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ABSTRACT 
  

The objective of this study was to provide data on the 
structural tolerance and material properties of the human femur in 
dynamic bending.  Fifteen (15) isolated femurs from eight (8) males 
were tested in either posterior-to-anterior or lateral-to-medial three-
point bending.  The failure moment was 458 ± 95 Nm and did not 
differ significantly with loading direction.  A method was developed 
to estimate the elastic-plastic material properties of the bone using 
both force-deflection data and strain gauge measurements.  The  bone 
material appeared to yield at about one third of the ultimate strain 
level prior to fracture.  It is hoped that these data will aid in the 
development of injury criteria and finite element models for 
predicting injuries to pedestrians and vehicle occupants.   
 
 
 
Femur fractures are serious injuries to which pedestrians are 
especially vulnerable.  In 2002, 4808 pedestrians were killed and 
71,000 pedestrians were injured in the U.S. (NHTSA, 2004).  
According to the National Highway Traffic Safety Administration’s 
Pedestrian Crash Data Study (PCDS), the lower extremity is the most 
commonly injured body region among pedestrians, comprising 33% 
of all injuries (Chidester and Isenberg, 2001).  Femur fractures 
account for approximately 10% of all lower extremity fractures for 
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adult pedestrians, and 30% for children under 15 (Edwards and 
Green, 1999).  The typical injury mechanism for midshaft femur 
fracture in a pedestrian impact is bending due to lateral impact.  Less 
commonly, lateral-to-medial (L-M) bending may also fracture the 
femur of a vehicle occupant in a side impact (Banglmaier et al., 
2003). 

In order to better protect pedestrians and vehicle occupants, it 
is important to define the biomechanical parameters that relate to 
femur fracture.  Femur fracture is generally predicted by applying 
data from cadaver experiments to physical or computational models.  
Physical models, such as the Hybrid III anthropomorphic test device 
(ATD) or the European Enhanced Vehicle-Safety Committee 
(EEVC) legform impactor, are used in compliance testing and predict 
injury based on structural criteria such as force or moment.  Finite 
element models are currently used primarily for research purposes 
and predict injury based on material parameters, such as stress or 
strain.  It is therefore desirable to obtain biomechanical data for both 
structural and material properties of the femur.   

Numerous studies have been conducted to determine the 
structural bending tolerance of the human femur (Table 1).  Most of 
these studies report results from tests conducted at quasistatic loading 
rates, which may significantly underestimate the bending tolerance of 
the femur under impact loading (Carter and Hayes, 1977).  Kress et 
al. (1993) conducted dynamic bending tests on 94 femurs.  However, 
their tolerance data are limited because they used primarily 
embalmed specimens, which were 44% weaker than fresh specimens, 
and did not report failure moments.  Kerrigan et al. (2003) tested 4 
matched pairs of femurs in dynamic L-M bending, but varied the 
loading conditions between each test as a way of running several 
pilot studies.  The sample size for any one loading condition was no 
more than three.  The most useful source of dynamic bending 
tolerance data for the femur is probably Martens et al. (1986), who 
conducted dynamic four-point bending tests on 33 femurs in the 
posterior-to-anterior (P-A) direction.  They reported a high moment 
tolerance (373 Nm for midshaft fractures) compared to the 
quasistatic studies (Table 1).  It is unknown whether these data apply 
to the L-M direction as well.  Kress et al. (1993) reported that the 
breaking strength of the femur is greater in the A-P direction than the 
L-M direction.  On the other hand, Yamada (1970) asserted that the 
bending tolerance of the femur in these two directions is the same.  

Many of the above studies have also attempted to calculate 
bone material properties by applying linear beam theory to the force-
deflection data from their whole bone bending tests (Mather, 1968; 
Yamada, 1970; Kress et al., 1993).  The problem with this approach 
is that it ignores plastic behavior in the bone.  Although some 
researchers believe bone to be brittle (Cordey and Gautier, 1999), the 
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consensus in the bone biomechanics literature is that bone exhibits 
significant yielding behavior (Burstein et al., 1972; Reilly et al., 
1974; Carter and Hayes, 1977; Wright et al., 1981; Fischer et al., 
1986; McCalden et al., 1993; Currey et al., 1999).  Burstein et al. 
(1972) estimated that linear beam theory would overpredict the 
ultimate tensile stress in a three-point bending test by a factor of 1.56 
for a square cross-section, and by a factor of 2.1 for a circular cross-
section. 

