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Abstract
In many randomized clinical trials, the primary response variable, for example, the survival time,
is not observed directly after the patients enroll in the study but rather observed after some period
of time (lag time). It is often the case that such a response variable is missing for some patients
due to censoring that occurs when the study ends before the patient’s response is observed or when
the patients drop out of the study. It is often assumed that censoring occurs at random which is
referred to as noninformative censoring; however, in many cases such an assumption may not be
reasonable. If the missing data are not analyzed properly, the estimator or test for the treatment
effect may be biased. In this paper, we use semiparametric theory to derive a class of consistent
and asymptotically normal estimators for the treatment effect parameter which are applicable
when the response variable is right censored. The baseline auxiliary covariates and post-treatment
auxiliary covariates, which may be time-dependent, are also considered in our semiparametric
model. These auxiliary covariates are used to derive estimators that both account for informative
censoring and are more efficient then the estimators which do not consider the auxiliary
covariates.
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1 Introduction
In many randomized clinical trials, the primary endpoint of interest, denoted by Y, is not
observed immediately after patients enroll into a study, but rather is observed after some
period of time which may vary among patients. The time from a patient’s entry into the
study until the response is observed is referred to as the lag time or time to ascertainment,
and the corresponding response variable is referred to as the time-lagged response (Anstrom
and Tsiatis 2001) or marked point process (Huang and Louis 1998). The simplest example
of a time-lagged response is survival time where the primary endpoint itself is the lag time
which varies by individual. Another simple example of a time-lagged response may be a
laboratory measurement taken after some fixed period of time in which the lag time is the
same for all individuals. Yet another example is when the response variable of interest Y are
the total medical costs incurred during the treatment of some disease, in which the time to
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ascertainment is the length of disease which will vary by individual. The first two examples
of the the time-lagged response will be discussed in detail in this paper. Areal data example
ACTG 175, which will be introduced shortly in section 1.1, will be used to illustrate the
applications of our developed methods on these two cases. The methods can also be applied
more generally with other time-lagged response data such as the third example.

Our primary goal is to estimate or test for the treatment effect between two competing
treatment groups, e.g., a new treatment versus placebo, which is defined through the
statistical model

(1)

where Z denotes the treatment assignment with Z = 1 for new treatment and Z = 0 for
placebo, pY|Z(y|z) is used to denote the conditional density of Y given Z, β is the treatment
effect parameter of interest and η are nuisance parameters used to describe the class of
conditional distributions of Y|Z. The lag time that it takes for the response variable Y to be
ascertained is denoted by T. For example, if the time-lagged response is survival time then Y
= T and a commonly used model for assessing the treatment effect is the proportional
hazards model where the conditional density of T given Z is modeled through its hazard
function; namely,

(2)

where λT|Z(t|z) denotes the conditional hazard rate of dying at time t for treatment z = 0, 1.
Here the parameter β, i.e., the log hazard ratio between the two treatments, is the treatment
effect of interest, whereas, the baseline hazard function λ(t), t ≥ 0 is the nuisance parameter
η.

For other time-lagged response data where T ≠ Y, if all the patients in a study are followed
until their response is ascertained, the lag time itself does not add any useful additional
information regarding the estimation of the treatment effect β.

It is very common, however, in such clinical trials that the time-lagged response data are
missing because of right censoring of some patients. Depending on the study, censoring
occurs for a variety of reasons. Administrative censoring occurs because patients enter the
study in a staggered fashion and not all have been observed at the end of the study when the
data are analyzed. Often it is assumed that the censoring time is independent of the primary
response Y or the slightly weaker assumption that the censoring time is independent of Y
given treatment assignment Z. The assumption of independence between censoring time and
response Y given Z is also necessary for some commonly used standard methods, for
example, the maximum partial likelihood estimator of Cox (Cox 1972) and the logrank test
(Mantel 1966; Peto and Peto 1972), to ensure their properties, such as consistency or
asymptotic normality, to hold. This assumption is often referred to as noninformative
censoring. However, censoring may also occur due to a patient’s drop out of the study
before their response data are observed. For example, patients may drop out of the study
because of side effects, or prognostically worse or better patients may drop out for reasons
that can be attributed to other time-dependent outcomes. Under such situations, the
censoring time is likely to be dependent on the response Y given Z and such censoring is
usually referred to as the informative censoring. Informative censoring, if not properly
accounted for, may bias the results from standard inferential methods and give overly
optimistic or pessimistic estimates of treatment effect.
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It is also common in clinical trials to collect additional information on auxiliary covariates
(for example, age, gender, health conditions, etc.). Some of these auxiliary variables are
collected prior to randomization, while others may be collected after treatment assignment.
Because of randomization, covariates collected prior to randomization, referred to as
baseline auxiliary covariates, are independent of treatment assignment and are not affected
by treatment, whereas, covariates measured after randomization, referred to as post-
treatment auxiliary covariates, may be time-dependent and affected by treatment
assignment. Nonetheless, some of these covariates may be important prognostic factors that
are correlated with the primary response variable.

Several researchers in their several recent works (e.g. Zhao and Tsiatis 1999; van der Laan
and Hubbard 1999; Wahed and Tsiatis 2006) discussed the estimation methods on the
survival distribution when censoring is presented and utilized prognostic covariates to
improve the efficiency. More relevant work on the estimation of treatment effect was
discussed by Lu and Tsiatis (2008), in which the authors derived an augmented class of
consistent and asymptotically normal estimators for the treatment-specific log hazard ratio
regression parameter as defined in (2). The auxiliary covariates were used to derive
estimators that are more efficient than the maximum partial likelihood estimator and the
logrank test. However, the proposed method by Lu and Tsiatis (2008) was based on the
assumption of noninformative censoring that the censoring is independentof survival time T
given treatment assignment Z. If such an assumption is not satisfied, the corresponding
results may be biased.

