
Implicit methods for efficient musculoskeletal simulation and
optimal control

Antonie J. van den Bogerta,b,*, Dimitra Blanab,c, and Dieter Heinrichd

aOrchard Kinetics LLC, Cleveland, OH, USA
bDepartment of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
cDepartment of Sport and Exercise Science, Aberystwyth University, Aberystwyth, Wales, UK
dDepartment of Sport Science, University of Innsbruck, Innsbruck, Austria

Abstract
The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and
highly nonlinear. Consequently, simulations require small time steps, and optimal control
problems are slow to solve and have poor convergence. In this paper, we present an implicit
formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation
and optimal control, with the expectation that we can mitigate some of these problems. A first
order Rosenbrock method was developed for solving forward dynamic problems using the implicit
formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm
system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in
joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a
direct collocation method was developed for implicitly formulated models. The method was
applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one
hour of computation time and demonstrated how patients may adapt their gait to compensate for
limitations of a specific prosthetic limb design. The optimal control method was also applied to a
state estimation problem in sports biomechanics, where forces during skiing were estimated from
noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state
estimation had the additional advantage that forward dynamic simulations, could be done with the
same implicitly formulated model to simulate injuries and perturbation responses. While these
methods are powerful and allow solution of previously intractable problems, there are still
considerable numerical challenges, especially related to the convergence of gradient-based solvers.

Keywords
Biomechanics; Musculoskeletal dynamics; Real-time simulation; Optimal control

1. Introduction
Musculoskeletal modeling has become an important tool in research on human movement.
Multibody models have long been used to solve inverse dynamics problems for human gait
[1], and models of musculoskeletal anatomy were added to allow estimation of forces in
joints and orthopedic implants [2]. These inverse dynamics approaches, however, require
data collection on human subjects performing the movements of interest. Muscle-driven

© 2010 Published by Elsevier Ltd.
*Corresponding author. Tel.: +1-216-539-3638. bogert@orchardkinetics.com.

NIH Public Access
Author Manuscript
Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

Published in final edited form as:
Procedia IUTAM. 2011 January 1; 2(2011): 297–316. doi:10.1016/j.piutam.2011.04.027.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

forward dynamic approaches were developed simultaneously, and these allow simulation of
novel and hypothetical movements. Pioneering work on models of musculoskeletal
dynamics, and methods for simulation and optimal control, was done by Hatze [3].
Subsequent applications include rehabilitation [4] and basic research in motor control [5],
where simulation allows the testing of general hypotheses. Forward dynamics has also been
applied in orthopedics and sports medicine to study the effect of neuromuscular control on
injuries [6,7] and to design neuromuscular strategies for reducing joint loads in osteoarthritis
[8].

Despite the broad range of potentially important applications, musculoskeletal modeling has
not been as widely applied as we might expect. Part of this is due to the lack of user-friendly
software tools, which is currently being remedied by the Opensim group at Stanford
University [9]. But even when software is available, the computation time required for
simulation can be an obstacle. The differential equations for musculoskeletal dynamics are
often stiff, which requires the standard ODE solvers to perform many small time steps. Such
stiffness was, for example, a problem in a model of a walking horse, due to the interaction
between an almost massless hoof with the high stiffness of ground contact [10]. One second
of simulation required 10 hours of computation on a 25 MHz M68000 processor. The
problem is less extreme in human movement, but it again becomes an issue when many
simulations must be performed to solve an optimal control problem. Anderson and Pandy
[11] used about 10,000 hours of computation, divided among the nodes of a Cray T3E
parallel supercomputer, to find optimal controls for a half gait cycle. Ten years later, this is
still the best published solution for optimal control of gait using a full 3D musculoskeletal
model. In our own work on sports injuries, we were able to find reasonable optimal control
solutions by doing several hundred thousand simulations, requiring several days of
computation, but these movements were not required to be periodic, were only 200 ms long,
and optimizations made use of kinematic data collected on humans [7,12]. Still, several days
of computation is too long for effective interactive use of models in research, and also is not
acceptable for clinical applications.

In recent years, the use of musculoskeletal dynamics has shifted once more towards solving
the inverse problem of neuromuscular control, which can be done very efficiently, and with
dynamic consistency, from measured kinematics and ground reaction forces [13].
Unfortunately, this approach does not allow the use of contact models instead of measured
ground reaction forces, which eliminates certain applications that are both scientifically
interesting and clinically relevant, such as simulation of impact related injuries during active
movements, and predictive simulations with optimal control.

In this paper, we will first review the elements of musculoskeletal dynamics, with special
attention to potential causes of numerical problems in conventional solution methods. We
then present an implicit formulation which reduces the computation time for model
dynamics and aims to improve the numerical conditioning of the model equations. Solution
methods are presented for forward dynamic simulation, which will be demonstrated on a 3D
arm and shoulder model, and for optimal control, which will be demonstrated on the
problems of prosthesis design for walking, and state estimation for skiing.

2. Musculoskeletal dynamics
2.1. Multibody dynamics

The skeletal part of the musculoskeletal system is modeled using rigid bodies connected by
joints which impose kinematic constraints on the multibody system. We formulate the
multibody dynamics using generalized coordinates q:

van den Bogert et al. Page 2

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(1)

where M(q) is the mass matrix, τ the vector of generalized forces, and B(q,q ̇) contains
gravity, centrifugal and coriolis effects, and other passive forces such as contact forces
which are known as a function of generalized coordinates and their velocities. The vector τ
contains generalized forces which are either zero (for un-actuated degrees of freedom) or
generated by muscles according to models that will be presented in sections 2.2, 2.3 and 2.4.
The latter are known as joint moments. The formulation (1) is not unique, because it can be
pre-multiplied by any non-singular matrix. When formulated as in (1), however, it is easy to
see that the terms in the equation of motion can be computed in O(N) time when the
multibody system has a tree structure, with N being the number of body segments in the
model. For example, this can be done using forward kinematics to compute inertial terms in
the Newton-Euler equations, followed by a conventional recursive inverse dynamics
approach to solve joint moments and residual loads from kinematics and external forces [1].

For forward dynamic simulation, equation (1), or its equivalent, must be solved for the
generalized accelerations:

(2)

Standard differential equation solvers are then used to integrate this equation and simulate
movement.