 
Table 1.  Summary of isolated femur bending studies. 

Study 
Sample 

size Failure Moment Test conditions 

Weber, 1859 
(in Nyquist, 1986) 

9 
233 Nm (males) 

182 Nm (females) 
Quasistatic 3-pt 

bending 

Messerer, 1880 
(in Nyquist, 1986) 

12  
310 Nm (males) 

180 Nm (females) 
Quasistatic 3-pt 

L-M bending 

Mather, 1968 145 
318 Nm (males) 

202 Nm (females) 
Quasistatic 3-pt 

A-P bending 

Motoshima, 1960 
(in Yamada, 1970) 

35 211 Nm  
Quasistatic 3-pt 

A-P bending 

Martens et al., 
1986 

33 
373 Nm (mid fx) 

275 Nm (distal fx) 
Dynamic 4-pt  
P-A bending 

Kress et al., 1993 94 
3053 N  

breaking force 

Dynamic 3-pt 
L-M and A-P 

bending 

Stromsoe et al., 
1995 

14 
185 Nm (males) 

125 Nm (females) 
Quasistatic 3-pt 

L-M bending 
Kerrigan et al., 

2003 
8 412 Nm 

Dynamic 3-pt 
L-M bending 

 
In general, the stress-strain behavior of human femoral bone 

has been studied primarily by uniaxial tension and compression 
testing of small machined specimens.  In a uniaxial test of a small 
specimen, it is easy to determine the yield point because the entire 
cross-section yields at about the same time.  However, the yield point 
is difficult to determine in a whole bone three-point bending test 
because the geometry is complex and only the outermost tensile 
fibers yield initially.  For that reason, some researchers have 
concluded that it is not possible to determine bone material properties 
from a whole bone three-point bending test (Martens et al., 1986; 
Currey et al., 1999).  However, there is concern that machining the 
surface of a small bone specimen may remove small stress 
concentrations and work-harden the fracture surface, thereby altering 
its failure properties.  Therefore, it would be valuable if elastic-
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plastic bone material properties could be derived from whole bone 
three-point bending tests.   

 
METHODS 
 

THREE-POINT BENDING TESTS – Fifteen (15) fresh-
frozen human lower extremities were obtained from medical 
cadavers in accordance with ethical guidelines and research protocol 
approved by a University of Virginia institutional review board.  
Prior to testing, all specimens were screened for HIV and hepatitis, 
and x-rays and CT scans were checked for signs of pre-existing bone 
and joint pathology.  All specimens used in this study were from  
middle-aged and older male donors (Table 2).  Dynamic three-point 
bending tests were performed on both femurs from each donor, 
except for cadaver 8, in which only the left femur was tested.  For 
each donor, one femur was tested in P-A bending and the other femur 
was tested in L-M bending.  The direction of loading was alternated 
between left and right legs.  Bone mineral density (BMD) was 
available for the ipsilateral tibias of most specimens as a result of 
other studies that required the removal of the middle 10 cm of the 
tibial shaft.  Dual-energy x-ray absorbtiometry (DEXA) was used to 
determine the bone mineral content of each tibial shaft.  This value 
was divided by the cross-sectional area of the tibial specimen to 
obtain bone mineral density. 

 
Table 2.  Cadaver information.   

Cadaver # 
Age 
(yrs) 

Height 
(cm) 

Mass 
(kg) 

Ave. femur 
length (mm) 

Tibia BMD 
(g/cm2) 

1 67 188 64 481 1.13 
2 59 183 108 476 1.30 
3 40 180 70 486 1.27 
4 55 168 64 477 0.92 
5 70 168 73 445 1.08 
6 69 163 92 467 1.03 
7 51 188 124 499 N/A 
8 66 183 95 446 1.10 

Mean 59 177 86 474 1.12 
SD 10 10 22 18 0.13 

 
Specimens were allowed to thaw at least 24 hours before 

testing.  The femur was dissected out of each leg with the periosteum 
left intact.  The bone ends were potted in bone cups to a depth of 
approximately 8 cm using a quick-curing two-part polyurethane foam 
(U.S. Composites, West Palm Beach, FL).  Specimens were 
instrumented with a strain gauge rosette (CAE-06-062UR-350, 
Measurement Group, Inc., Raleigh, NC) and an acoustic sensor 
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(Nano 30, Physical Acoustics, Princeton, NJ).  Both sensors were 
mounted to the bone surface by scraping off a small area of the 
periosteum, drying out the underlying bone surface with ether, and 
adhering the instruments using a cyanoacrylate adhesive.  The 
acoustic sensor was mounted near the distal bone cup, and the strain 
gauge was affixed to the tensile surface of the bone approximately 
2.5 cm distal to the center of the bone.  Care was taken not to disturb 
the periosteum in the center of the bone where fracture was expected 
to initiate.   