In the presence of informative censoring, Hubbard et al (1999) and Moor and van der Laan
(2009) discussed covariate adjusted estimation methods on the treatment specific survival at
a fixed end point for right-censored survival outcomes. In this paper, we focus on estimation
of treatment-specific log hazard ratio regression parameter by weakening the assumption of
independence between censoring time and the response variable Y given Z to allow for
censoring that is informative in a manner that can be explained through the observed
auxiliary covariates. The semiparametric theory and the major results in Robins and
Rotnitzky (1992) will be used to derive a class of consistent and asymptotically normal
estimators for the treatment effect parameter β. The auxiliary covariates here play an
important role in deriving a class of augmented semiparametric consistent and
asymptotically normal estimators for β when the censoring is informative. The correlations
between auxiliary covariates and the primary response variable are also utilized to derive
estimators that are more efficient than the estimators without using the auxiliary covariates.

1.1 An illustrative example: ACTG 175
AIDS Clinical Trials Group protocol 175 (ACTG 175) is a double blind study that
randomized HIV-infected subjects to four antiretroviral regimes in equal proportions:
zidovudine (ZDV) monotherapy, ZDV + didanosine (ddI), ZDV + zalcitabine, and ddI
monotherapy Hammer et al (1996). A subset of the data from 2139 HIV subjects are
considered in this paper to demonstrate our proposed methods and be compared to the
commonly used standard techniques. Among the 2139 subjects, 532 subjects were
randomized to ZDV monotherapy, 522 were randomized to ZDV + ddI, 524 were
randomized to ZDV + zalcitabine and 561 were randomized to ddI monotherapy. Two
primary endpoints, corresponding to the two special cases of time-lagged response
mentioned earlier, are taken into account: (1) the survival time that was defined from the
time of diagnosis to the first time of a ≥ 50 percent decline in the CD4 cell count, an event
indicating progression to the acquired immunodeficiency syndrome (AIDS), or death; (2)
the mean CD4 cell counts at 96 ± 5 weeks after diagnosis. Our aim is to compare the
treatment effects on the two primary endpoints between each of the treatments ZDV + ddI,
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ZDV + zalcitabine and ddI monotherapy with the treatment ZDV monotherapy. Roughly
76% of the data were censored.

In addition to the censored survival times, CD4 cell counts at 96 ± 5 weeks and treatment
arms, the data also contain several prognostic baseline covariates and post-treatment
covariates. The baseline covariates include CD4 cell counts, CD8 cell counts, age (years),
weight (kg), gender (0 = female), hemophilia indicator (0 = no), homosexual activity (0 =
no), race (0 = white, 1 = non-white), history of IV drug use (0 = no), Karnofsky score (on a
scale of 0-100), ZDV in the 30 days prior to 175 (0 = no), antiretroviral history stratification
(1 = ’Antiretroviral Naive’, 0 = other), number of days pre-175 antiretroviral therapy and
symptomatic status indicator (0 = asymptomatic). The post-treatment covariates include,
CD4 at 20 5 weeks, CD8 at 20 ± 5 weeks, indicator of off-trt before 96 ± 5 weeks (0 = no, 1
= yes) and Missing CD4 at 96 ± 5 weeks (0 = missing, 1 = observed). The last two post-
treatment covariates as well as CD4 at 96 ± 5 weeks are time dependent covariates that will
only be used as covariates for the survival endpoint which extends beyond 96 weeks.

This article is organized as follows: Section 2 describes the notation and model assumptions
which will be used throughout this article. Section 3 characterizes the class of regular and
asymptotic linear estimators for β using a general time-lagged responses. Section 4 and
Section 5 are the specific applications of our method to the two special cases mentioned
earlier. For each case, we characterize a subclass of regular and asymptotic linear estimators
for β, the treatment effect parameter of interest, when informative censoring exists and
perform a series of simulation studies to compare our proposed estimators with the
commonly used standard techniques. The proposed estimators are also applied on the real
data example ACTG 175.

2 Model framework and notation
2.1 Notation and assumptions

Consider a randomized clinical trial where n subjects are sampled from a population of
interest. Let Di = {Ui, Δi, ΔiYi, Zi, Xi(Ui)} denote the observed data that are independent and
identically distributed random vectors for i = 1, …, n. For the i-th subject, Ui = min(Ti, Ci),
where Ti denotes the underlying lag time, and Ci denotes the potential censoring time, Δi =
I(Ti ≥ Ci) is an indicator of whether the response data were ascertained (Δi = 1) or missing
(Δi = 0), Yi denotes the response on which the primary analysis will be based, where Yi may
be continuous or discrete and is only observed if Δi = 1, Zi denotes the treatment indicator
with value 1 and 0 denoting experimental treatment and placebo, respectively. Furthermore,

we let , where X1i denotes a vector of baseline auxiliary covariates
which are measured prior to randomization, and  defined by {X2i(u), 0 ≤ u ≤ Ui}
denotes post-treatment auxiliary covariates which may be time-dependent in which case we
would observe the history of these values up to time Ui. In addition, we use Vi = {Ti, Yi, Zi,
Xi(Ti) to denote the full data had there been no censoring or missing data.

