course analyses of normal CD34+ 

hematopoietic precursors treated with granulocyte-colony stimulating factor (G-CSF). 

Putative TF binding sites in the analyzed region were identified by TFSEARCHv1.3 

(“TFSEARCH: Searching Transcription Factor Binding Sites”, http://www.rwcp.or.jp/

papia/)(30).

Pyrosequencing analysis of methylation at repetitive element CpGs

DNA was purified from cells using the Wizard Genomic DNA Purification Kit (Promega) 

and DNA (1 μg) was bisulfite converted using EZ DNA Methylation kit (Zymo Research). 

The PCR primers were 10 pmol of 5- TTTTTTGAGTTAGGTGTGGG-3 and 10 pmol of 

biotinylated-5-TTGTTTGGTATTTTTTAGTGAGA-3. PCR cycling conditions were; cycle 

temperature of 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds, for 45 

cycles to consume all the biotinylated primers. The biotinylated strand was captured on 

streptavidin sepharose beads (Amersham Biosciences, Uppsala, Sweden) and annealed with 

the sequencing primer 5-GGGTGGGAGTGAT-3. The methylation degree of LINE-1 was 

computed as the average of 4 CpG sites pyrosequenced with the Pyromark Q24 

Pyrosequencer (Qiagen).

RESULTS

Methylation at maturation-responsive CpG in MDS and AML bone marrow cells

Three categories of CpG sites were defined: (i) CpG that undergo a significant (p<0.001, t-

test) increase in methylation from normal bone marrow CD34+ precursors (NCD34, 95–

99% CD34+ immature cells, n=9) to normal total bone marrow (NBM, <2% CD34+ 

immature cells, n=42) (‘hypomethylated in NCD34’, 108 CpG)(table S1); (ii) CpG that 

undergo a significant (p<0.001, t-test) decrease in methylation from NCD34 to NBM 

(‘hypermethylated in NCD34’, 162 CpG)(table S1); (iii) CpG that do not undergo a 

statistically significant change in methylation status between NCD34 and NBM (‘no 

methylation change’, 1236 CpG). In gene ontology analyses, gene expression in blood, 
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leukocyte, neutrophil, platelet, leukemia, liver and spleen was significantly associated with 

maturation-responsive CpG (hypo- and hypermethylated in normal CD34) compared to ‘no 

methylation change’ CpG (table S2). In a comparison of pathway associations, 

hematopoietic pathways (eg., ‘hematopoietic cell lineage’) were the pathways most 

frequently associated with maturation-responsive CpG; this was not the case with ‘no 

methylation change’ CpG (table S3). In unbiased hierarchical cluster analysis of methylation 

data from an independent study (31), clusters generated using maturation-responsive CpG 

discriminated best between NCD34 and NBM, despite 7 to 8-fold more CpG sites in the ‘no 

methylation change’ category (figure S1).

CpG sites that became more methylated with normal myeloid maturation (hypomethylated 

in NCD34) were even more methylated in bone marrow cells from patients with low-risk 

MDS (n=27) and high-risk MDS/AML (≥5% myeloblasts, n=130) (figure 1, red box plots). 

CpG sites that became less methylated with normal myeloid maturation (hypermethylated in 

NCD34) were less methylated in low-risk MDS and high-risk MDS/AML bone marrow 

(figure 1, blue box plots). CpG sites that do not undergo significant methylation changes 

with normal myeloid maturation (‘no methylation change’) were individually selected based 

on no significant difference in methylation between NCD34 (n=9) and NBM (n=42). 

However, when combined for analysis, these 1236 CpG sites were significantly more 

methylated in NBM compared to NCD34, although the increase was small in magnitude 

(figure 1, grey box plots). These CpG sites were also significantly more methylated in MDS 

and AML bone marrow compared to NCD34, however, the increase was substantially 

smaller than the methylation shifts in maturation-responsive CpG (figure 1, grey box plots).

To strengthen these observations, the analyses were repeated in a dataset of promoter CpG 

methylation generated by other investigators (31). Ninety-five CpG sites from 

‘Hypomethylated in NCD34’, 157 CpG sites from ‘Hypermethylated in NCD34’ and 1157 

CpG sites from ‘no methylation change’ were present in the independent dataset. 