Even before introducing muscles, we can already point out that simulation will not be
possible if the mass matrix M is singular. It is quite common in musculoskeletal systems
that a mass matrix is near-singular because some body segments have small mass and
moment of inertia. This problem is compounded by the presence of elements in B with high
stiffness and damping. The Jacobian matrix of the right hand side of (2) will then have high
eigenvalues, indicating that the differential equation is stiff and will require small time steps
to solve with explicit methods. This was, for example, evident in a model of a walking
horse, with elastic contact between the small hoof segments and hard pavement [10].
Another source of numerical stiffness is in ligaments which can be short and stiff.

In models of machines, there is usually a clear distinction between elements with high
stiffness and elements with low stiffness. Stiff differential equations can then be avoided by
replacing the high stiffness elements by kinematic constraints, which effectively have
infinite stiffness, and degrees of freedom are removed. With some additional bookkeeping,
this can also be done for contact between rigid bodies, where the constraints are
complementarity constraints that can be activated and deactivated during a simulation. In
biomechanical modeling, however, there is not always a clear distinction between kinematic
elements and force-generating elements, and replacing stiff force elements by hard
constraints is not always justifiable or desirable. For instance, we would no longer be able to
change ground surface contact properties to simulate the effect of walking on sand vs.
pavement, or the effect of sport shoes on running performance. In the case of stiff ligaments,
these can sometimes be replaced by kinematic constraints in joints, for example, it is
common to restrict the knee motion to a single rotational degree of freedom. This would,
however, be undesirable if we wanted to simulate the effect of variations in knee laxity on
injury risk during sports activities. Another example would be a model of the human hand,
where extremely small masses of the fingers are coupled to stiff tendons. The numerical
stiffness could be eliminated by modeling the tendons as infinitely stiff. This would be

van den Bogert et al. Page 3

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

appropriate for simulating unloaded movements such as sign language communication, but
not for manipulation of objects, where tendon compliance is essential. The root of the
problem is, perhaps, that ligaments and tendons have highly nonlinear mechanical
properties: stiffness is almost zero when unloaded, and very high when maximally loaded.
Stiff differential equations are, unfortunately, inevitable in models of musculoskeletal
dynamics.

2.2. Muscle contraction dynamics
The standard method for modeling the dynamics of muscle contraction is with a three-
element structure (Fig. 1). The contractile element (CE) represents the muscle fibers. The
series elastic element (SEE) represents the tendon and other tissue that transmits force from
the muscle fibers to the skeleton.

The parallel elastic element (PEE) represents the passive elastic tissue that surrounds the
muscle fibers. Properties of these elements have been extensively described in the literature
(e.g. [14]) and here we will present only a summary, with a specific implementation of the
model equations that we have used in the applications presented in this paper.

Based on muscle physiology, we can model the CE as producing a force FCE that depends
on the maximal isometric force Fmax, activation a, fiber length (LCE) and fiber lengthening
velocity (L ̇CE). As others have done [14,15], we assume a multiplicative interaction of these
effects:

(3)

The functions fFL and fFV are dimensionless force-length and force-velocity relationships
[14,15]. Typical examples are shown in Fig. 2. The elastic elements are represented by
separate passive force-length relationships fSEE and fPEE. The state equation for the muscle
is the force balance equation for the three-element structure:

(4)

The pennation angle φ is eliminated from the model by the assumption of constant volume
[16]:

(5)

where the right hand side is a constant derived from a reference fiber length and reference
pennation angle that were measured in one particular state, e.g. post mortem in a cadaveric
specimen. Such architecture parameters, as well as muscle attachment points on the
skeleton, have been measured for many muscles [17,18] and have been incorporated in
models that are part of commercial and open-source software systems [9]. For muscle
contraction dynamics, muscle activation a and muscle length LM are external inputs which
we will model in sections 2.3 and 2.4. Equation (4) is now a differential equation for the
state variable LCE. The state equation (4) is usually made explicit by solving L ̇CE, but there
are several potential singularities. First, the force-velocity relationship fFV is not invertible
because it has both a minimum force (zero) and a maximum force. Second, division by zero
will occur when the muscle is not activated (a = 0). Third, the muscle will lock up when
fibers have shortened to a length of LCEref sin φref. In typical software implementations,
these singularities are replaced by near-singularities that approximate the actual muscle

van den Bogert et al. Page 4

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

properties well enough [12] but will cause numerical stiffness and slow down the differential
equation solvers.

To eliminate the pennation singularity, we adopt instead s = LCE cos φ (Fig. 1) as the state
variable, from which the fiber length and cosine of the pennation angle can always be solved
without singularities:

(6)

When these are substituted in the state equation (4), we obtain an implicit first order
differential equation for the state variable s. This equation still cannot be solved for ṡ in all
circumstances, so we leave it as an implicit differential equation for now.

2.3. Muscle activation dynamics
The activation a of a muscle (also known as active state) cannot be directly controlled by the
nervous system because it is the result of a relatively slow electro-chemical process. The
nervous system sends a control signal u(t), also known as neural excitation, into the muscle,
which results in changes in activation via a first-order nonlinear activation-deactivation
process. Activation is faster than deactivation, which is commonly modeled as [19]:

(7)

where c1+c2 is the rate constant for activation and c2 is the rate constant for deactivation,
typically in the range of 20–50 s−1, depending on muscle fiber type [17,19].

2.4. Muscle-skeleton coupling
Endpoints of the muscles are attached to the skeleton, which implies that each muscle length
is a function of the skeleton pose:

(8)

The relationship between muscle length and joint angles can be modeled geometrically, with
straight lines or more realistic muscle paths which wrap around underlying anatomical
structures [9]. The relationship can also be directly measured, in vivo via imaging
techniques, or post mortem by the tendon travel method [20]. Once this length-angles
relationship is known and modeled such that differentiation is possible, the joint moment τij,
produced by muscle i at joint j can be derived using the principle of virtual work [21] and
written as a function of state variables q and LCE:

(9)

The partial derivative in this equation is the moment arm of the muscle i at joint j. The
negative sign arises from the fact that muscles produce positive work when shortening, i.e.
when LM is decreasing. Joint moments from (9) are now substituted in the equations of
motion (1) to complete the muscle-skeleton coupling.

van den Bogert et al. Page 5

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

In our own work, we usually obtain moment arms for a large number of poses q by
kinematic simulations with the Opensim software ([9],
http://www.simtk.org/home/opensim). A polynomial length-angles relationship is then
generated which, when differentiated, fits this moment arm data with sufficient accuracy
[7,22]. Once this preprocessing is done, the polynomials can be computed and differentiated
much faster than geometry-based muscle paths, and this helps simulations run more quickly.
The simplest such polynomial is linear:

(10)

which implies that the muscle has a constant moment arm at each joint, or in a geometric
sense, wraps around a cylinder that is centered at the rotation axis of the joint. This is often
adequate for planar models, but in 3D models, the posture often affects moment arms in a
critical manner and more general higher order polynomials are necessary:

(11)

where N is the number of polynomial terms, and M is the number of kinematic degrees of
freedom spanned by the muscle. Model parameters are N coefficients ci and NM non-
negative integer exponents eij.

