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Clustering periodically expressed genes from their time-course expression data could help
understand the molecular mechanism of those biological processes. In this paper, we propose a
nonlinear model-based clustering method for periodically expressed gene profiles. As periodically
expressed genes are associated with periodic biological processes, the proposed method
naturally assumes that a periodically expressed gene dataset is generated by a number of
periodical processes. Each periodical process is modelled by a linear combination of trigonometric
sine and cosine functions in time plus a Gaussian noise term. A two stage method is proposed
to estimate the model parameter, and a relocation-iteration algorithm is employed to assign
each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand
index (AARI) are employed to measure the quality of clustering. One synthetic dataset and two
biological datasets were employed to evaluate the performance of the proposed method. The
results show that our method allows the better quality clustering than other clustering methods
(e.g., k-means) for periodically expressed gene data, and thus it is an effective cluster analysis
method for periodically expressed gene data.
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1. BACKGROUND

Many biological processes such as cell-cycle division exhibit periodic behaviors. To understand the
mechanisms of these biological processes, DNA microarray experiments have been employed to produce
gene expression profiles at a series of time points, for example, the cell division cycle processes of yeast
Saccharomyces cerevisiae [1, 2], bacterium Caulobacter crescentus [3], and human being [4]. Such time-
course gene expression data provides a dynamic snapshot of most (if not all) of the genes related to the
biological development process. It is believed that clustering periodically expressed gene from their time-
course expression data could help understand the molecular mechanisms of those biological processes.

In past decade, a number of methods have been proposed for identifying and clustering periodically
expressed genes. The discrete Fourier transform method is the earliest method for identifying and clustering
periodically expressed genes [1–4]. In these papers, the discrete Fourier transform is applied to gene
expression data to get a two-dimensional vector. One component of the vector is the sum of all coefficients
of sine functions while another component is the sum of all coefficients of cosine functions. Then the
magnitude of the two-dimensional vector is used to measure periodicity of time-course gene expression
profile. The rather subjective cut-off value is taken to determine if a gene is periodically expressed. By this
way, Spellman et al. determine that 800 genes are periodically expressed out of more 6000 gene expression
profiles from yeast Saccharomyces cerevisiae. After performing cluster analysis, these 800 genes are divided
into five groups [2]. However, microarray experiments typically generate short time-course data. As pointed
in [5, 6], the frequency resolution obtained on such short time-course data by the discrete Fourier transform
is often not adequate for resolving periodicities of interest.

Authors in [7] propose a method called CORRCOS to find periodically expressed genes. CORRCOS
generates totally 101000 periodic synthetic models. Each gene expression profile is compared to each
of these 101000 models. Although it can identify periodically expressed gene, CORRCOS is too time
consuming and the cross-correlation is not real metric. In [6], authors develop another algorithm named
RAGE for detecting periodically expressed genes. Like CORRCOS, RAGE is a synthetic model-based
method. Compared with CORRCOS, RAGE is less time consuming [6]. Wichert et al. [8] propose a
statistical method to identify periodically expressed genes from their time-course gene expression profiles.
The method models gene expression profiles also as sine functions use the Fisher g-test for statistical
analysis. Given a time-course gene expression profile yt (t = 1,2, . . . ,m), the g-static is defined as

g = maxk I (ωk)
2

∑[m/2]
k=1 I (ωk)

, (1.1)
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2

, ω ∈ [0,π ] (1.2)

is called the periodogram. It is assumed that if a time-course gene expression profile has a significant
sinusoidal component with frequency ω0 ∈ [0,π ], the periodogram exhibits a peak at that frequency with
a high probability. On the other hand, if a time-course gene expression profile is purely random, the
periodogram reduces to a straight line. Based on Fisher g-test [9], Chen [10] proposes a C&G procedure to
identify periodically expressed genes from their time-course expression profiles. The g-statistic is effective
only for evenly spaced gene expression profiles. For unevenly spaced gene expression profiles, Chen et al.
propose to use Lomb-Scargle periodograms to discover statistically significant periodic gene expression
[11, 12]. However, a recent research [13] has concluded that the Fisher g-test is poor if the time-course data
is short and/or that data length is not an integer number of periods. Therefore, one can not expect to get a
good clustering based on periodically expressed genes identified from these methods.
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On the other hand, a number of clustering methods have been proposed for cluster analysis
on gene expression data. These include distance/correlation-based clustering methods (e.g., hierarchical
clustering [14], k-means clustering [15], and self-organizing maps [16]) and static model-based clustering
methods [17, 18]. In these methods, gene expression profiles are viewed as multidimensional vectors.
Distance/correlation-based clustering methods cluster genes based on the distance/correlation among their
expression profiles. Static model-based clustering methods assign genes to one of clusters if their expression
profiles may be generated by a multivariate normal distribution. These methods do not take into account the
dynamic of time-course gene expression data and thus are not efficient for periodically expressed gene data.