Methylation of maturation-responsive CpG (hypo and hypermethylated in NCD34) changed 

in the expected directions from independent NCD34 to NBM (figure S2, red and blue box 

plots). Although ‘no methylation change’ were significantly more methylated in NBM 

compared to NCD34, the methylation increase was smaller in magnitude than the 

methylation changes at maturation-responsive CpG (figure S2, grey box plots). CpG sites 

that become more methylated with normal myeloid maturation were not significantly more 

methylated in independent dataset MDS/myeloproliferative disease (MDS/MPD) (n=13) or 

AML bone marrow (n=116) (figure S2). Nonetheless, of the 25 CpG sites that were >20% 

more methylated in AML cells than NCD34, 11 were from the category of 95 CpG sites that 

become more methylated with normal myeloid maturation and 14 were from the 1157 ‘no 

change in methylation’ CpG sites (figure S3). Therefore, maturation-responsive CpG sites 

were over-represented amongst the most hypermethylated CpG sites in AML bone marrow 

(p<0.0001, Chi-Square test). As expected, CpG sites that become less methylated with 

normal myeloid maturation were significantly less methylated in the MDS/MPD and AML 

cells (figure S2). All 6 CpG sites that were >20% less methylated in AML cells than NCD34 

were from the category of 157 CpG sites that become less methylated with normal myeloid 

maturation (figure S3). ‘No methylation change’ CpG were significantly more methylated in 

MDS/MPD and AML (figure S2).
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Methylation at maturation-responsive CpG in CD34+ and CD34- AML cell lines

To extend the analyses to more homogenous populations of AML cells, including CD34+ 

AML cells, promoter CpG methylation, with CpG sites classified as above, was analyzed in 

a model of first-hit or pre-leukemia (CD34+ cells retrovirally transduced to express the 

leukemia fusion protein RUNX1-ETO [CD34 RUNX1-ETO]; the phenotype of these cells 

has been previously described (27)), and six AML cell lines, including the CD34+ cell lines 

KG1, TF1 and Kasumi-1. The control sample was normal CD34+ cells isolated from cord-

blood (NCD34).

CpG sites that become more methylated with normal myeloid maturation were significantly 

more methylated in three of the AML cell lines compared to NCD34 (figure 2, red box 

plots). CpG sites that become less methylated with normal myeloid maturation were 

significantly less methylated in five of the cell lines compared to NCD34 (figure 2, blue box 

plots). ‘No methylation change’ CpG were significantly hypermethylated in six of the cell 

lines compared to NCD34 (figure 2, grey box plots), however, the increase in methylation 

was substantially smaller in magnitude than the changes in methylation in the categories of 

myeloid maturation-responsive CpG (figure 2). Therefore, the AML cell lines recapitulated 

the methylation pattern observed in primary MDS and AML cells.

Effects of non-cytotoxic concentrations of decitabine on CD34+ normal, pre-leukemia and 
leukemia cell lines

CD34+ normal, pre-leukemia (CD34 RUNX1-ETO) and leukemia cells (Kasumi-1) were 

treated with identical concentrations of decitabine, to compare the cell fate and promoter 

CpG methylation response.

Normal CD34+ cells treated with decitabine 0.5μM continued to proliferate exponentially, 

although cell counts were lower than in vehicle treated control. In contrast, CD34+ RUNX1-

ETO and CD34+ Kasumi-1 cells treated with decitabine 0.5μM decreased in cell numbers 

(figure 3A). A higher concentration of decitabine (1μM) decreased normal CD34+, RUNX1-

ETO and Kasumi-1 cell numbers. Cytarabine (AraC) is another clinically utilized cytosine 

analogue which is the mainstay of AML chemotherapy. Unlike decitabine 0.5μM, AraC 

0.5μM decreased cell numbers of normal CD34+ as well as RUNX1-ETO and Kasumi-1 

(figure 3A).

Although decitabine 0.5μM decreased RUNX1-ETO and Kasumi-1 cell numbers, this 

concentration of decitabine did not cause early apoptosis (measured by annexin/7AAD-

staining 24 hours after drug exposure)(figure 3B, figure S4, data not shown). Decitabine at 

1μM caused early apoptosis (figure 3B, figure S4, data not shown), although not to the same 

extent as AraC 0.5μM (figure 3B, figure S4).