2.5. Implicit state equation for musculoskeletal dynamics
After reviewing the elements of the musculoskeletal model, we will formulate the combined
system dynamics using a state vector x:

(12)

There are two state variables (q and q̇) for each kinematic degree of freedom, and two state
variables (s and a) for each muscle. The dynamic equilibrium equations (1) and (4) can now
be combined with activation model (7) into a single implicit state equation of the form:

(13)

with u containing the neural excitations for all muscles. Conventional simulation methods
require that this equation is solved for ẋ to obtain an ordinary differential equation (ODE),
but this leads to numerical stiffness as described above, and small simulation time steps.
One possible remedy is to use implicit ODE solvers [23], but the computational cost of
numerically estimating the Jacobian matrix of the ODE is often higher than the cost of using
an explicit solver with smaller time steps. If, however, we leave the differential equation in
its implicit form (13), it has a simpler symbolic internal structure and it becomes possible to
obtain exact analytical Jacobians ∂f/∂x, ∂f/∂ẋ, and ∂f/∂u.

In the work presented in this paper, we used Autolev (Symbolic Dynamics Inc., Sunnyvale,
CA) to generate symbolic expressions and C code for the multibody equations (1) in f and
their derivatives with respect to q, q ̇, and q ̈. The muscle dynamics equations and their
derivatives were hand-coded in C. The combined C source code for each model was then
wrapped in a MEX function interface for Matlab (Mathworks, Inc., Natick, MA), such that

van den Bogert et al. Page 6

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.simtk.org/home/opensim

applications could be developed on the Matlab platform and benefit from Matlab’s plotting
and powerful sparse linear algebra capabilities.

Due to the implicit formulation, the Jacobian matrices ∂f/∂x, ∂f/∂ẋ, and ∂f/∂u are not only
easy to compute but also sparse, which increases the efficiency of the linear algebra
operations in the solvers for simulation and optimal control. The sparsity structures for a 2D
gait model with 50 state variables and 16 controls [24] are shown in Fig. 3.

3. Simulation
3.1. Methods

Simulation of a musculoskeletal system model involves solving the state trajectory x(t),
given an initial state x(0) and controls u as functions of time and/or state. Equation (13) is a
differential-algebraic equation (DAE) of index zero when ∂f/∂ẋ is non-singular. This means
that ẋ could be solved and integrated, but we will also allow situations where this matrix is
singular, which can be the result of a singular mass matrix or zero muscle activation. In
those cases, the DAE has index 1. Numerical methods for solving DAEs of index 0 or 1 are
well known, and usually based on backwards differentiation formulae [23]. It will be
illustrative to present one of these, the implicit Midpoint Euler (ME) method. We will only
consider the open-loop control case here, where u is a function of time. The ME method
advances the system from state xn at time t to the new state xn+1 at time t+h, by solving xn+1
from the dynamics equation at the midpoint:

(14)

ME is a second order method without numerical damping artifacts. It is A-stable but not L-
stable. The nonlinear equation (14) must be solved using some variation of Newton’s
method, which leads to an iterative process:

(15)

The requirements for solvability are immediately evident. We do not require that ∂f/∂ẋ,
which can be loosely termed “mass matrix”, is invertible, but that its linear combination
with the “stiffness matrix” ∂f/∂x is invertible. So we must have stiffness where there is no
mass, and mass where there is no stiffness. The same reasoning applies also to the near-
singularities that we have identified earlier. If there are any perturbation directions in state
space with high stiffness and low mass, this was a liability for solving the explicitly
formulated model (2), but is actually an advantage for implicit solution methods applied to
the implicit formulation of the model. This complementarity between mass and stiffness is
often already a natural feature of musculoskeletal models, where small masses (foot,
scapula, fingers) often interact with stiff tissue elements. When the time step h goes to
infinity, the ME method produces the static equilibrium state, and this requires that the
stiffness matrix is invertible. We have indeed verified that the ME method, applied to the
implicit model formulation, is stable even when the mass matrix is singular and muscle
activation is zero.

The ME method is not ideal for real-time simulation because the number of required
Newton iterations was found to vary from one time step to the next, even when the
Jacobians are exact, so computation time is not predictable. For real-time simulation, we
therefore use a Rosenbrock method, which is the class of linearly implicit methods.

van den Bogert et al. Page 7

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Rosenbrock methods perform only one Newton iteration in each time step, but require exact
Jacobian matrices, which we have. High order Rosenbrock methods for DAE systems of
index one or zero, with error control, have been described by Roche [25]. For our needs, it
was sufficient to implement a first order method with constant step size h:

(16)

The full derivation of equation (16) is presented in Appendix A. Note that the solvability
requirements, with complementarity between mass and stiffness matrices, are the same as
for the ME method.

3.2. Real-time simulation of an arm-shoulder model
Functional electrical stimulation (FES) of muscles can restore function in individuals with
spinal cord injury. A major challenge in this work is the development of intelligent
controllers and natural command interfaces. In order to test controllers and command
interfaces with a human user in the loop, a virtual arm, or Dynamic Arm Simulator (DAS)
was developed. The DAS allows users to practice using a command interface on a
predictable dynamic system, and allows research on control systems and human interaction
to be conducted before introducing the unpredictability of the biological musculoskeletal
system. Because the human user is in the control loop, dynamic simulations must be
performed in real time. DAS version 2 was presented in [22] and consisted of an arm that
moved relative to an immobilized scapula. It was formulated as an ODE and simulated with
a 4th order explicit Runge-Kutta (RK) method at fixed time steps of 1 ms. The next version
(DAS3) includes movement of scapula and clavicle, which have low mass and are balanced
between large and stiff force-generating structures. Initial experiments with the ODE
formulation of DAS3 revealed that explicit methods required extremely small time steps and
it could not run in real time.