Specimens were placed in the test apparatus by attaching the 
bone cups to rolling supports in the configuration appropriate to the 
desired direction of bending (Figure 1).  The bone ends were 
mounted such that the center of rotation of the rollers coincided as 
closely as possible with the joint center of rotation.  The specimens 
were mounted in a universal test machine (Instron 8874, Canton, 
MA) with the rollers placed on supports instrumented with triaxial 
load cells (Hybrid III lumbar load cells, 1842, Denton ATD).  The 
contact surfaces of the rolling supports were greased to reduce shear 
and moment.  A cylindrical impactor (12 mm diameter)  attached to 
the crosshead of the test machine was lowered until it touched the 
specimen precisely at its mid-length with a nominal resistive force (2 
N).  The test machine then applied a step displacement input at a 
constant velocity of approximately 1.2 m/s, fracturing the specimen 
in about 10 – 20 ms.  All electronic data except for the acoustic 
sensors were sampled at 10,000 Hz using a DSP TRAQ-P data 
analysis system.  The data were subsequently debiased and filtered to 
CFC1000.  Acoustic emission (AE) data were sampled at 2.5 MHz 
using a digital storage oscilloscope (Lecroy 9350AM – 500 MHz, 
Chestnut Ridge, NY) and bandpass filtered from 50 – 400 kHz. After 
testing, an orthopaedic surgeon classified the fractures according to 
the AO/OTA (Arbeitsgemeinschaft für Osteosynthesefragen – 
Association for the Study of Internal Fixation/Orthopaedic Trauma 
Association) classification. 

 
Figure 1.  Test apparatus. 

Impactor 
load cell 

Rx load cells 

Acoustic 
sensor 

Strain 
gauge 
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DATA PROCESSING – The midshaft moment (M) was 
determined by averaging the value of each reaction load multiplied 
by the distance to the center of the bone.  Linear beam theory was 
used to calculate the elastic modulus of the bone material using only 
the linear portion of the data (M less than half the peak value).  
Cross-sectional geometric properties, including the distance from the 
centroid to the outermost tensile fiber (c) and the moment of inertia 
(I) were obtained from pre-test CT scans (3 mm slices, 0.9375 
mm/pixel) using an in-house computer program (Table 3).  Elastic 
modulus was calculated using two methods, one based on moment-
deflection data and one based on moment-strain data.  The elastic 
modulus calculated from deflection (Eδ) was obtained from the slope 
of a line fit through the linear part of the moment-deflection curve: 

δδ
2

12

L

IE
M =      (1) 

where L was the distance between the reaction loads and δ was the 
displacement of the crosshead.  The elastic modulus calculated from 
the strain gauge data (Eg) was obtained from the slope of a line fitted 
through the linear part of the moment-strain curve: 

g

g

a

L

c

IE
M ε⎟

⎠

⎞
⎜
⎝

⎛=
2

     (2) 

where a was the distance from the point of application of the distal 
reaction load to the strain gauge and εg was the principal longitudinal 
strain calculated from the rosette.   
 

Table 3.  Summary of geometric information.   
Specimen 

# 
L 

(mm) 2a/L 
Area 

(mm2) 
c 

(mm) 
IM-L axis 
(mm4) 

IA-P axis 
(mm4) 

1-L 425 0.79 464 16.5 66518 35917 
2-R 429 0.87 501 14.7 70771 44321 
3-L 444 0.89 449 15.4 49508 45490 
4-R 411 0.88 411 14.0 21297 26095 
5-L 393 0.92 448 13.2 33845 24343 
6-R 409 0.86 469 13.7 38264 27131 
7-L 452 0.88 576 17.1 45506 39743 
8-L 392 0.85 459 14.5 22908 30377 
1-R 424 0.89 440 14.0 65697 35242 
2-L 418 0.90 499 16.7 71038 42940 
3-R 427 0.87 444 15.2 44613 26634 
4-L 427 0.88 412 14.0 19973 27008 
5-R 385 0.96 463 14.3 37156 23189 
6-L 417 0.91 447 10.5 49706 32075 
7-R 444 0.86 579 14.4 43899 39568 