Due to randomization, it is reasonable to assume that the treatment indicator Z is
independent of the auxiliary baseline covariates X1 and that the randomization probability of
receiving treatment 1 is equal to π with 0 < π < 1 which is known to us; that is,

(3)

It is well known that, instead of using the true value of π, using the estimated π generally
leads to further gain in efficiency for estimators for β. Therefore, we recommend estimating
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π using the sample proportion as it is actually done in all the following computations both
for simulations and real data example.

As in any missing data problem it is important to consider assumptions regarding the
process in which the data are missing (censored); that is, we need to consider the conditional
distribution of the censoring variable C given the full data V which we define through the
conditional hazard function λC(u|V) at time u given V. Often, in randomized clinical trials,
one assumes that the censoring variable C is completely independent of the full-data V. This
assumption is similar in spirit to the “missing completely at random” assumption (MCAR)
as defined by Rubin (1987) and may be a reasonable assumption if the data were
administratively censored. A slightly weaker assumption that is implicitly made when one
uses the logrank test to test for differences in the survival distributions for two treatments
with right-censored data is that C is conditionally independent of (T, Y ) given Z. When a
patient is censored due to drop out or lost to follow-up, one can imagine some scenarios
where poorer prognostic patients may be more likely to be censored and other scenarios
where the opposite may happen. We therefore consider the weaker assumption that

(4)

where λC(u|·) denotes the conditional hazard rate of C at time u. In words, this assumption
means that the probability of being censored at time u, given that one has not been censored
or failed by time u, only depends on observed variables measured prior to time u and not
additionally on the future data. This last assumption is similar in spirit to what Rubin refers
to as missing at random (MAR) and we will refer to this assumption as censoring at random
(CAR). This CAR assumption allows greater flexibility than the usual assumptions with
censored data.

Without making additional assumptions, other than those given by (1), (3) and (4), we now
consider how to derive a class of semiparametric estimators that are consistent and
asymptotically normal for β using the results by Robins and Rotnitzky (1992).

2.2 Introduction to semiparametric theory
Robins and Rotnitzky (1992) restricted attention to estimators that are regular and
asymptotically linear (RAL). An estimator  for β is asymptotically linear if there exists a
random variable φ(D), which, under the truth, β = β0, has mean zero and finite variance,

such that . The function φ(Di) is referred to as the i-
th influence function of the estimator . Regularity is a technical condition that rules
out ”pathological” estimators with undesirable local properties (Newey 1990), such as
the ”superefficient” estimator of Hodges (e.g. Tsiatis 2006, p. 24). The influence function of
an RAL estimator for β is uniquely defined and the asymptotic properties of such an
estimator is determined by its influence function. It is clear from the definition of the
influence function given above and a simple application of the central limit theorem, that,
the asymptotic variance of an RAL estimator  is equal to the variance of its influence
function, i.e., E{φ(D)2}.

For a general semiparametric model, Robins and Rotnitzky (1992) provided a series of steps
for deducing a class of RAL estimators when data are censored at random: (1) characterize
the class of full data influence functions, (2) characterize the class of observed data
influence functions by applying the theory of augmented inverse probability complete case
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estimators and (3) identify the observed data estimators with estimating functions in this
class.

3 The class of all semiparametric estimators for β
The class of full data influence functions for β, whose proof was given by Zhang et al
(2008), is characterized by

(5)

where ΨY Z(Y, Z; β0) is the class of influence functions for β that only use the information of
time-lagged response variable Y and treatment assignment Z derived through model (1),

(6)

and the sum of the two spaces S1 + S2 = {s1 + s2 : s1 ∈ S1 and s2 ∈ S2}. In addition, as we
will see shortly in Theorem 1, the direct sum ⊕ of the two linear spaces S1 and S2 is the
same as the regular sum of the two spaces but with an additional property that the two linear
spaces only intersect at {0}.

For the time being, assume the hazard function λC{u|T ≥ u, Z, X (u)} to be known and let

 be the conditional survival function for
censoring. Under the CAR assumption, we obtain that P(Δ = 1|v) = KC{T, Z, X(T)}. The
theory of Robins and Rotnitzky (1992) tells us that the an observed data influence function
for β can be written as an augmented inverse probability weighted complete case (AIPWCC)
influence function; namely,

(7)

where the full-data influence function ψF(V ; β0) ∈ ΨF is given in (5), dMC{u, Z, X(u)} is the
increment of the martingale process dNC(u) – λC{u|T ≥ u, Z, X(u)} Y (u)du, where dNC(u) is
the increment of the counting process for censoring; i.e., NC(u) = I(U ≤ u, Δ = 0), Y (u) = I(U
≥ u), is the “at-risk” process, and L{u, Z, X(u)} is an function of all the data prior to time u;
that is,

THEOREM 1 If the hazard function λC{u|T ≥ u, Z, X (u)} for censoring is known, the class of all
observed data influence functions is given by

(8)

where ΨY Z and R are defined in (5) and (6), respectively, and

(9)
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Theorem 1 (see proof in Appendix A) tells that if λC{u|T ≥ u, Z, X (u)} is known, then the
class of RAL estimators for β be represented as the solution to the following estimating
equations

(10)

for arbitrary functions ψY Z (Y, Z; β0) ∈ ΨY Z, f (X1) and L{u, Z, X(u)}.