Recently, some dynamic model-based clustering methods have been proposed to analyze time-course
gene expression data [19, 20]. These methods employ autoregressive models to describe the dynamics of
time-course gene expression data. As periodically expressed genes are associated with periodic biological
processes, it is natural to model a periodically expressed gene data by periodic (nonlinear) function. This
paper proposes a nonlinear model based method for clustering periodically expressed genes from their
time-course expression profiles. The proposed method assumes that a periodically expressed gene dataset is
generated by a number of periodical processes which are modelled by a linear combination of trigonometric
sine and cosine functions in time plus a Gaussian noise term. A two-stage method is proposed to estimate the
model parameters, and a relocation-iteration algorithm is employed to assign each gene to an appropriate
cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure
the quality of clustering. One synthetic dataset and two biological datasets were employed to evaluate the
performance of the proposed method.

2. METHODS

2.1. Model for Periodically Expressed Gene Profiles

Let x(t) (t = 1,2, . . . ,m) be a time-course gene expression profile generated from a periodical biological
process, where m is the number of time points at which gene expression is measured. After shifting the
mean of gene expression profiles to 0, the periodicity of this time-course gene expression profile can be
modeled by a linear combination of trigonometric sine and cosine functions in time plus a Gaussian noise
term as follows [21]

x(t) = a cos(ωt)+b sin(ωt)+ ε(t), (2.1)

where a and b are the coefficients of sine and cosine function, respectively; ω is the frequency of periodic
expression data, and ε(t) represent random errors. This study assumes that the errors have a normal
distribution independent of time with the mean of 0 and the variance of σ 2. This model is equivalent to
sinusoidal function model [7, 8, 10–13]

x(t) = A sin(ωt +�)+ ε(t) (2.2)

which are widely used to generate the synthetic periodic gene expression profiles [7] and to detect the
periodically expressed genes [2, 8, 10–12]. In model (2.2), A = √

a2 +b2 is called magnitude and � =
arctan(a/b) is called the phase.

Given a time-course gene expression profile x(t) (t = 1, 2, . . . , m), estimating parameters a, b, and
ω in model (2.1) is a nonlinear estimation problem as ω is nonlinear in the model. In general, all nonlinear
optimization programs can be used to estimate parameters in model (2.1), for example, Gauss-Newton
iteration method and its variants such as Box-Kanemasu interpolation method, Levenberg damped least
squares methods, and Marquardt’s method [22]. However, these iteration methods are sensitive to initial
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values. Another main shortcoming is that these methods may converge to the local minimum of the least
squares cost function and thus cannot find the true values of the parameters.

Our observation is that noise-free model (2.1)

x(t) = a cos(ωt)+b sin(ωt) (2.3)

can be viewed as the general solution of a following second-order ordinary differential equation

ẍ(t)+ω2x(t) = 0 (2.4)

and that ω2 is linear in equation (2.4) which is independent of a and b. Therefore, we propose the following
two-step parameter estimation methods to estimate parameters a, b, and ω in model (2.2).

Step 1. Numerically calculate the second derivative of x(t). Then, based on equation (2.4), use linear least
squares method to estimate parameter ω2. In details, let

X2 = [ẍ(1), . . . , ẍ(l)]T , X1 = [x(1), . . . , x(l)]T , (2.5)

then, by the least squares method, ω2 is estimated as

ω̂2 = − X1T X2

X1T X1
, ω̂ =

√
ω̂2, (2.6)

as time-course gene expression data are discrete, the second derivative ẍ(t) is estimated by the central finite
difference formula as follows:

ẍ(t) = x(t +1)+ x(t −1)−2x(t)

�2
for t = 2, . . . ,m −1, (2.7)

where � is time difference between two consecutive gene expression data points. From (2.7), the length of
vectors X2 and X1 is m −2. Note that if the value of ω̂2 calculated by (2.6) for a gene is negative, this gene
will be judged not to be periodically expressed.