On day 9 of liquid culture, vehicle treated normal CD34+ cells showed changes of early 

myeloid differentiation (decreased nuclear-cytoplasmic ratio, increase in pale blue 

cytoplasm, vacuolization), however, in the decitabine-treated wells, immature morphology 

was retained (high nuclear-cytoplasmic ratio, fine chromatin) (figure 3C). In contrast, 

RUNX1-ETO cells treated with decitabine 0.5μM exhibited extensive myeloid 

differentiation (decreased nuclear cytoplasmic ratio, nuclear condensation and segmentation, 
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cytoplasmic granulation and vacuolation), whereas vehicle treated cells demonstrated 

immature morphology (figure 3C). Similarly, decitabine 0.5μM induced morphologic 

changes of differentiation in Kasumi-1 (nuclear segmentation and lobulation, increase in 

cell-size, and cytoplasmic vacuolization), although these changes were not as prominent as 

those noted in decitabine treated RUNX1-ETO cells (figure 3C).

Colony formation in semi-solid media is an assay for stem cells and progenitors. Larger 

colony size and/or mixed character of the colony (more than one cell lineage) suggest 

greater immaturity of the colony forming cell. Normal CD34+ cells treated with decitabine 

0.5μM produced fewer colonies than vehicle treated normal cells, however, the colonies 

formed were larger and mixed. Furthermore, normal CD34+ cells treated with decitabine 

0.5μM retained colony-forming ability after extended liquid culture (14 and 21 days), while 

normal CD34+ cells cultured in the identical conditions without decitabine had rapidly 

diminished colony forming ability (figure 3D). RUNX1-ETO and Kasumi-1 cells treated 

with decitabine 0.5μM lost their otherwise vigorous colony-forming ability (figure 3D, 

figure S4).

Normal CD34+ cells treated with decitabine 0.5μM demonstrated significant decreases in 

methylation in both categories of myeloid maturation-responsive CpG (hypo- and 

hypermethylated in NCD34) (figure 4, red and blue box plots). However, CpG that are not 

responsive to normal myeloid maturation (‘no methylation change’) were not significantly 

hypomethylated by decitabine (figure 4, grey box plots). In RUNX1-ETO and Kasumi-1 

cells treated with decitabine 0.5μM, consistent with the morphologic response, the largest 

and statistically significant decreases in methylation were at CpG that become less 

methylated with normal myeloid maturation (‘hypermethylated in NCD34’, figure 4, blue 

box plots). Although decitabine also decreased methylation at CpG that become more 

methylated with normal myeloid maturation (‘hypomethylated in NCD34’), this decrease 

was smaller in magnitude and not statistically significant (figure 4, red box plots). CpG that 

are not responsive to normal myeloid maturation (‘no change in methylation’) were also 

significantly hypomethylated by decitabine (figure 4, grey box plots), however, the 

methylation shift was substantially smaller than the methylation change at ‘hypermethylated 

in NCD34’ (figure 4).

Primary AML samples (n=5) and the erythro-megakaryoblastic AML cell lines UT7 and 

K562 were also treated with decitabine (the classification and chromosome abnormalities in 

the primary cells are listed in table S4, the cell lines contain complex chromosome 

abnormalities). Compared to vehicle treatment, decitabine 0.5μM on day 1, 4 and 7 

decreased cell numbers accompanied by cellular changes of differentiation (decreased 

nuclear-cytoplasmic ratio, nuclear condensation, segmentation or lobulation, cytoplasmic 

granulation or vacuolization) (figure 5).

High expression of lineage-specifying TF, but epigenetic repression of key late-
differentiation driver TF, in MDS and AML cells

Lineage commitment and maturation is driven by and absolutely requires key DNA-binding 

TF (32–34). Therefore, differentiation of AML cells by decitabine suggests high baseline 

and/or induced expression of key myeloid differentiation-driving TF.
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Using QRT-PCR, the levels of the key myeloid lineage-specifying TF CEBPA (CEBPα), 

which is essential for producing granulocytes, and the lineage-specifying TF PU.1 (SPI1), 

which is essential for producing monocytes and B-cells, (32) were measured in bone marrow 

from healthy controls (n=8), low risk MDS (n=4), and high risk MDS/AML (average 

myeloblasts 40%, n=12) (MDS and AML sub-types listed in table S5). Compared to normal 

CD34+ and total bone marrow, both MDS and AML bone marrow cells expressed 

significantly higher levels of CEBPA, and a trend towards higher PU.1 (p=0.026 and p=0.06 

respectively) (figure 6A). To restrict the comparison to cells with a similar precursor 

surface-phenotype, CD34+ cells were isolated from AML (n=3) and normal donor bone 

marrow (n=3) (AML sub-types listed in table S6). Compared to CD34+ normal cells, 

CD34+ AML cells expressed 10 to 100-fold higher CEBPA (figure 6B). CEBPA levels in 

the AML cells were 2 to 30-fold higher than HOXB4 levels in the same cells (figure 6B). 