In practice, however, the hazard function λC{u|T ≥ u, Z, X (u)} (also used to derive KC{u, Z,
X (u)}is not known, and must be estimated from the data. Because of its availability and
versatility, a proportional hazards regression models with time-dependent covariates will be
used to model the hazard relationship for the censoring survival distribution. For maximum
flexibility, we will consider separate models for each treatment group. To be specific, we
posit a stratified proportional hazards regression model for the censoring time C; that is,
λC{u|T ≥ u, Z, X (u)} = λ0C(u, Z) H {Z, X(u); α}, where λ0C(u, Z) is the baseline hazard
function for each treatment group Z = 0.1, and

. The
vector of parameters α = (α11, …, α22) will be estimated by using the standard partial
likelihood estimator (Cox 1975), denoted here by , and λ0C will be estimated by

Denote the estimated hazard function and corresponding survival function by  and
, respectively. Placing these estimated functions in (10), after some algebra, we have an

equivalent expression of the estimating equation

(11)

where

(12)

for arbitrary functions ψY Z(Y, Z; β0) ∈ ΨY Z, f(X1) and L {u, Z, X (u)}.

Clearly, if the proportional hazard regression model is the underlying true model for the
censoring time, the estimator derived from equation (11) is a consistent estimator for β. In
addition, if we consider the subclass of estimators of (11) by fixing function ψY Z(Y, Z; β0) ∈
ΨY Z but varying functions f(X1) and L{u, Z, X(u)}, following the analogous proof as that for
Theorem 3 of Lu and Tsiatis (2008), we have the optimal functions
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(13)

(14)

for f(·) and L(·), respectively, that lead to the most efficient estimator with the smallest
variance in this subclass. However, the conditional expectations in equations (13) and (14)
are unknown in practice and they will be estimated by positing parametric regression
models. Substituting these estimated functions  and  for f(·) and L(·) in (11) will lead
to a more efficient estimator for β than without using auxiliary covariates. This procedure
will be explained in details when we discuss the two special applications of our proposed
method in sections 4 and 5, respectively.

Remark 1 Although we need the correct model for censoring time to derive the consistent
estimators for β, we will see later in the simulation portions of section 4 and 5 that the
resulting estimators for β have smaller bias than the standard method even if the true model
for censoring does not follow the assumed proportional hazard model.

4 Application to the proportional hazard model
4.1 Class of all semiparametric estimators for β

To illustrate how these estimators are derived, we will focus on the special case where the
time-lagged response variable Y is the survival time T and T|Z follows a proportional hazard
model (2), where the primary focus is to estimate the treatment effect parameter β. This
problem is common in chronic disease clinical trials and is of importance in its own right.

Using standard results for the proportional hazards model (e.g. Andersen et al 1993; van der
Laan and Robins 2003; Tsiatis 2006) the class of full data influence functions ΨY Z for
estimators of β can be described by

(15)

where dMT(u, Z; β) = dNT(u)–λ(u) exp(βZ)I(T ≥ u)du, NT(u) = I(T ≤ u),
, and the proportionality constant

.

Applying this class of full data influence functions ΨY Z to Theorem 1, we have the
following corollary whose proof is given in Appendix B.

COROLLARY 1 If the hazard function λC{u|T ≥ u, Z, X (u)} for censoring is known, and if T|Z
follows a proportional hazard model (2), the class of all observed data influence functions is
given by

(16)
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where

(17)

(18)

(19)

and R and C are defined in (6) and (9), respectively.

Analogous to (11), if we use the estimated functions  and , assuming the stratified
proportional hazards regression model, the class of all RAL estimators for β can be
represented as a solution to the following estimating equation

(20)

where

(21)

for arbitrary functions W (u, Z), f(X1) and L{u, Z, X(u)}. We can also derive a more efficient
estimator for β by substituting appropriate estimators  and  for f(·) and L(·) in (20).
To be specific, we posit parametric models f(X1; a) = aTq(X1) that is linear in a and L{u, Z,
X (u); b} = bT s{u, Z, X(u)} that is linear in b, where a and b are ra-dimensional vector of
functions of X1 and s(·) is and rb-dimensional vectors of functions of unknown parameters,
respectively. q(·) is an ra-dimensional vector of functions of X1 and s(·) is an rb-dimentional
vector of {u, Z, X(u)}, and consider the subclass of Ral estimators which solve the
estimating equations

, for all  and . We define a0 and b0 to be the values leading to the smallest
asymptotic variance of the estimator  within this subclass. Using standard regression
methods, we obtain the estimators

(22)
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(23)

for a0 and b0, respectively, where

 is estimated using the increment of the Breslow estimate for the underlying
cumulative hazard function, i.e., ,

, and , for Z = 0, 1 are estimated using the increment of the treatment-specific
Nelson-Aalen estimator for the cumulative hazard function of the censoring distribution; that

is, .  and  are calculated the similar
manner as in (12) by replacing the function L(·) with s(·). The estimated functions  and

 are defined to be  and , respectively.

Remark 2 If the censoring time is noninformative, then after some algebra, the class of
estimating equations described in (20) will be identical to the class of estimating equations
characterized in (9) of Lu and Tsiatis (2008).

Remark 3 Finding the optimal function of W (u, Z) that gives the efficient estimator in the
class of all RAL estimators derived from (20) would be very difficult. Therefore our strategy
is to choose a function that gives an estimator at least as efficient as the maximum partial
likelihood estimator when the censoring time is noninformative. Here, we choose

, where  is the treatment specific Kaplan-Meier estimator for the
censoring time. Clearly, when censoring is noninformative, the first summand of the
estimating equation (20) will reduce to the standard partial likelihood score function that
leads to the maximum partial likelihood estimator for β.