The DAS3 model was developed based on the general model structure described in [26].
The model consisted of a thorax, fixed to the ground, and a kinematic chain consisting of
clavicle, scapula, humerus, ulna, radius, and hand. The wrist joint was immobilized, and
there are 11 kinematic degrees of freedom. Gliding contact between scapula and thorax was
implemented using an elastic model with a stiffness of 20 kN/m. The model was
implemented in SIMM (Musculographics Inc., Santa Rosa, CA) and 138 muscle elements
were added, based on data by Klein Breteler et al. [18]. Kinematic simulations were carried
out in SIMM to obtain polynomial models (11) for the muscle paths. The model was
imported in Opensim [9] for visualization (Fig. 4). The model has 2×11+2×138 = 298 state
variables.

The model was formulated in implicit form (13) and implemented as a Matlab MEX
function that computes the dynamic residuals f and its three Jacobians. The execution time
for this MEX function was 1.2 ms on an Intel i5-450M processor at 2.4 GHz. The first order
Rosenbrock method was implemented, and it was found that it required an additional 1.5 ms
per time step to solve the linear system (16). This means that real-time simulations must be
done with time steps of 2.7 ms or larger. Test simulations were carried out in which the
system started in its passive equilibrium state (with the arm hanging down). Neural
excitations in all muscles were ramped up to reach a maximum at t = 0.2 seconds, then kept
constant until t = 2.0, after which the excitations were switched off. The simulation was
continued until t = 4.0 s. A second order explicit RK method (Matlab ODE23) was used

van den Bogert et al. Page 8

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

with default tolerance settings to first establish the “correct” result. At each ODE evaluation,
ẋ was solved from (13) using Newton’s method with a tolerance of 10−8 in the norm of f.
ODE23 required an average step size of about 2 microseconds to perform the simulation,
confirming the extreme stiffness of the ODE formulation. The main (but not the only) reason
for this stiffness was the stiff and short conoid ligament, which connects the coracoid
process of the scapula to the clavicle, and controls the axial rotation of the clavicle which
has a very low moment of inertia.

The simulated movement is shown in Fig. 5a. The muscles move the joints quickly to a new
equilibrium position. In the final two seconds, when the muscles relax, there is a damped
oscillation, when the arm acts like a pendulum. Simulations were then done with the
Rosenbrock method (16) using various time steps of up to 6 ms, when the method became
unstable (Fig. 5b). At small step size, the error was proportional to step size, which confirms
that this is a first order method. At 3 ms, which can be done in real time, the RMS error in
joint angles was just 0.11 degrees, which means that the result was identical to the correct
result (Fig. 5a), for all practical purposes. This is a remarkable level of accuracy,
considering that the simulation was done in time steps that were 1500 times larger than with
the RK method.

Even when real-time simulation is not needed, or already achieved with conventional
methods, this new implicit method will allow simulations to be done much faster, and this is
important when optimal control problems are solved by performing a large number of
simulations [11,12].

4. Optimal control
4.1. Problem statement and related work

Optimal control problems arise in many applications of musculoskeletal modeling. Often,
we wish to determine controls u(t) which will produce a movement that is in some sense
“optimal”. In fully predictive simulations, no observations on humans are used, and
optimality is defined as either maximal performance, or as minimal effort for a given
submaximal task. Such optimizations can be used to design optimal sports techniques, or to
test hypotheses about human motor control [3,24]. In other applications, we wish to find
controls u(t) that make the system reproduce an actual observed human movement.
Simulations driven by these controls, can then be used to simulate new movements, for
instance in response to perturbations which can cause injuries [7]. Regardless of the nature
of the optimal control problem, it can always be formulated as follows:

(17)

Typical examples of cost functionals are: energy cost, distance to a reference trajectory, or
(the negative of) performance variables such as running speed and jump height. These may
also be combined as a weighted sum to do a multi-objective optimization. There can be any
number of task constraints, or none at all. Some typical examples of task constraints are:
initial state, final state, periodicity, or walking speed.

van den Bogert et al. Page 9

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Methods for solving musculoskeletal optimal control problems have evolved considerably
over time. Early work on relatively small musculoskeletal models was done with indirect
methods such as differential dynamic programming [3]. These methods did not scale well to
the more complex 3D full body models, and were replaced by direct shooting methods in
which the control trajectories were parameterized and repeated forward dynamic simulations
were done, to search for optimal controls in parameter space. Gradient-based search in
parameter space was found to be time consuming [11] and prone to finding local extrema
[27], and has been mostly replaced by heuristic methods such as simulated annealing
[7,12,27] and genetic algorithms [28].

More recently, collocation algorithms have been used in which the state and control
trajectories are both discretized on a temporal mesh, resulting in a large scale constrained
optimization problem described by (17). These methods were first applied in computer
animation [29], resulting in the well-known Pixar animation of a jumping Luxo lamp. The
same methods were also very successful in aerospace trajectory optimization [30].
Collocation methods seem especially suited to optimal control problems where task
constraints apply at the end of the simulation. In shooting methods, the final state can be too
sensitive to initial conditions and controls, especially for intrinsically unstable systems such
as bipedal humans. Collocation methods have become increasingly popular tools for optimal
control of human movement [24,31–33]. We have extensively evaluated the direct
collocation method for predictive simulation of symmetric bipedal locomotion using
musculoskeletal dynamics in explicit (ODE) form. By successive mesh refinement, it was
determined that solutions are sufficiently accurate at a resolution of 50 nodes for a half gait
cycle [24,34,35]. We also identified significant challenges. Computation time was still too
long for effective research, ranging from 30 minutes (planar model) to one week (3D
model), even with a good initial guess [35]. The major part of computation time was spent
on computing the Jacobian matrices of the ODE with finite differences. Convergence was
still problematic unless a good initial guess was available, which might take days or weeks
of experimentation to obtain. We expect to overcome some of these challenges if the explicit
ODE form is replaced by the implicit formulation introduced in this paper.