Mean 420 0.88 471 14.5 45380 33338 
SD 20 0.04 50 1.6 17286 7657 

220



 

  
Ultimate stress and strain were calculated by assuming an 

elastic-perfectly plastic (EPP) material model.  The parameters 
defined by Burstein et al. (1972) were used in the present study.  The 
amount of post-yield strain was characterized by the strain ratio (γ), 
defined as the yield strain (εy) divided by the maximum strain (εmax): 

maxε
ε

γ y=      (3) 

The value of γ is equal to 1 for a brittle material and less than one 
after yield in an EPP material.  The yield stress (σy) was assumed to 
be equal to the ultimate stress (σult).  However, this value could be 
different in tension and compression according to the yield ratio (η): 

yT

yC

σ
σ

η =      (4) 

If the material yields only in tension, η is large (∞).  In cases of 
asymmetric yielding (η ≠  1), an additional parameter is necessary to 
express the post-yield shift in the location of the neutral axis (C): 

h

c
C =      (5) 

where the distance from the neutral axis to the outer fiber is given by 
h in the linear region and c in the plastic region.   

After yield, an EPP beam is able to withstand additional 
moment before failure.  This phenomenon is characterized by the 
shape factor, which is the ratio of the plastic moment (Mp) to the 
yield moment (My) (Beer and Johnston, 1992).  Calculating the shape 
factor as a function of γ (for a given η) involves integrating the stress 
multiplied by the fiber distance to the neutral axis over the shape of 
the cross-section.  Burstein et al. (1972) derived equations expressing 
the shape factor of a solid square and solid circular cross-section as a 
function of γ and η.  Unfortunately, these equations are complicated 
and have no closed-form solution in many cases.  Therefore, an 
approximate equation form for the shape factor function was 
employed in the present study: 

( ) B

y

p
AA

M

M
γ1−−=      (6) 

where A is ostensibly the shape factor (for a fully plastic hinge) and 
B is obtained from a least-squares fit to the actual solution.  The 
accuracy of this approximation can be improved slightly if A is not 
constrained and the least-squares fit is only performed over the 
region of interest, which in this case was chosen to be 0.2 < γ < 1.  
Several equation fits were performed to derive coefficients for 
various types of beams (Table 4).  In all cases, the fits were 
extremely close to the original solution over the region of interest (R2 
> 0.99, max error ≤  2%) (Figure 2). 
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Table 4.  Shape factor function coefficients for eq. (6) and eq. (9). 

Shape η A B A’ B’ 
Hollow Circle 
(di/do = 0.5) 

1 1.596 2.042   

Circle 1 1.727 1.603   
Circle 1.25 1.977 1.280 1.983 1.314 
Circle 1.65 2.422 0.848 2.489 0.843 
Circle ∞ 3.808 0.378 4.872 0.281 

Hollow square 
(di/do = 0.5) 

1 1.393 2.690   

Square 1 1.500 2.000   
Square 1.25 1.682 1.603 1.682 1.703 
Square 1.65 2.005 1.066 2.035 1.119 
Square ∞ 2.666 0.563 3.000 0.500 
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Figure 2.  Shape factor function for selected shapes. 
 
 One objective of this study was to characterize the post-yield 
deflection of a beam.  For a linear elastic material subjected to 
bending, it can be shown that the curvature of the beam is given by:  

IE

M

dx

yd

δρ
== 1

2

2

     (7) 

where ρ is the radius of curvature.  The curvature of the beam in the 
plastic region can be shown to be dependent on the yield moment 
(My), the strain ratio (γ), and the location of the neutral axis (C): 

CIE

M

dx

yd y

p γρ δ

11
2

2

⋅==     (8) 

Circle (η = 1.65) 
Circle (η = 1.25) 
Circle (η = 1) 
Square (η = 1.65) 
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In materials with asymmetric yielding (η ≠ 1), the dependence of 
curvature on the product γC requires an additional equation 
approximation to account for the shift of the neutral axis after yield:  

( )( ) '1'' B

y

p
CAA

M

M
γ−−=     (9) 

For materials that yield symmetrically in tension and compression (η 
= 1), A’ and B’ are equal to A and B, respectively.   