4.2 Variance estimator for 
If the potential censoring time truly follows a stratified proportional hazards regression
model, λC{u|T ≥ u, Z, X(u)} = λ(u|Z)H{Z, X(u); α}, as described in section 3, then using the
estimated function  and  in (20) will lead to an estimator with its influence

function in , where ∏(S1|S2) denotes the projection of space S1 onto space S2,

 is defined in (16) and Λφ = Λλ0C(·, Z) ⊕ Λα, in which Λλ(·, Z) is the nuisance tangent
space associated with the nuisance baseline hazard function Λλ0C(·, Z) which is given in
equation (31) of Appendix C and Λα is the nuisance tangent space associated with the
nuisance parameters α = (α11, …, α22) given in equation (32) of Appendix C (e.g. van der
Laan and Robins 2003; Tsiatis 2006); that is,

Theorem 2 If the hazard function λC{u|T ≥ u, Z, X(u)} = λ0C(u, Z)H{Z, X(u); α}, then the
class of all observed data influence functions is given by
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(24)

where  is defined in (16),  is given by

(25)

in which CW and Z*(u;β) are defined in (19) and (18), respectively,

(26)

(27)

and Π(ψ(D)|Λα) is given by (35).

Remark 4 The proof of Theorem 2 is given in Appendix C. The expressions for the fourth
and fifth summands in (25) are very complicated and difficult to evaluate numerically.
Therefore we choose to ignore these terms in our variance estimator of the estimator that
solves equation (20). If the censoring time is noninformative, then these two summands will
add to zero giving us a consistent variance estimator. In addition, for the posited model L{u,
Z, X(u); b} = bT s{u, Z, X(u)}, if s{u, Z, X(u)} contains Q(u) which is defined by (34), then
the projection Π(ψ(D)|Λα) is identical to zero, otherwise, our estimator will be slightly
conservative. However, in all our simulations studies that will be described later the
conservatism in the variance estimator was never noticeable. Thus, the a variance estimator
for  is computed by the following sandwich estimator

(28)

where
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4.3 Simulation
We performed a Monte-Carlo simulation study to compare the performance of the maximum
partial likelihood estimator  with our proposed estimators , , and  that are obtained
by solving the estimating equation (20) with  and {f(·) = 0, L(·) = 0},

 and , respectively. It is clear to see that these
three estimators have decreasing asymptotic variances as  is obtained without using any
auxiliary covariate information except for estimating the survival function for censoring
time, and  and  are obtained by utilizing the information on baseline covariates and the
information on all the covariates, respectively.

For this study, we considered one baseline covariate X1 and one post-treatment covariate X2
that can be obtained immediately for all patients. First we generated bivariate data (Y, X)
from a bivariate normal density with mean zero, variance 1, and correlation ρ. We then
independently generated the treatment indicator Z as a Bernoulli(π). Using inverse
transformation, the survival time T was taken to be T = −exp( −βZ) log{1 − Φ(Y)}, where
Φ(·) denotes the cumulative distribution function of a standard normal. X1 = Φ−1(X) follows
a uniform (0, 1) distribution. This guarantees that the distribution of T given Z will follow a
proportional hazards relationship λ(t|z) = λ(t) exp(βz), with λ(t) = 1, that is, T ~ Exponential
exp(βZ)}. The post-treatment covariate was generated using the formula

 which results in the correlation of X2 and T to be r. Note that this
makes X2 conditionally independent of the treatment Z given T. Censoring time C was
generated using the following three scenarios: 1) Exponential distribution with hazard rate
λC (u|Z) = c exp(βZ) reflecting noninformative censoring given Z; 2) Exponential
distribution with hazard rate λC(u|X1, X2, Z) = c {Z exp (α11 X1 + α21 X2) + (1 − Z)
exp(α12X1 + α22 X2)}, reflecting informative censoring with a stratified proportional hazard
regression model; 3) Scaled Lognormal distribution c·LN(μ, σ) with μ = Z(ℓ11X1 + ℓ21X2) +
(1−Z)(ℓ12X1 + ℓ22X2) and σ = 1, in which case the censoring time is correlated with the
survival time given Z but does not follow a stratified proportional hazard regression model.
To calculate the estimated functions  and , we posited the models  for
f(·), and b0 + b1 X1 + b2 X2+ b3 X1 Z + b4 X2 Z for L(·).

For this demonstration, treatment was assigned with probability π = .5, the correlation
between the bivariate normal random variable was taken to be ρ = .5 which resulted in a
sample correlation of approximately 0.4 between the survival time T and baseline covariate
X1. The correlation of X2 and T was taken to be r = 0.7. Two values for the proportional
hazards regression coefficient were considered, β = 0 (null hypothesis) and β = .3. For the
censoring time, α11 = 1, α21 = 0.1, α12 = 2, α22 = 0.3, ℓ11 = 0.3, ℓ21 = 1, ℓ12 = 1, ℓ22 = 0.3,
and the value c was chosen in different scenarios that would result in roughly 36% the data
being censored. Sample sizes of 250 and 600 were considered and each scenario used 1000
Monte-Carlo simulations. In Tables 1, 2 and 3, we compare the bias, standard error estimate,
Monte-Carlo standard error, relative efficiency (ratio of variance estimate and ratio of
Monte-Carlo variance), type I error and the power of the maximum partial likelihood
estimator  with our proposed estimators  k = 1, 2, 3, under the various simulation
scenarios.