4.2. Solution method
Direct collocation methods for optimal control are relatively easy to implement with our
implicit formulation of musculoskeletal dynamics. We discretize the unknown state and
control trajectories on temporal nodes t1, t2, … tN, resulting in unknowns x1,x2…xN and
u1,u2, …uN. The cost functional is now a function F of these unknowns. The system
dynamics constraint is translated into a series of algebraic constraints by replacing the state
derivative ẋ with a finite difference approximation. In the work presented here we use the
midpoint rule, which leads to the following N −1 constraints:

(18)

Each of these constraints has the dimension of f, i.e. the number of state variables. For
predictive simulation of gait, we also define the additional task constraints of speed and
periodicity:

(19)

where v is the walking speed, T is the duration of the gait cycle, and x̂ is a unit vector in state
space in the direction of pure forward translation. Speed and duration may either be

van den Bogert et al. Page 10

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

prescribed, or optimized along with the optimal control and state trajectories. The original
optimal control problem has now been transformed into a large scale constrained
optimization problem, or nonlinear program (NLP). We collect all unknowns (discretized
state and control trajectories, and any additional unknowns that must be solved) into a large
vector X, and we minimize the function F(X), subject to equality constraints Ci(X)=0 from
(18) and (19) and bounds L ≤ X ≤ U.

Standard large scale NLP solvers can be used to solve this type of problem. We have good
experience with SNOPT [36], which uses the active set method, and IPOPT [37], which uses
an interior point method. Both are available for the Matlab platform and were used in the
work presented in this paper. In our experience, which is consistent with the
recommendations of Betts [30], interior point methods are preferred when a good initial
guess is not available, while active set methods are better when a series of related problems
is solved, and initial guesses are already close to the solution. All NLP solvers require the
gradient of the cost function F and the Jacobian of the constraints C with respect to the
unknowns X. The cost function is often a simple function of states and controls, and
analytical derivatives can be generated. The Jacobian of constraints is sparse, since each
constraint (18) only involves the states and controls at two neighboring nodes. Derivatives
of (18) with respect to states and controls of either node are easy to compute because the
Jacobians of the function f are already available as described in section 2.5. The nonzero
blocks in the constraint Jacobian matrix consist of linear combination of the “mass” and
“stiffness” matrices ∂f/∂ẋ and ∂f/∂x, so the same solvability conditions apply as in the
forward dynamic simulation methods presented in section 3.1.

4.3. Predictive simulation of prosthetic gait
Design of prosthetic limbs, or other assistive devices and man-machine systems, is a
problem that naturally lends itself to a musculoskeletal optimal control approach. Before a
prototype of the mechanical device exists, a computational model is often made as an initial
test of its functionality and to optimize the design. This is, however not straightforward
when a device is mechanically coupled to a human body, and has the specific purpose of
affecting human movement. Human movement will be affected directly via mechanical
effects, or indirectly when the user adapts their neuromuscular control to make better use of
the device. The performance of the device can therefore not be predicted very well with a
computation model that does not include musculoskeletal dynamics and adaptive human
behavior.

To demonstrate such an application, we will attempt to predict how the gait of a transtibial
amputee is affected by a prosthetic foot. We use the planar musculoskeletal model described
in [24], which has nine kinematic degrees of freedom and sixteen muscles, a total of 50 state
variables and 16 control variables. Ground contact was represented by unidirectional
viscoelastic elements with friction, on the heels and toes. We simulate cyclic gait with a
prescribed speed of 1.1 m/s and a gait cycle duration of 1.28 s. The problem was time-
discretized on 100 nodes for a full gait cycle, resulting in a total of 6600 unknowns.
Dynamics and periodicity were represented by 5000 constraints using equations (18) and
(19). Optimizations were carried out with the following weighted cost function:

(20)

in which mi(t) are reference trajectories of ten variables: three joint angles and the horizontal
and vertical ground reaction forces, in each limb, measured during able-bodied gait [1]. The

van den Bogert et al. Page 11

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

corresponding variables in the model are si, which are either state variables or functions of
the system state. The difference between simulated and measured variables is normalized to
the human standard deviations σi, making it dimensionless. The first, “tracking”, term in
(20) will encourage the model to stay close to normal gait, and the second, “effort”, term
will encourage it to use its muscles efficiently. The weighting W was set to 100, which
implies that the cost of full muscle activation (u=1) is equal to the cost of a tracking error of
ten standard deviations. We do not know that this is the actual cost function which governs
human behavior, but it was found to produce sensible predictions and these predictions were
not overly sensitive to the weighting W. Nevertheless, rigorous validation of these
theoretical cost functions must still be done with human subject experiments.

The optimal control model was first solved on the original model, and this resulted in a cost
function value of 2.04, with contributions of 0.49 from tracking and 1.55 from effort. The
movement and ground reaction forces were, on average, within half a standard deviation of
normal gait, and muscle activity was phasic and consistent with normal EMG patterns. Joint
angles and ground reaction forces generated by the simulation, compared to the normal
mean and standard deviation, and muscle forces and excitations, are shown in Fig. 6a.

The model was then “amputated” by removing the ankle muscles on the right side. A
rotational spring (5 kN m rad−1) was placed at the ankle to simulate a very stiff prosthetic
device. The optimal control problem was solved again, resulting in a cost function value of
2.78 = 1.52 (tracking) + 1.26 (effort). Details of the optimal control solution are shown in
Fig. 6b. Because of the stiff prosthesis, there is almost no motion in the right ankle joint, and
the model compensates by increasing the motion in the right hip joint. These compensations,
and loss of ankle motion, caused a substantial increase in the tracking term of the cost
function. The knee angle pattern and ground reaction forces remained almost normal.
Average muscular effort, the second term of the cost function, actually decreased, mainly
because three of the sixteen muscles were removed and no longer activated, while the
denominator in this term of the cost function was still 16. The asymmetrical gait adaptation
becomes especially noticeable when the result is visualized in an animation that runs at real
time speed. When this approach is used in a design project, we would repeatedly solve the
optimal control problem, with different prosthetic stiffnesses and perhaps different
geometries, until we find one that allows the model to remain close to able-bodied gait
without excessive compensatory effort. Alternatively, the NLP approach makes it possible to
add these design parameters to the vector X of unknowns, such that the device parameters
and the patient’s movement will be simultaneously optimized.