These observations were extended and recapitulated in analyses of public gene expression 

data (figure S5)(35–40).

Since AML cells express high levels of CEBPA, levels of CEBPE (CEBPε), a key late-

differentiation TF necessary for progressive maturation, and a gene target of CEBPA, were 

measured (normally, CEBPE levels peak relative to CEBPA in the transition from 

proliferating pro-myelocytes to non-proliferating myelocytes (33;34;41)). CD34+ AML cells 

expressed 2 to 10-fold lower CEBPE levels than CD34+ normal cells, despite expressing 

substantially higher levels of CEBPA (figure 6B). These observations were extended and 

recapitulated in analyses of public gene expression data (figure S5)(35–40).

The CEBPE locus on chromosome 14 is not cytogenetically deleted in AML, suggesting the 

repression may be by epigenetic means. Using mass spectrometry, CEBPE promoter CpG 

that become less methylated during G-CSF-induced differentiation of normal CD34+ 

precursors into granulocytes were identified (figure 7A). Notably, the three identified 

CEBPE promoter CpG were in proximity to putative CEBPA and RUNX1 binding sites 

(figure S6). The methylation levels of these CpG sites were compared in bone marrow 

samples from normal volunteers, AML in remission, AML, and promyelocytic leukemia 

(cytogenetic abnormalities in the AML samples are listed in table S7). Two of the three CpG 

sites were significantly hypermethylated in AML compared to normal and/or remission bone 

marrow (figure 7B), but were not hypermethylated in promyelocytic leukemia cells, which 

express higher levels of CEBPE than other AML sub-types (figure 7B, figure S7). In 

contrast to the CEBPE promoter CpG, methylation levels at LINE-1 repetitive DNA element 

CpGs were similar in normal, remission, and AML bone marrow (figure 7C). The effect of 

decitabine treatment on CEBPE promoter and LINE-1 CpG methylation was examined in an 

AML cell line (THP1). Decitabine 0.5μM decreased CEBPE promoter CpG methylation by 

a much greater extent (>40–60%) than the ~20% decrease at LINE-1 CpG (figure 7D, figure 

S8). Decitabine-induced CEBPE promoter hypomethylation was accompanied by a 

substantial increase in CEBPE levels (figure 7D).

DISCUSSION

Promoter CpG methylation patterns reflect differentiation context and stage (25). In primary 

MDS and AML cells, the pattern of methylation at maturation-responsive promoter CpGs 
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mimicked the pattern in mature myeloid elements, and was the opposite of that in normal 

CD34+ precursors. In high risk MDS/AML samples, which contain more myeloblasts, and 

in uniformly morphologically immature CD34+ and CD34− AML cell lines, this pattern was 

emphasized. These observations suggest that MDS and AML cells are in at least some 

aspects maturation progressed from normal CD34+ precursors. Accordingly, MDS and 

AML cells express relatively high levels of key lineage-specifying TF CEBPA and PU.1 

(SPI1), compared to normal CD34+ precursors or total bone marrow, and AML leukemia 

initiating cells frequently have surface-phenotype features of lineage-commitment 

(CD34+38+, CLL-1+, CD71+, CD90−, c-Kit-)(42–52). Despite high CEBPA expression, 

expression of CEBPE, a key downstream gene target of CEBPA, was relatively repressed in 

AML cells, accompanied by hypermethylation of differentiation-responsive CpG in the 

CEBPE promoter. Hypermethylation has also been reported for CpG in the promoter of 

CEBPD (CEBPδ), another late-differentiation gene target of CEBPA (53).

Why are key late-differentiation genes such as CEBPE and CEBPD epigenetically repressed 

in AML cells, despite high expression of lineage-specifying TF that should activate these 

genes? Genetic abnormalities in genes for lineage-specifying TF (eg., CEBPA) or their 

cofactors (eg., RUNX1) that compromise transactivation by these differentiation-drivers 

could have a role: in mice engineered to express mutated Cebpa (p30) with reduced 

transactivating capacity, the leukemia initiating cells that arose were lineage-committed with 

impaired expression of key late-differentiation genes including Cebpd (43). Similarly, 