Deflection of a beam is calculated by double-integrating its 
curvature along the length of the beam and applying the appropriate 
boundary conditions.  The deflection of the center of a linear elastic 
beam subjected to three-point bending is given by: 

IE

ML

δ

δ
12

2

=      (10) 

After yield, it can be shown that the deflection equation becomes: 

( ) ( )
( )( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

++
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−−
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2

1''12 B

BB
y
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CCCCC

IE

LM

γ

γγ
δ

δ

   (11) 

where 

( )
1'2

1''3 2

1 −
−=

B

AB
C       

( )
1'

1'''3
2 −

−−=
B

ABA
C      

( )( )1'21'

'''3''31 222

3 −−
−+−=

BB

BBABA
C     

The post-yield moment-deflection equation form is obtained by 
combining eq. (11) with eq. (9): 

( )( )[ ]
( ) ( )

δ
γγ

γδ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++
−−= −−

3
1

2
1'2

1

3'

2

1''12

CCCCC

CAA

L

IE
M

BB

B

p   (12) 

The equation relating the post-yield moment to the strain measured at 
the gauge is obtained by combining eq. (2), eq. (3), and eq. (6): 

( )[ ] gg
B
g

g

p AA
a

L

c

IE
M εγγ1

2
−−⎟

⎠

⎞
⎜
⎝

⎛=    (13) 

where γg represents the strain ratio at the location of the strain gauge, 
as opposed to the strain ratio at center of the bone, designated by γ.   
 Post-yield bone material properties were calculated by  
performing least-squares fits of the theoretical equations to the 
experimental data using the Solver tool in Microsoft Excel.  Four 
different shapes were studied to characterize a wide range of possible 
cross-sections, including solid circles with three different η values 
(1.65, 1.25, and 1) and a solid square with η = 1.65.  For each shape, 
eq. (1) and eq. (12) were fit to the moment-deflection data, solving 
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for γC for each specimen.  When necessary, the equations of  
Burstein et al. (1972) were used to obtain γ from γC.  Eq. (2) and eq. 
(13) were fit to the moment-strain data for each shape to obtain γg for 
each specimen.  The value of γ at the center of the bone was 
determined from γg using the following relationship: 

B
B
gA

A

a

L

A

A
1

121 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
−

⎟
⎠

⎞
⎜
⎝

⎛−
−

= γγ    (14) 

Results between matched pairs of femurs tested in P-A and L-M 
bending were statistically compared using a one-tailed paired t-test.  
Linear regressions were performed to examine the effect of various 
specimen parameters on the failure moment. 
 
RESULTS 
 
 The mean failure moment for all specimens was 458 ± 95 
Nm, which corresponded to a summed support load of 4349 ± 746 N 
(Table 5).  In femurs from the same individual, the mean failure 
moment was 4% ± 13% higher in P-A bending than L-M bending, 
but this difference was not statistically significant (p = 0.172) (Figure 
3).   The mean deflection of the center of the bone at failure was 17.6 
± 3.8 mm and was slightly higher in the P-A group (18.4 ± 4.2 mm) 
compared to the M-L group (16.7 ± 3.4 mm) (p = 0.096).  The most 
common fracture pattern was a tension wedge, which occurred in 
67% of the specimens.  Transverse fractures were also common, 
occurring in 27% of the specimens.  One specimen sustained both a 
tension and a compression wedge, with the tension wedge occurring 
beneath the point of impact. 
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Figure 3.  Comparison of bending tolerance by loading direction. 
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Table 5.  Summary of test results.  Fracture patterns are transverse 
(T), tension wedge (TW), and tension/compression wedge (T/CW). 