Step 2. Substitute the estimated value of ω into (2.2). Apply the maximum likelihood method to model (2.1)
to estimate parameters a and b. In detail, let

X = [x(1), . . . , x(m)], A =
[

cos(�ω̂), . . . ,cos(m�ω̂)

sin(�ω̂), . . . ,sin(m�ω̂)

]

(2.8)

by the least squares method, a and b are estimated as

[
â

b̂

]

=
(

AAT
)−1(

AX T
)
. (2.9)
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2.2. Nonlinear Model-Based Clustering

2.2.1. The Mixture Model

In this study, it is assumed that a time-course gene expression dataset is a collection of periodically
expressed gene profiles which belong to several clusters, and profiles in each cluster can be described by
model (2.1) or (2.2) with different parameters. Let θk = [ak,bk,ωk,σ

2
k ] be parameters of model (2.1) for the

kth cluster. Then the task of nonlinear model-based clustering is as follows: for a given number of cluster
K , divide a time-course gene expression dataset into a partition C = {C1, . . . ,C k , . . . ,CK } using model
(2.1) with parameters θk = [ak,bk,ωk,σ

2
k ] (k = 1, . . . , K ) which minimize

f (	) =
K∑

k=1

∑

x∈Ck

m∑

i=1

[x(i)−ak cos(i�ωk)−bk sin(i�ωk)]
2, (2.10)

where the parameters 	 consist of {θk,k = 1, . . . , K }.

2.2.2. Estimation of Model Parameters

According to the parameter estimation method proposed in previous section for a single time-course
expression profile, for the kth cluster parameters, θk = [ak,bk,ωk,σ

2
k ] can be estimated as

ω̂2
k = −

∑
x∈Ck

X1T X2
∑

x∈Ck
X1T X1

, ω̂k =
√

ω̂2
k ,

[
âk

b̂k

]

= 1

|Ck |
∑

x∈Ck

(
AAT

)−1(
AX T

)
,

σ̂ 2
k = 1

m|Ck |
∑

x∈Ck

m∑

i=1

[x(i)− âk cos(i�ω̂k)−bk sin(i�ω̂k)]
2,

(2.11)

where |Ck | represents the number of time series in cluster Ck ,
∑K

k=1 |Ck | = N .

2.2.3. Algorithm

This study employs a relocation-iteration algorithm as shown in Algorithm 1 to estimate the parameters such
that the cost function (2.10) is minimized. In 2(a) of Algorithm 1, 	t represents the estimated parameters
in cost function (2.10) at iteration t while, in 2(b), parameters ât

k, b̂t
k , and ω̂t

k represent the parameters of
model k at iteration t .

2.3. Evaluation

In this study, we use the adjusted Rand index (ARI) [23] to evaluate the quality of the clustering.
Consider two partitions of N objects: the r -cluster partition U = {u1, . . .ur } and the s-cluster partition
V = {v1, . . . ,vs}. One may construct a contingency table (matrix) as in Table 1.

In Table 1, entry ni j is the number of objects that are both in clusters ui and v j , i = 1, . . . ,r ,
j = 1, . . . ,s. Let ni. = ∑s

j=1 ni j and n. j = ∑r
i=1 ni j denote the sum of row i (i = 1, . . . ,r ) and the
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(1) Select an initial partition for given the number of clusters, K
(2) Iteration (t = 1,2, . . .):

(a) estimate the parameter 	t based on the present partition by using (2.11);
(b) generate a new partition by assigning each sequence x to cluster k for which the

value of s2 = ∑m
i=1[x(i)− ât

k cos(i�ω̂t
k)− b̂t

k sin(i�ω̂t
k)]

2 is minimum.
(3) Stop if the improvement of the cost function (2.10) is below a given threshold, the
cluster memberships of time series do not change.

Algorithm 1: Algorithm for nonlinear model-based clustering.

TABLE 1: Contingency table for two partitions of n objects.

v1 v2 vs Total

u1 n11 n12 · · · n1s n1.

u2 n21 n22 · · · n2s n2.

...
...

...
...

...

ur nr1 nr2 · · · nrs nr.

Total n.1 n.2 · · · n.s n.. = n

sum of column j ( j = 1, . . . ,s) in the contingency matrix, respectively, and let V = N (N − 1)/2 (the
number of pairs of N objects). Based on the contingency matrix of two partitions, the ARI is defined as
[23]

ARI =
∑r

i=1
∑s

i=1

(ni j
2

)− (1/V )
∑r

i=1

(ni.
2

)∑s
i=1

(n. j
2

)

(1/2)
[∑r

i=1

(ni.
2

)+∑s
i=1

(n. j
2

)]− (1/V )
∑r

i=1

(ni.
2

)∑s
i=1

(n. j
2

) . (2.12)

The expected value of ARI is 1 when they matched perfect and 0 when the two partitions are selected at
random.