4.4. State estimation from noisy measurements
Musculoskeletal systems are not fully observable. Some state variables, such as skeletal
rotations and translations, can be measured, while others, such as muscle activations and
fiber lengths can only be obtained indirectly. In rehabilitation and sports biomechanics, it is
often desirable to estimate joint moments or muscle forces because these are relevant to
injury. The conventional approaches are based on inverse dynamics [1,38], but this requires
full measurement of all kinematic variables and external forces, with high accuracy, which is
only possible in a laboratory environment with optical motion capture and force platforms.
Outside of the laboratory, measurements are usually noisy and possibly incomplete. In such
conditions, Kalman filters are typically used for real-time state estimation with dynamic
models [39], but these are not expected to perform well with the high-dimensional state
spaces and strong nonlinearities of complex musculoskeletal system models. Kalman filters
also are suboptimal when used for off-line data processing because they only use data from
the past, not the future.

van den Bogert et al. Page 12

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We can, however, use the basic concept of Kalman filtering which is that an optimal
estimate is based on a balance between the conflicting goals of consistency with
measurements and consistency with a model of the system’s passive dynamics. This concept
is, surprisingly, equivalent to an optimal control problem with a cost function as used earlier
in equation (20):

(21)

The second term in the cost function penalizes the musculoskeletal system for not following
its passive dynamics. When properly weighted, this term will prevent the model from trying
to fit the noise in the measured data because noisy movements have high accelerations,
which require high muscular effort and are therefore penalized by the optimization. This has
a smoothing effect similar to the effect of a Kalman filter. The first term in the cost function
can contain any data that is available, the set of sensors may be overcomplete or incomplete,
and may even change over time, as long as we can calculate differences between the
measurements and the corresponding variables in the musculoskeletal model. Sensor signals
may include data from optical motion capture and load cells, but may also be obtained from
body-mounted sensors such as goniometers, MEMS accelerometers and gyroscopes,
magnetometers, and others. All of these are now becoming available at low cost, and we
expect that state estimation techniques based on musculoskeletal dynamic models will
become powerful tools to process such data, effectively using the model to fuse the
information from diverse data sources and to enforce consistency with the known laws of
physics and muscle physiology.

We applied this concept to downhill skiing, where it is difficult to obtain accurate data. The
movement of downhill skiers is very fast, and this requires cameras to have either a very
large field of view, and therefore a poor spatial resolution, or follow the skier by panning
and zooming, which requires per-frame calibration and introduces significant noise.
Furthermore, instrumentation with force sensors is not possible during competition. A pan
and zoom technique was used to collect video data during the 1994 Olympic downhill race
in Lillehammer, Norway [40]. From this data, we used a data segment of one second,
collected at 180 frames per second, from a single competitor performing a landing
movement. 3D coordinates of points on the body were translated into planar (sagittal plane)
joint angles and absolute position and orientation of the trunk. The data contained significant
noise but were not smoothed prior to being used in the cost function (21). A planar
musculoskeletal model was developed, with the same skeleton and muscles as in the gait
simulations. The model was made suitable for skiing by adding aerodynamic forces,
deformable skis, and a nearly frictionless and sloping ground contact surface. No task
constraints were used, and dynamics constraints were implemented using the midpoint rule
as in equation (18).

The optimal control problem was solved first on a coarse mesh of 10 nodes with IPOPT, and
then successive optimizations on finer meshes were done with SNOPT until a solution with
180 nodes was obtained. The simulated movement tracked the data well, ignored the noise,
and produced sensible estimates of muscle activations and ground reaction forces (Fig. 7ab).
Having all muscle forces, kinematics, and external forces available, we were then able to use
simple planar knee model to estimate the forces in the knee ligaments (Fig. 7c), so that the
potential for injury could be assessed.

Doing state estimation with a full musculoskeletal dynamic model provided other
opportunities in this project. We perturbed the initial state by a small counterclockwise

van den Bogert et al. Page 13

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

rotation of the body, and did forward simulations with the original optimal controls, using
the ME solver, to create simulations of off-balance landing movements. This produced much
larger knee ligament forces, approaching injurious levels. This was done with different
values for the ski stiffness parameters, and it was found that in this particular situation, a
reduction of 50% in ski stiffness was necessary to reduce the peak ligament forces by 10%.
These simulations are completed in a matter of seconds, which allows exploration of a large
parameter space to do multi-factorial simulation studies on injury prevention.

5. Discussion
The implicit formulation of musculoskeletal dynamics, using the force balance equations for
joint moments (1) and for muscle forces (4) made it possible to implement efficient implicit
solution methods for forward dynamic simulation and for optimal control. These new
methods produce results that are identical to conventional methods, but are computed faster,
sometimes orders of magnitude faster, and will help overcome some of the computational
bottlenecks that have existed in certain applications of musculoskeletal modeling. While the
work presented here demonstrates the potential of these methods, there are still considerable
challenges. The conventional methods, while slower, were robust and easy to use and will
always produce an answer when given enough computation time. The new methods are
more challenging to use.

The forward dynamic simulation with the implicit Rosenbrock method had to be started with
the solver in a consistent initial state (x, ẋ, u), that satisfied the implicit dynamics equation.
Conventional explicit methods only require an initial state x. We used the passive
equilibrium state xeq as initial condition, which is the solution of f (xeq,0,0) = 0. This
equilibrium was harder to find than expected, possibly because of contact and contact-like
elements. We used the Levenberg-Marquardt method, which is more robust than Newton’s
method but still required several attempts to find an initial guess that led to convergence.
Fortunately, for our application, this had to be done only once because we start the arm
simulator always from the same initial state. In other applications, the need to find consistent
initial conditions before a simulation may be a significant limitation. Also it should be noted
that our simulation methods presently use fixed time steps, so accuracy and stability must be
determined experimentally as we have done in Fig. 5b. Error control and variable step size
can possibly be added, to make the methods more robust. We used fixed steps for real-time
simulation because this keeps computation time predictable.

The new optimal control methods are similarly challenging: when they work, they work
well, but they sometimes fail to produce an answer. Computation speed was excellent. For
the gait optimization problem, IPOPT produced several iterations of the solution X per
second, while SNOPT had more internal overhead and produced about one iteration per
second. On the other hand, SNOPT tended to require around 100 iterations, vs. about 1000
for IPOPT, when a good initial guess was available. Convergence depended critically on the
availability of a good initial guess. When a good initial guess was available, SNOPT was
fast and robust, while IPOPT occasionally lost convergence even with a good initial guess.
When a good initial guess was not available, SNOPT never converged, but IPOPT would
often find a good solution if the mesh had few nodes. Successive mesh refinement with
SNOPT was then used to refine the solution. After the first problem with a particular model
has been solved, a new problem can always be solved as a series of optimization problems,
such that the initial guess for each is good enough for convergence.