Spec 
# 

Load 
direction 

Moment 
(Nm) 

Rx Force 
(N) 

Defl 
(mm) 

Fx 
pattern 

AO 
code 

1-L P-A 355 3339 12.3 T 32A3.2 
2-R P-A 593 5529 22.8 TW 32B2.2 
3-L P-A 605 5445 23.9 TW 32B2.2 
4-R P-A 363 3599 19.6 TW 32B3.2 
5-L P-A 359 3651 14.5 TW 32B2.2 
6-R P-A 460 4499 14.9 T/CW 32C3.1 
7-L P-A 599 5301 20.5 T 32A3.2 
8-L P-A 373 3809 19.0 TW 32B2.2 
1-R L-M 435 4104 13.0 T 32A3.2 
2-L L-M 497 4759 16.1 TW 32B2.2 
3-R L-M 528 4943 23.3 T 32A3.2 
4-L L-M 389 3646 18.0 TW 32B2.2 
5-R L-M 356 3695 13.8 TW 32B2.2 
6-L L-M 419 4018 16.6 TW 32B2.2 
7-R L-M 543 4890 15.8 TW 32B3.2 

Mean 458 4349 17.6   
SD 95 746 3.8   

 
Different results for bone material properties were obtained 

depending on whether moment-deflection data or moment-strain data 
were analyzed (Tables 6 and 7).  The elastic modulus of the bone was 
40% ± 20% higher when calculated from strain gauge data compared 
to deflection data (p < 0.001).  The estimated degree of yielding was 
similar regardless of whether deflection data (γ = 0.34 ± 0.07) or 
strain gauge data (γ = 0.39 ± 0.10) were analyzed.  The estimated 
yield stress was also similar for both data processing methods (100 ± 
28 MPa vs. 101 ± 24 MPa).  However, the moment-deflection curves 
produced higher estimates for the yield strain (0.78% ± 0.15%) and 
ultimate strain (2.41% ± 0.63%) of the bone than did the moment-
strain curves (0.57% ± 0.06% and 1.60% ± 0.71%, respectively).  
Compared to the EPP material model, linear beam theory 
overpredicted the ultimate stress by a factor of approximately 1.6 – 
1.9 and underpredicted the ultimate strain by approximately 30% – 
40%.    

Parameter estimation for the EPP material model was not 
highly dependent on the assumed shape factor function.  Estimated 
values for the strain ratio (γ) and ultimate strain were similar for all 
four shape factor functions investigated.  Estimated values for yield 
stress and yield strain increased as the value of the shape factor 
decreased.  Relative to the reported values for an assumed circular 
cross-section with η = 1.65, estimated values for yield stress and 
yield strain were about 10% higher for the assumption of a square 
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cross-section with η = 1.65, and about 15% higher for the 
assumption of a circular cross-section with η = 1 (Figure 4).  No 
significant directional dependence was observed with respect to the 
strain ratio, yield stress, yield strain, or ultimate strain.   
 

Table 6.  Material properties derived from moment-deflection data 
assuming a circular cross-section (η = 1.65). 

Spec # Eδ (GPa) γ σy (MPa) εy  εult  
1-L 7.1 0.47 53 0.74% 1.57% 
2-R 11.5 0.30 64 0.55% 1.85% 
3-L 11.7 0.20 89 0.76% 3.82% 
4-R 14.2 0.34 127 0.90% 2.64% 
5-L 11.5 0.21 67 0.58% 2.76% 
6-R 12.1 0.37 90 0.74% 2.01% 
7-L 12.5 0.37 123 0.98% 2.68% 
8-L 12.5 0.34 126 1.01% 2.96% 
1-R 14.9 0.40 97 0.65% 1.63% 
2-L 11.8 0.36 105 0.89% 2.46% 
3-R 16.1 0.31 156 0.97% 3.17% 
4-L 13.0 0.34 107 0.83% 2.41% 
5-R 14.0 0.36 119 0.85% 2.34% 
6-L 12.2 0.34 73 0.60% 1.78% 
7-R 15.9 0.32 104 0.65% 2.02% 

Mean 12.7 0.34 100 0.78% 2.41% 
SD 2.2 0.07 28 0.15% 0.63% 

 
Table 7.  Material properties derived from moment-strain data 

assuming a circular cross-section (η = 1.65). 
Spec # Eg (GPa) γg γ σy (MPa) εy εult 

1-L 11.0 0.75 0.50 57 0.52% 1.04% 
2-R 16.3 0.55 0.39 111 0.68% 1.75% 
3-L N/A N/A N/A N/A N/A N/A 
4-R 18.9 0.57 0.42 121 0.64% 1.51% 
5-L 17.7 0.60 0.51 89 0.50% 0.98% 
6-R 16.7 0.51 0.34 90 0.54% 1.58% 
7-L 20.4 0.61 0.47 95 0.47% 0.99% 
8-L 20.6 0.52 0.27 121 0.59% 2.18% 
1-R 17.5 0.63 0.50 94 0.54% 1.07% 
2-L 17.5 0.50 0.39 100 0.57% 1.48% 
3-R 23.7 0.42 0.18 154 0.65% 3.70% 
4-L 18.9 0.50 0.35 107 0.57% 1.62% 
5-R 21.4 0.58 0.53 118 0.55% 1.05% 
6-L 11.1 0.48 0.37 63 0.57% 1.55% 
7-R 16.8 0.47 0.29 97 0.58% 1.97% 