Runx1 haploinsufficiency, a common abnormality in MDS and AML, impairs the usual 

cooperative gene activation by Runx1 and the differentiation driver Pu.1/Spi1, producing 

increased corepressor recruitment to Pu.1 and epigenetic repression of late-differentiation 

target genes (eg., Gm-csfr and Mcsfr) (54). Mutations in some chromatin modifying enzyme 

genes (e.g., ASXL1, EZH2) increase in frequency from MDS to AML (55–57). Possibly 

these genetic abnormalities additionally favor corepressor over coactivator recruitment at 

late-differentiation genes. DNMT1 depletion by decitabine, which not only hypomethylates 

DNA but disrupts DNMT1 containing histone modifying protein complexes involved in 

transcription repression, can potentially redress such corepressor/coactivator imbalance, and 

thereby trigger late-differentiation gene expression in these cells already expressing high 

levels of lineage-specifying TF. In contrast, in normal HSC which do not express high levels 

of lineage-specifying TF, DNMT1 depletion prevents stem cell gene repression by 

differentiation stimuli, thereby maintaining stem cell phenotype (6–15).

An important goal in MDS and AML research is to identify differences between malignant 

cells and normal HSC that can be exploited for therapy. In MDS/AML cells, the pattern of 

expression of key myeloid differentiation-driving TF, and methylation patterns at myeloid 

maturation-responsive CpG, suggests differentiation is impaired after lineage-commitment, 

mediated by aberrant epigenetic repression of some key late-differentiation driver genes. 

This maturation and epigenetic profile, distinct from that of normal HSC, likely plays a 

major role in the contrasting differentiation response of AML cells and normal HSC to 

decitabine and other chromatin-relaxing drugs.
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Figure 1. Methylation changes at maturation-responsive CpG sites in MDS and AML bone 
marrow compared to CD34+ precursors from normal bone marrow. Distribution of methylation 
β-values by bone marrow sample type
Methylation levels are represented by a β-value between 0 (unmethylated) and 1 (fully 

methylated). Promoter CpG sites were classified into 3 categories: CpG sites that undergo a 

significant (p<0.001, t-test) increase in methylation from normal CD34+ cells (NCD34) 

(n=9) to normal total bone marrow (NBM) (n=42) (108 CpG, ‘hypomet. in NCD34+’) (red 
box plots); CpG sites that undergo a significant (p<0.001, t-test) decrease in methylation 

from NCD34 to NBM (162 CpG, ‘hypermet. in NCD34+’) (blue box plots); CpG sites that 

do not undergo a change in methylation between NCD34 and NBM (1236 CpG, ‘no met. 

change during n. diffn.’) (grey box plots). LoRisk = bone marrow from low-risk MDS 

patients (n=27), HiRisk = bone marrow from high-risk MDS/AML patients (n=130) (26). 

Box-plot boundaries = inter-quartile range, horizontal line = median, ‘+’ = mean, whiskers = 

range of values, small boxes = out-lying values. Asterixes represent statistically significant 

(p<0.0001) differences between the median in the sample group compared to the NCD34+ 

group (median one-way).
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Figure 2. Methylation changes at maturation-responsive CpG sites In AML cell lines (including 
CD34+ cell lines KG1, TF1 and Kasumi-1) compared to normal CD34+ precursors. Distribution 
of methylation β-values by cell line
Methylation at maturation-responsive (red and blue box plots) and non-responsive (grey 
box plots) promoter CpGs was analyzed in a model of first-hit or pre-leukemia (CD34+ 

cells retrovirally transduced to express the leukemia fusion protein RUNX1-ETO (27)), and 

6 AML cell lines. The control sample was normal CD34+ cells isolated from cord blood. 

Asterixes represent statistically significant differences between the median in the cell line 

compared to NCD34 (median one-way). Asterixes indicate p<0.0001 or at the following 

comparisons ‘Hypo-met in NCD34’: NCD34 v KG1 p=0.0042, NCD34 v Kasumi-1 

p=0.0002; ‘Hyper-met in NCD34’: NCD34 v KG1 p=0.0086. Box-plot boundaries = inter-

quartile range, horizontal line = median, ‘+’ = mean, whiskers = range of values, small 

boxes = out-lying values.
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Figure 3. Decitabine, at levels that do not cause apoptosis, has opposite effects on the 
proliferation, differentiation and colony-formation of AML cells and normal CD34+ cells
Normal cells: CD34+ cells from normal cord blood (NCD34+). Pre-leukemia and AML 

cells: (i) CD34+ cells transduced with RUNX1-ETO, (ii) Kasumi-1 cell line. Treatment: 

Decitabine (DAC) 0.5–1μM or cytarabine (AraC) 0.5μM on day 1, 4 and 7. A) Effects of 
DAC and AraC on proliferation of normal and AML cells. Cell counts by automated cell 

counter. Experiments were performed in triplicate. Error bars = standard error. B) Apoptosis 
induction by DAC and AraC. Annexin and 7AAD measured by flow-cytometry on Day 5. 