These practical difficulties illustrate that these methods may not yet be ready for use by non-
experts, where failure of a numerical method is not acceptable. Further improvements in the
algorithms and model formulations are still needed before more widespread use is justified.

van den Bogert et al. Page 14

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

With sufficient patience and care, however, these new methods already allow problems to be
solved that could not be solved before.

Acknowledgments
This work was financially supported by the National Institutes of Health (grants R01-EB006735, R43-AR058074,
contract N01-HD53403), by the E.U. through the INTERREG IV project SkiProTech, and by adidas AG
(Germany). We acknowledge the help of Marko Ackermann during the initial development of optimal control
algorithms.

Nomenclature

q Vector of generalized coordinates describing skeleton pose

M(q) Mass matrix of the multibody system

τ Vector containing joint moments

LM Muscle-tendon length

LCE Length of the muscle contractile element

φ Pennation angle of muscle fibers

s State variable for muscle contraction dynamics (s=LCE cos φ)

a Activation state of a muscle

x Vector containing all musculoskeletal system state variables x=(q,q ̇,s,a)T

u Vector containing all musculoskeletal system controls (neural excitations for each
muscle)

X Vector of unknowns for collocation methods in optimal control, containing states
and controls for an entire movement, and any model parameters that must be
optimized or estimated

References
1. Winter, DA. The biomechanics and motor control of human gait: normal, elderly and pathological.

2. University of Waterloo Press; Waterloo, Canada: 1991.
2. Crowninshield RD, Brand RA. The prediction of forces in joint structures; distribution of

intersegmental resultants. Exerc Sport Sci Rev. 1981; 9:159–81. [PubMed: 6749521]
3. Hatze H. The complete optimization of a human motion. Math Biosci. 1976; 28:99–135.
4. Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking: part

II: lessons from dynamical simulations and clinical implications. Gait Posture. 2003; 17(1):1–17.
[PubMed: 12535721]

5. Vaughan CL. Theories of bipedal walking: an odyssey. J Biomech. 2003; 36(4):513–23. [PubMed:
12600342]

6. van den Bogert AJ. Analysis and simulation of mechanical loads on the human musculoskeletal
system: a methodological overview. Exerc Sport Sci Rev. 1994; 22:23–51. [PubMed: 7925545]

7. McLean SG, Huang X, Su A, van den Bogert AJ. Sagittal plane biomechanics cannot injure the
ACL during sidestep cutting. Clin Biomech. 2004; 19(8):828–38.

8. Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient-specific gait
modifications for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng. 2007; 54(9):1687–95.
[PubMed: 17867361]

9. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG.
OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE
Trans Biomed Eng. 2007; 54(11):1940–50. [PubMed: 18018689]

van den Bogert et al. Page 15

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

10. van den Bogert AJ, Schamhardt HC. Multi-body modelling and simulation of animal locomotion.
Acta Anat. 1993; 146(2–3):95–102. [PubMed: 8470472]

11. Anderson FC, Pandy MG. Dynamic optimization of human walking. J Biomech Eng. 2001; 123(5):
381–90. [PubMed: 11601721]

12. McLean SG, Su A, van den Bogert AJ. Development and validation of a 3-D model to predict knee
joint loading during dynamic movement. J Biomech Eng. 2003; 125(6):864–74. [PubMed:
14986412]

13. Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic
simulations of human walking from experimental data. J Biomech. 2006; 39(6):1107–15.
[PubMed: 16023125]

14. Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and
motor control. Crit Rev Biomed Eng. 1989; 17(4):359–411. [PubMed: 2676342]

15. Herzog, W. Muscle. In: Nigg, BM.; Herzog, W., editors. Biomechanics of the Musculoskeletal
System. 2. New York: Wiley; 1999. p. 148-88.

16. Otten E. Concepts and models of functional architecture in skeletal muscle. Exerc Sport Sci Rev.
1988; 16:89–137. [PubMed: 3292268]

17. Yamaguchi, GT.; Sawa, AG-U.; Moran, D.; Fessler, M.; Winters, JM. A survey of human
musculotendon parameters. In: Winters, J.; Woo, SL-Y., editors. Multiple Muscle Systems:
Biomechanics and Movement Organization. New York: Springer-Verlag; 1990. p. 717-773.

18. Klein Breteler MD, Spoor CW, Van der Helm FC. Measuring muscle and joint geometry
parameters of a shoulder for modeling purposes. J Biomech. 1999; l32(11):1191–7. [PubMed:
10541069]

19. He J, Levine WS, Loeb GE. Feedback gains for correcting small perturbations to standing posture.
IEEE Trans Autom Control. 1991; 36:322–32.

20. Spoor CW, van Leeuwen JL. Knee muscle moment arms from MRI and from tendon travel. J
Biomech. 1992; 25(2):201–6. [PubMed: 1733995]

21. An KN, Takahashi K, Harrigan TP, Chao EY. Determination of muscle orientations and moment
arms. J Biomech Eng. 1984; 106(3):280–2. [PubMed: 6492774]

22. Chadwick EK, Blana D, van den Bogert AJ, Kirsch RF. A real-time, 3-D musculoskeletal model
for dynamic simulation of arm movements. IEEE Trans Biomed Eng. 2009; 56(4):941–8.
[PubMed: 19272926]

23. Ascher, UM.; Petzold, LR. Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Philadelphia, PA: Society for Industrial and Applied
Mathematics; 1998.

24. Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human
gait. J Biomech. 2010; 43(6):1055–60. [PubMed: 20074736]

25. Roche M. Rosenbrock methods for differential algebraic equations. Num Math. 1988; 52(1):45–63.
26. van der Helm FC. A finite element musculoskeletal model of the shoulder mechanism. J Biomech.

1994; 27(5):551–69. [PubMed: 8027090]
27. Neptune RR. Optimization algorithm performance in determining optimal controls in human

movement analyses. J Biomech Eng. 1999; 121(2):249–52. [PubMed: 10211461]
28. Sellers WI, Cain GM, Wang W, Crompton RH. Stride lengths, speed and energy costs in walking

of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human
ancestors. J R Soc Interface. 2005; 2(5):431–441. [PubMed: 16849203]

29. Witkin A, Kass M. Spacetime constraints. Computer Graphics. 1988; 22:159–168.
30. Betts, JT. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. 2.