Mean 17.7 0.55 0.39 101 0.57% 1.60% 
SD 3.5 0.08 0.10 24 0.06% 0.71% 
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Figure 4.  Equation fits showing estimated yield points (2-R). 
 

In all tests, the summed support load and gauge strain rose 
monotonically until failure (Figure 5).  The gauge strain typically 
peaked about 1 ms before the reaction load.  The timing of the peak 
strain always coincided with a high amplitude burst of acoustic 
emission.  In seven of the tests, one or two low amplitude AE bursts 
occurred prior to fracture, but the timing of these bursts generally did 
not correspond to the estimated time of yielding.   
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Although the sample size of the present study was too small 
for a detailed statistical analysis, several statistically significant 
trends were observed in the data.  Linear regression analyses showed 
that failure moment was positively related to the body mass, femur 
length, and BMD of the donor, and negatively related to donor age 
(Table 8).  Increasing donor age was also associated with a decrease 
in the elastic modulus (p = 0.071) and the degree of yielding 
(increase in γ) (p = 0.029).  There was no relationship between the 
calculated material properties of the bone material (σy, εy, εult, γ) and 
the structural strength (M) of the whole bone.   
 
Table 8.  Linear regression fits to failure moment data (M = mx + b). 

 
Age 
(yrs) 

Body mass 
(kg) 

Femur length 
(mm) 

BMD 
(g/cm2) 

m -6.31 2.52 3.28 144 
b 831 243 -1100 521 

R2 0.47 0.34 0.50 0.58 
p-value 0.005 0.024 0.003 0.003 

 
DISCUSSION 
 
 The present data demonstrate that the dynamic bending 
tolerance of the femur for mid-sized males is dramatically higher 
than results from many previous studies suggest (Table 1).  This is 
probably due to the fact that the present study used only femurs from 
male donors and tested them at dynamic loading rates.  The average 
height (177 cm) and femur length (47.4 cm) of the donors in this 
study compared very well to a 50th percentile male, although the 
average weight was somewhat greater (86 kg).  Even within this 
relatively homogeneous donor group, the influence of age, body size, 
and BMD was significant (Table 8).  Equally important was the 
finding that the bending tolerance of the femur did not differ 
significantly with loading direction in this study.  The implication is 
that a much larger pool of biomechanical data encompassing 
different loading directions may be combined to derive injury criteria 
for predicting femur fractures in pedestrians and vehicle occupants.   

The most common fracture pattern observed in this study was 
the tension wedge, which occurred in two thirds of the specimens 
tested.  The tension wedge accurately indicated loading direction in 
both P-A and L-M bending tests.  This observation is at odds with the 
results of Martens et al. (1986), who reported that all 28 of their 
midshaft fractures generated by P-A bending were compressive 
wedges.  No true compression wedge fractures were observed in this 
study.  Other femur bending studies have reported compression 
wedge fractures only very rarely (Kress et al., 1993), or not at all 
(Stromsoe et al., 1995; Kerrigan et al., 2003; Matsui et al., 2004). 
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 A method was developed to estimate elastic-plastic material 
properties from three-point bending tests.  This method addresses the 
complaint of previous investigators that it is not possible to 
determine the yield strain of bending specimens because the onset of 
yield is too gentle (Currey, 1999).  However, it must be 
acknowledged that a three-point bending test is not nearly as 
sensitive as a uniaxial tension test for determining the onset of yield.  
The method developed in this study relies on a least-squares fit of a 
rather subtle curve in the experimental data.  The difficulty is 
exacerbated by noisy data, which are common in dynamic tests.  In 
addition, a simplified shape factor function must be assumed to 
represent a complicated cross-sectional geometry.  Fortunately, the 
results reported here were relatively insensitive to the choice of shape 
factor function.  The advantage of the present approach is that both 
structural and material properties can be derived using the same data 
from a realistic whole bone bending test.  This method could also be 
applied to a three-point bending test of a small machined specimen. 
 In the present study, the strain gauge was not affixed to the 
bone at the expected fracture site out of concern that the mounting 
process would alter the material properties of the bone.  The 
mounting process involves drying the bone with ether, which may 
reduce the amount of plastic deformation prior to fracture (Burstein 
et al., 1972).  In addition, the cyanoacrylate adhesive and the strain 
gauge itself may affect the local properties of the bone.  Therefore, 
the strain gauges were placed a short distance away from the center 
of the bone and the strain at the center of the bone was calculated 
using eq. (14). 