Annexin/7AAD data for Kasumi-1 in figure S4. C) Effects of DAC on cell morphology. 
Giemsa stained cytospin preparations on day 9 of liquid culture. All images 600X. D) 
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Effects of DAC on colony formation by normal and AML cells. Cells were plated in 

semisolid media after 7, 14 or 21 days in liquid culture (DAC 0.5μM treatment was 

discontinued after day 7 of liquid culture). Phase-contrast images of colonies. All images 

40X. U=Untreated, D=DAC treated, A=Ara-C treated. Colony formation data for Kasumi-1 

in figure S4.
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Figure 4. Methylation at maturation-responsive CpG sites before and after DAC treatment of 
normal CD34+ precursors and CD34+ AML cell lines
DNA for promoter CpG methylation analysis was isolated from the cells treated as per 

figure 3. Promoter CpG sites were classified as per figure 1, with myeloid maturation-

responsive (red and blue box plots) and non-responsive (grey box plots) CpGs. Asterixes 

represent statistically significant differences between control versus treated median values 

(median one-way). Asterixes represent p<0.0001 except at the comparisons ‘No Met. 

Change’ RUNX1-ETO Ctrl v DAC p=0.0286, Kasumi Ctrl v DAC p=0.0083. Box-plot 

boundaries = inter-quartile range, horizontal line = median, ‘+’ = mean, whiskers = range of 

values, small boxes = out-lying values.
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Figure 5. Effects of DAC 0.5μM (full lines) and vehicle treatment (dashed lines) on cell counts 
and cellular morphology in AML patient samples and additional AML cell-lines
Decitabine 0.5μM on day 1, 4 and 7 or vehicle control was added to primary leukemia cells 

from 5 patients (classification and detected chromosome abnormalities in table S4), and the 

UT7 and K562 erythro-megakaryoblastic AML cell lines. Cell counts by automatic cell 

counter on day 8. Giemsa-stained cytospins were generated on day 8. All images 600X.
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Figure 6. The pattern of expression of key myeloid differentiation-driving transcripton factors 
(TF) in MDS/AML cells suggests impaired differentiation of lineage-committed cells
A) Lineage-specifying TF are expressed at higher levels in MDS and AML compared to 
normal CD34+ hematopoietic precursors or total bone marrow. CEBPA (CEBPα) and 

PU.1 levels were measured by QRT-PCR. B) CD34+ AML cells (n=3) express 10–100 fold 

higher CEBPA, but lower levels of late differentiation TF CEBPE (CEBPε), than normal 

CD34+ hematopoietic precursors (n=3). HOXB4 is a stem cell associated TF. CEBPA/

HOXB4 (index of lineage-commitment) and CEBPE/A ratio (index of progressive 

maturation) calculated in each individual sample. Box-plot displays distribution of these 

ratios, horizontal line in box = median, box boundaries = interquartile range, whiskers = 

range of values. Gene expression was measured by QRT-PCR. Wilcoxon Two-sample test.
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Figure 7. Maturation-responsive CpG in the CEBPE (CEBPε) promoter are aberrantly 
hypermethylated in AML cells
A) CpG sites in the CEBPE promoter that undergo hypomethylation during G-CSF 
treatment of normal CD34+ precursors were identified. Methylation measured by mass 

spectrometry. The identified CpG sites were in proximity to putative CEBPA and RUNX1 

binding sites (figure S6). B) Methylation levels of these CpG sites in normal volunteer, 
AML in remission, AML, and promyelocytic leukemia (M3) bone marrow. M3 

leukemia cells express higher levels of CEBPE than other AML sub-types (figure S7). C) 
LINE-1 repetitive DNA element CpG methylation in normal, remission, AML and M3 
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bone marrow. Methylation measured by pyrosequencing. D) Effect of decitabine 
treatment on methylation of CEBPE promoter CpG and on DNMT1 and CEBPE 
protein levels. LINE-1 methylation changes in figure S8. THP1 AML cells treated with 

decitabine 0.5 μM on day 1 and day 4. DNA harvested on 48 hrs (day 3) after the first 

decitabine treatment and 24 hours after the second decitabine treatment (day 5). Cells were 

harvested for Western blot at the same time-points as for DNA analysis.
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