Table 1 shows the simulation results under scenario 1 where censoring time is
noninformative. As we expect, all the estimators are unbiased and control the type I error.
Our proposed estimators are more efficient then the traditional maximum partial likelihood
estimator and more powerful than the logrank test.
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Table 2 shows the simulation results under scenario 2 where censoring time follows a
stratified proportional hazards regression model for each treatment group. As we can see the
traditional maximum partial likelihood estimator is severely biased whereas all our proposed
estimators are unbiased and control the type I error. This is consistent with the theoretical
results in this paper.

In addition, from Table 3, we see that when the censoring time is informative, but does not
follow a stratified proportional hazard regression model, our proposed estimators are still
less biased then the traditional maximum partial likelihood estimator.

4.4 Applying to ACTG 175 data
Figure 1 is a plot of the logarithm of the negative logarithm of the survival curve of the
survival time for each treatment group. The four lines, except for a few points early in time,
are approximately parallel suggesting that a proportional hazards relationship between
treatments is reasonable. If the censoring time is noninformative, we know that the
maximum partial likelihood estimator is the most efficient estimator and the logrank test is
the most powerful nonparametric test without using any additional covariates. The results of
applying the standard analysis using Cox’s maximum partial likelihood estimator can be
found in Table 4. For example, the estimate of the log hazard ratio between treatments ZDV
monotherapy and ZDV + ddI is −0.703 and its standard error is .124, which is highly
statistically significant.

Applying a stratified proportional hazard regression model for the censoring time and using
Forward selection with selection entry 0.05, we obtained some prognostic covariates for
each treatment group. The important prognostic covariates for the censoring time are (AGE,
RACE, STRAT, OFFTRT, MisCD4) for ZDV monotherapy, (HOMO, Z30, RACE, CD820,
OFFTRT, MisCD4) for ZDV + ddI, (HOMO, RACE, STRAT, SYMP, OFFTRT) for ZDV +
zalcitabine, and (Z30, GENDER, CD80, OFFTRT, MisCD4) for ddI monotherapy.

We also applied the similar model for the survival time and found some prognostic
covariates for each treatment group, which are (CD40, CD80, GENDER, Z30, CD420,
CD496, MisCD4) for ZDV monotherapy, (CD40, PREANTI, STRAT, SYMP, CD420,
CD496, MisCD4) for ZDV + ddI, (PREANTI, KARN, SYMP, CD420, CD496, MisCD4)
for ZDV + zalcitabine and (CD40, SYMP, CD420, CD496, MisCD4) for ddI monotherapy.

As we can see, for each treatment group, there is only one common covariate that is
prognostic for both survival time and censoring time. For example, for treatments ZDV
monotherapy, ZDV + ddI and ddI monotherapy, MisCD4 is the only common covariate and
for treatment ZDV + zalcitabine, SYMP is the common covariate. Both MisCD4 and SYMP
are binary variables, which give us a rough sense that the survival time and censoring time
are weakly correlated given treatment assignment. Hence our proposed estimator may be
close to the traditional partial likelihood estimator which assumes independence between
survival time and censoring time given treatment. This explains why there are no substantial
differences between our estimators and the maximum partial likelihood estimator after
applying our method to the ACTG 175 data as shown in Table 4. Again, to obtain a more
efficient estimator, we incorporated some prognostic covariates into the model that include
baseline covariates (CD4, CD8, AGE, WEIGHT, DRUG, KARN, Z30, SYMP, PREANTI)
and post-treatment covariates (CD420, CD820, CD496, MisCD4, OFFTRT). The results
seem to support that using auxiliary covariates in the model leads to more efficient

estimators (  and ) than the estimator  that does not consider auxiliary covariates in
the model.
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5 Application to two-sample treatment comparison
In this section, we discuss another simple yet commonly occurring case where the time-
lagged response is to be observed after a fixed time period; that is, the lag time is the same
for every response to be observed. The primary endpoint here is to evaluate the population
difference in mean responses between two treatment groups. Specifically, the treatment
effect parameter β = μ1 − μ0, where μk denotes the population mean of the response Y for
treatment group k; i.e., μk = E(Y|Z = k), k = 0, 1.

5.1 Class of all semiparametric estimators for β
Applying Theorem 1, it is straightforward to derive that the influence functions for the RAL
estimators for μk are

(29)

for arbitrary functions f(X1) and L{u, Z, X(u)}, where the full data influence function for
estimators of μk (Davidian et al 2005) is given by

Again, if we use the estimated functions  and , assuming the stratified
proportional hazards regression model, the class of all RAL estimators  for μk can be
represented as a solution to the following estimating equation

(30)

for arbitrary functions f(X1) and L{u, Z, X(u)}. Consequently, the class of the RAL
estimators for β, the difference in mean response Y between treatment groups (Tsiatis et al
2008) is  and the corresponding influence function for  is ϕβ (D; f, L) = ϕμ1(D; f,
L) − ϕμ0(D; f, L).