An interesting result from this study was that the strain gauge 
measurements always predicted less strain at the center of the bone 
than the deflection measurements, in spite of the fact that these two 
measurements are theoretically redundant.  Consequently, the elastic 
modulus was 40% greater on average when it was derived from 
strain gauge data compared to deflection data.  The strain gauge data 
are presumed to be more accurate because they are a direct 
measurement.  Deflection at the center of the bone may have been 
greater than expected due to the effect of shear stresses or a varying 
bending rigidity (EI) along the length of the bone.  Regardless of the 
reason, the data demonstrate a systematic error in the estimation of 
strain-related material properties based on deflection data from whole 
bone three-point bending tests.  
 Despite the discrepancy in predicted strain values, the 
deflection and strain gauge data were in agreement with regard to the 
post-yield strain ratio (γ).  Less yielding was observed at the location 
of the strain gauge compared to the center of the bone as calculated 
from the deflection data (γg > γ).  However, when the strain ratio at 
the gauge was scaled to the center of the bone (eq. 14), the two 
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methods were generally in good agreement.  The EPP material model 
accurately predicted not only the deflection behavior at the center of 
the bone, but also the tensile strain a short distance away (~5% of the 
bone length).  This validates the use of an EPP material model to 
describe the tensile strain field due to yielding in a three-point 
bending test.  Furthermore, the values for bone material properties 
derived here are in good agreement with uniaxial tension 
experiments involving small machined specimens, although the small 
machined specimens appear to yield to a somewhat higher ultimate 
strain before failure (Reilly et al., 1974; Burstein et al., 1976; Wright 
et al., 1981; Fischer et al., 1986; McCalden et al., 1993).  This 
finding suggests that the yielding properties of whole bones in 
bending are similar to small machined specimens in tension, although 
the failure properties may be somewhat different. 

Recent pedestrian lower extremity finite element models 
incorporate elastic-plastic bone material properties obtained from the 
bone biomechanics literature and validated against structural tests of 
whole bones (Takahashi et al., 2000; Schuster et al., 2000).  Findings 
from the present study support that approach.  It is understood that an 
elastic-plastic material model of bone is only meant to be a 
phenomenological description of macroscopic behavior, and is not 
meant to imply that the microstructural mechanisms of yielding in 
bone are the similar to those seen in metals and other elastic-plastic 
engineering materials.  This study did not the address microstructural 
aspects of bone failure, other than to note that little or no AE 
occurred prior to fracture.  AE would not be expected at the onset of 
yield in a three-point bending test, because only a small portion of 
the bone yields initially.   
 
CONCLUSIONS 
 
1.) The mean dynamic bending tolerance of the 15 femurs tested in 

this study was 458 ± 95 Nm.  This value approximates the 
dynamic femur bending tolerance of a 50th percentile male. 

2.) The bending tolerance of the femur did not differ significantly 
with loading direction (p = 0.172).  

3.) Elastic-plastic bone material properties were estimated using 
strain gauge data from whole bone three-point bending tests.  For 
an assumed circular cross-section with a yield stress ratio (η) of 
1.65, the mean elastic modulus was 17.7 ± 3.5 GPa, the mean 
yield stress was 101 ± 24 MPa, the mean yield strain was 0.57% 
± 0.06%, and the mean ultimate strain was 1.60% ± 0.71%.  

4.) Deflection measurements in whole bone three-point bending tests 
underpredicted the elastic modulus, yield strain, and ultimate 
strain of bone when compared to direct strain gauge 
measurements by approximately 40%.  
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5.) Compared to an elastic-perfectly plastic material model, linear 
beam theory overpredicted the ultimate stress in the bone by a 
factor of approximately 1.6 – 1.9 and underpredicted the ultimate 
strain in the bone by approximately 30% – 40%. 
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