Philadelphia, PA: Society for Industrial and Applied Mathematics; 2010.
31. Kaplan ML, Heegaard JH. Predictive algorithms for neuromuscular control of human locomotion.

J Biomech. 34(8):1077–83. [PubMed: 11448699]
32. Stelzer M, von Stryk O. Efficient forward dynamics simulation and optimization of human body

dynamics. ZAMM. 2006; 86(10):828–840.
33. Kaphle M, Eriksson A. Optimality in forward dynamics simulations. J Biomech. 2008; 41(6):

1213–1221. [PubMed: 18342319]

van den Bogert et al. Page 16

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

34. van den Bogert, AJ.; Ackermann, M. Direct collocation for simulation and optimization of human
movement. 12th International Symposium on Computer Simulation in Biomechanics; Cape Town,
South Africa. 2009.

35. Ackermann, M.; van den Bogert, AJ. Simulation of gait using a 3D musculoskeletal model.
American Society of Biomechanics annual meeting; State College, PA. 2009.

36. Gill PE, Murray W, Saunders MA. SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM J Optim. 2002; 12:979–1006.

37. Wächter A, Biegler LT. On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math Prog. 2006; 106(1):25–57.

38. Erdemir A, McLean S, Herzog W, van den Bogert AJ. Model-based estimation of muscle forces
exerted during movements. Clin Biomech. 2007; 22(2):131–54.

39. Simon, D. Optimal State Estimation. Wiley; 2006.
40. Nachbauer W, Kaps P, Nigg B, Brunner F, Lutz A, Obkircher G, Mössner M. A video technique

for obtaining 3-D coordinates in alpine skiing. J Appl Biomech. 1996; 12:104–115.

Appendix A. First order Rosenbrock method to simulate the implicit model
The first order Rosenbrock method advances the state x at time t to a state x + Δx at t + h,
while controls change from u to u + Δu. If we approximate the state derivative by the
backwards Euler formula, and attempt to satisfy the implicit state equation (13) at t + h, we
obtain:

(A1)

We rewrite this such that the function arguments are written as changes relative to the state
x, state derivative ẋ, and controls u at the previous time t:

(A2)

A first order Taylor expansion leads to:

(A3)

which is a linear equation in Δx:

(A4)

Solving for Δx produces the algorithm (15). The algorithm must not only store the state x in
memory, but also the state derivative ẋ and controls u because all three are needed, with the
three Jacobians of f, to perform a time step. At t = 0, state, state derivative, and controls
must be given as initial conditions and these initial conditions must satisfy the state equation
(13).

No formal analysis of accuracy and stability was performed, but the method should be of
first order (which was confirmed by the results in Fig. 5b) and should be L-stable because it
was derived using the backwards Euler formula.

van den Bogert et al. Page 17

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
Three-element muscle model, consisting of contractile element (CE), series elastic element
(SEE), and parallel elastic element (PEE). Pennation angle φ is the angle between the
muscle fibers in the CE and the line of action of the muscle. s is the state variable for the
muscle contraction dynamics.

van den Bogert et al. Page 18

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
(a) Typical force-length relationship for muscle fibers. Lceopt is the fiber length at which
the highest force can be generated; (b) Typical force-velocity relationship for muscle fibers.
Negative velocities represent shortening (concentric contraction), positive velocities
represent lengthening (eccentric contractions). The maximum shortening velocity is
typically around 10 fiber lengths per second [15], and the force does not exceed 150% of the
(isometric) force at zero velocity.

van den Bogert et al. Page 19

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Sparsity structures of the Jacobians ∂f/∂x, ∂f/∂ẋ, and ∂f/∂u of the implicit dynamics
equation f (x, ẋ, u) = 0 for the 2D gait model with 9 degrees of freedom and 16 muscles
[24]. Columns correspond to the state variables defined in (12). The dense blocks in rows
10–18 are due to multibody dynamics (equation 1). The 3×3 holes in these blocks are due to
the limbs, each of which has three degrees of freedom, being decoupled in the implicit
formulation. The stair stepping pattern in these rows is due to muscle-skeleton coupling,
which only produces non-zero Jacobian elements when the muscle actually crosses the joint.
Explicit formulations will have fully dense blocks in those parts of the Jacobian, due to
dynamic coupling which causes each force generating element to affect each generalized
acceleration in the system.

van den Bogert et al. Page 20

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Model of the shoulder-arm system, visualized in Opensim [9] (left). The schematic
representation (right) shows the kinematic structure, consisting of clavicle, scapula,
humerus, ulna, and radius. Closed circles are ball joints and squares are hinge joints. Open
circles are points where the thorax (blue ellipsoid) exerts elastic contact forces on the
scapula.

van den Bogert et al. Page 21

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
(a) Results for the test simulation of the arm-shoulder model, showing the eleven joint
angles in the sternoclavicular (SC), acromioclavicular (AC), glenohumeral (GH), elbow
(EL) and pronation-supination (PS) joints; (b) RMS error in simulated joint angles as a
function of time step in the first order Rosenbrock method. The 3 ms time step, which is the
smallest that can be done in real time, is shown in red.

van den Bogert et al. Page 22

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
(a) Optimal control solution for the able-bodied gait model (solid lines) tracking able-bodied
joint angles and ground reaction forces (shaded areas). (b) Optimal control solution for a
model with a stiff prosthetic foot and ankle on the right leg. Note the ankle stiffness and
absence of ankle muscle forces on the right leg (blue curves), with compensatory increase in
hip angular motion.

van den Bogert et al. Page 23

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
(a) Optimal control solution for the skiing model. Left column shows simulated kinematic
variables in meters and radians (solid lines) compared to data collected during the 1994
Olympic downhill race (noisy thin lines). The other columns show neural excitations for the
16 muscles, and the horizontal and vertical ground reaction forces. (b) Stick figure rendering
of the same movement, beginning in the aerial phase. Black line is the snow surface. (c)
Forces in the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) in the
left and right knee.

van den Bogert et al. Page 24

Procedia IUTAM. Author manuscript; available in PMC 2011 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