From the results of Lu and Tsiatis (2008), we know that the efficient influence function for

μk is , where

and
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Considering that the underlying true model for E(Y|Z = k, X1) and E(Y|T ≥ u, Z = k, X(u)} are
unknown in practice, we posit parametric models  that is linear
in ak and  that is linear in bk, where ak and bk
are rak-dimensional and rbk-dimensional vectors of unknown parameters, respectively, qk(·)
is an rak-dimensional vector of functions of X1 and sk(·) is an rbk-dimensional vector of
functions of {u, Z, X(u)}. The parameters ak and bk are estimated by the commonly used
ordinary least squares method. Once we have the estimated functions  and

, the corresponding estimated optimal functions are easily obtained by

and

Now, let us consider the following three estimators , j = 1, 2, 3, for β, where  is
obtained by solving ∑ϕμk (Di; 0, 0) = 0 without considering auxiliary covariates which
results in

 is obtained by solving  which only considers baseline covariates; that
is

and  is obtained by solving  which considers all covariates; that is,

The variance of , j = 1, 2, 3, is estimated using the standard sandwich estimator based on

the influence function of . According to our theory, the estimators  and  using
auxiliary covariates should be more efficient than  without using auxiliary covariates and

the variance of  should be decreasing as j increases from 1 to 3.
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5.2 Simulation

This simulation study is performed to compare our proposed estimators ,  and  with
the commonly used t-test. The simulation data were generated from the fit of the data ACTG
175. For each simulated data set, we generated for each of n subjects the continuous baseline
covariates logCD40, logCD80, AGE, WEIGHT, KARN and PREANTI from a multivariate
normal distribution with the empirical mean and covariance matrix of these variables in the
data. We then independently generated the binary indicators of HOMO, RACE, DRUG, and
STRAT for each subject from independent Bernoulli distributions using the observed data
proportions for each variable. The treatment indicator was generated independently from
Bernoulli(π) for each subject. The CD4 cell counts at 8, 20, 32, 44, 56, 68, 80, 92, 96 weeks
for each subject was generated using the treatment specific mixed model log{CD4(t)} = α0k
+ α1kt + γX1k + ∊k where k is treatment group ZDV monotherapy or ZDV + ddI, α0, α1 and ∊
are multivariate normal random effect with empirical means and covariance matrix after
fitting this mixed model to the data, and the set of baseline covariates X1k in the treatment
specific mixed model consists of (logCD40, logCD80, STRAT) for ZDV monotherapy;
(logCD40, AGE, KARN, PREANTI) for ZDV + ddI. The censoring time for each subject
was generated using the treatment specific hazard rate λC{u|T ≥ u, Z, X(u)} = λ0k
exp{ζ1kCD4k(u)+ζ2kX1Ck}, where CD4k(u) records the last observed CD4 cell counts at or
before time u in treatment group k, and the set of baseline covariates taken for each
treatment group in this proportional hazard model are (WEIGHT, DRUG, RACE) for ZDV
monotherapy and (WEIGHT, KARN) for ZDV + ddI. The coefficients (ζ1k, ζ2k) in the
proportional hazard model were taken to be the values after fitting this model to the data
ACTG 175. If the censoring time is greater than t, t = 8, 12, …, 96, then the CD4 CELL
counts at t + 1, …, 96 weeks are set to missing.

The true value of β = 80.13 and the randomization probability to each of the two treatment
group is π = 0.5. We considered the sample size n = 250, 600 and 1054 that is the actual
sample size of the data from ACTG 175 with treatments ZDV monotherapy and ZDV + ddI.

Similarly, we also performed a simulation study for the comparisons of treatments ZDV +
zalcitabine and ddI monotherapy with treatment ZDV monotherapy, respectively. To
generate the CD4 cell counts at 8, 20, 32, 44, 56, 68, 80, 92, 96 weeks, we chose the
baseline covariates (logCD40, logCD80, PREANTI, STRAT) for ZDV + zalcitabine;
(logCD40, logCD80, WEIGHT, KARN) for ddI monotherapy in the treatment specific
mixed model. The baseline covariates used in the treatment specific proportional hazard
model to generate censoring time were taken to be (HOMO, KARN, PREANTI) for ZDV +
zalcitabine and (HOMO, KARN, CD40) for ddI monotherapy. The true values of β for
comparing treatments ZDV + zalcitabine and ddI monotherapy with treatment ZDV
monotherapy are 63.57 and 46.33, respectively.

Tables 5, 6 and 7 are the simulation results for comparing treatment group ZDV + ddI, ZDV
+ zalcitabine and ddI monotherapy with treatment ZDV monotherapy, respectively. The
results of fitting the models on the data ACTG 175 was shown in table 8. Clearly, under the
situations with informative censoring, the standard method of t-test is severely biased while
the biases of our proposed estimators ,  and  are negligible. In addition, the estimators

 and  using auxiliary covariates seem to have smaller estimated variances than 
without using the auxiliary covariates, which is consistent with our theoretical results
mentioned earlier.
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6 Conclusion
Our interest in this paper is estimating the unconditional treatment effect β as defined in (1),
where the primary outcome is the time-lagged response whose values are often missing in
practice due to censoring of some patients. Under the assumption of censoring at random
(CAR) given in (4) and the assumption of independence between baseline covariates and
treatment assignments given in (3), we developed a class of regular and asymptotically
linear (RAL) estimators for β by using the theory of semiparametrics and the major results
of Robins and Rotnitzky (1992). The prognostic covariates were utilized by the model to
improve the efficiency of the estimators.

We have discussed in detail the applications of our method to two special cases of time-
lagged responses. Nevertheless, our proposed method has wider applicability to more
general time-lagged response problems. In the first case, the time-lagged response itself is
the survival time and the parameter of interest is the treatment-specific log hazard ratio. A
class of RAL estimators for β characterized by (20) were derived that took advantage of
auxiliary covariates to gain efficiency while allowing us to weaken the usual assumption of
noninformative censoring to the more reasonable assumption of censoring at random. In the
second case, we are interested in estimating the population difference in mean response
between two treatment groups where the time-lagged response is observed after a fixed
period of time; i.e., the lag time is the same for each individual in the study. A class of RAL
estimators was derived and compared with the commonly used standard method, t-test.

Deriving the RAL estimators for β requires the correct model for the censoring time, which
is impossible to know in practice. A stratified proportional hazard regression model was
hereby proposed to estimate the survival function of the censoring time. As we demonstrated
numerically in the above two applications, even if the underlying true model for censoring
time did not follow the proportional hazard model, our proposed estimators had much less
bias than the standard estimation methods. As expected, when the censoring time truly
followed a stratified proportional hazard model, the standard estimation techniques were
biased while our proposed estimators were unbiased. In addition, both the results of the
simulation study and the analysis on the data from ACTG 175 seemed to indicate that the
estimators using prognostic covariates were more efficient than that without using covariates
in the model.
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Appendix A

Proof of Theorem 1
Using the equality

the influence function (7) can be written as
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Since L(·) is an arbitrary fuction of , we have the class of all observed data
influence functions as described in theorem 1.

APPENDIX B. Proof of corollary 1
We first prove the following Lemmas.

LEMMA 1 For any function b(u, Z), we have the following equality

where dMT (u, Z) = I(T = u) − λ0(u) exp(β0Z)I(T ≥ u)du.

Proof: Since E{I(T = v)|T ≥ u, Z} = I(v ≥ u)eβ0Zλ0(v)dv P(T≥v, Z)=P(T≥u, Z) and E{I(T ≥
v)|T ≥ u, Z} = I(v < u) + I(v ≥ u)P(T ≥ v, Z)=P(T ≥ u, Z), we have that

This implies

The last equality is because that

Hence, we have

Applying ψY Z in (15) to Theorem 1 and using Lemma 1, we have the class of all influence
function written as

where
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 and  are defined in (6) and (9), respectively.

Now for any function W(u,Z), if we let the function a(u) = W(u, 1) − {W(u, 1) − W(u, 0)}
Z*(u;β0), where Z*(u; β) is given in (18), after some simple algebra, we can easily get that

. Recalculate the proportionality, according to
the theory of semiparametrics (Tsiatis 2006, chap. 4), is equal to the expectation of the
partial derivative of

with respect to β evaluated at the true value β0, that is, CW = [E{∂eW(u, Z)(D; β0)/∂β}]−1.
After some algebra, we derive the proportionality constant CW is the same as (19) and hence,
the space ε1 is the same as ε as described in (17).

APPENDIX C. Proof of theorem 2
Using standard results for the proportional hazards model (e.g. van der Laan and Robins
2003; Tsiatis 2006) the nuisance tangent space associated with the nuisance baseline hazard
function λ0C(·, Z) is given by

(31)

and the nuisance tangent space associated with the nuisance parameters α = (α11, …, α22) is
given by

(32)

Find the projection  in (25) is equivalent to find the function a0(u, Z) such

that  is perpendicular to the nuisance tangent space
Λλ(·, Z), that is

(33)

for all functions a(u, Z). Using the result of Lemma 1, we have the influence function

 be written as
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where ψF(T, Z) is defined in (26). Following the standard results of Fleming and Harrington
(1991) for the covariance of two martingale processes, we have (33) equivalent to

for all functions a(u, Z). After a little algebra, we have that

Therefore,  is identical to (25).

Similarly, obtain the projection Π(ψ(D)|Λα) is equivalent to find the function B0 such that

 is perpendicular to the nuisance tangent space

, where

(34)

After some algebra, we have that

and

(35)
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Fig. 1.
ACTG 175 data. Log-negative-log survival functions of time to death for treatment ZDV
monotherapy, ZDV + ddI, ZDV + zalcitabine and ddI monotherapy, respectively.
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Table 4

Estimates of  and ,  and  on the ACTG 175 data (RE is the relative efficiencies with respect to .)

Estimate Standard Error RE

ZDV monotherapy and ZDV + ddI

β̂PH −0.703 0.124 1.01

β̂1 −0.689 0.124 1.00

β̂2 −0.724 0.120 1.07

β̂3 −0.721 0.117 1.12

ZDV monotherapy and ZDV + zalcitabine

β̂PH −0.640 0.121 1.01

β̂1 −0.638 0.122 1.00

β̂2 −0.617 0.114 1.15

β̂3 −0.590 0.111 1.21

ZDV monotherapy and ddI monotherapy

β̂PH −0.528 0.116 1.01

β̂1 −0.525 0.116 1.00

β̂2 −0.536 0.111 1.10

β̂3 −0.509 0.109 1.14
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Table 8

Estimates of t-test and ,  and  on the ACTG 175 data (RE is the relative efficiencies with respect to .)

Estimates Standard Errors RE

ZDV monotherapy and ZDV + ddI t-test 53.485 13.216 1.05

β̂1 66.092 13.532 1.00

β̂2 70.219 12.242 1.22

β̂3 69.850 10.426 1.68

ZDV monotherapy and ZDV + zalcitabine t-test 68.566 13.286 1.03

β̂1 76.215 13.483 1.00

β̂2 77.115 12.143 1.23

β̂3 74.750 10.308 1.71

ZDV monotherapy and ddI monotherapy t-test 41.881 13.294 1.04

β̂1 48.367 13.537 1.00

β̂2 53.300 12.065 1.26

β̂3 53.852 9.857 1.89
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