If the true cluster labels for some dataset are known, the proposed clustering methods can be applied
these datasets to obtain new cluster labels. Then ARI can be calculated for these two partitions. If ARI is
close to 1, one can say that the proposed clustering method is in agreement with the true clusters. However,
for real-life gene expression datasets, the true cluster labels are typically unknown. For this case, this study
adopts a bootstrapping approach as shown in Algorithm 2 [20] to evaluate the proposed clustering methods.
For the given number of clusters, K , the average ARI (AARI) reports the quality of the clustering result
obtained from the evaluated clustering methods. Accordingly, the larger AARI, the better the quality of the
clustering is, that is, the better the performance of the clustering method is.

3. EXPERIMENTAL RESULTS AND DISCUSSION

This study employs a synthetic dataset and two biological datasets to investigate the performance of the
proposed method in different aspects.
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(1) Repeat the following B times (where B is a preset integer number).
(a) Randomly divide the original dataset into two nonoverlapping sets, a

learning set L , and a test set T .
(b) Apply the evaluated method to the learning set L to obtain a

partition P(◦, L).
(c) Construct a predictor (classifier) C(◦, L) using the cluster labels from the

partition P(◦, L).
(d) Apply the predictor C(◦, L) to the test set T to get the predicted partition

P̃(◦,T ).
(e) Apply the evaluated method to the test set T to obtain a partition P(◦,T ).
(f) Calculate the ARI of partitions P̃(◦,T ) and P(◦,T ).

(2) Calculate the average ARI (AARI) over the B times as the measure index of the
proposed clustering method.
(3) For the various number of clusters, K , repeat the procedure described in steps
(1) and (2) above to get AARI(K ), and then plot AARI(K ) with respect to K .

Algorithm 2: The procedure for evaluating proposed clustering method.

TABLE 2: Parameters for synthetic data.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ak 3.4397 6.9227 9.9126 12.1470 14.8819

bk 2.3705 6.0603 8.9280 12.2379 14.8195

wk 5.1516 3.1085 1.9359 1.5344 1.2413

σk 0.4000 0.4000 0.4000 0.4000 0.4000

nk 136 300 279 239 120

3.1. Synthetic Dataset (SYN)

The synthetic dataset is generated by model (2.1). Let xit be the simulated expression (log-ratio) values of
gene i at time point t in the dataset, that is,

xit = ak cos(wkt)+bk sin(wkt)+ εi t , i = 1,2, . . . ,n, t = 1,2, . . . ,m; k = 1,2, . . . , K , (3.1)

where n is the number of genes, m is the number of time points, and K is the number of clusters.
In this study, parameters for synthetic data ak, bk, and wk are randomly chosen as follows:

ak ∼ N
(

3k,d2
)
, bk ∼ N

(
3k,d2

)
, wk ∼ U

(
2π

k +1
,

2π

k

)

, ε ∼ N
(

0,σ 2
)
,

K = 5, n = 20, nk ∼ U (100, 300),

(3.2)

where nk is the number genes in the kth cluster. The resulted parameters for synthetic data are shown in
Table 2.

For various numbers of clusters, we run the proposed method described in Algorithm 1 with
randomly chosen initial partitions, with the initial partitions from k-means results as and to the k-means
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FIGURE 1: Plot of ARRI over different number of clusters for synthetic dataset.

TABLE 3: The values of AARI for different clustering methods on synthetic data.

No. of clusters 2 3 4 5 6 7 8 9 10

Random initial 0.2638 0.4391 0.7734 0.9778 0.8766 0.8361 0.8140 0.7991 0.7895

k-means 0.2586 0.5088 0.6335 0.6970 0.7794 0.7731 0.7620 0.6758 0.6904

k-means initial 0.2310 0.4391 0.7889 0.9913 0.8824 0.8328 0.8185 0.8027 0.7771

TABLE 4: The number of genes after filtering.

α 0.10 0.20

ELU 691 1207

BAC 471 658

methods. The ARI between clustering results and the known true cluster labels is calculated. The values of
AARI are calculated over 20 runs and shown in the Table 3 and Figure 1.

From Figure 1, the proposed method with both initial partitions randomly chosen and those from
k-means results has greater value of AARI than k-means when the number of clusters is greater than 3.
Furthermore, when the number of clusters is the true value of 5, the AARI of the proposed method with
both initial partitions reaches its maximum, which makes sense. However, the AARI of k-means method
did not reach its maximum when the number of clusters is 5. Therefore, we can conclude that the proposed
method outperforms the k-means in terms of AARI.

3.2. Real-Life Datasets

In this study, two real-life datasets are employed to illustrate the proposed method: ELU and BAC. ELU
consist of expression profiles of 4304 genes without missing data. Expression profiles are obtained from
yeast cell cycle division process through Eluration-synchronized experiments conducted by Spellman et al.
[2]. Each expression profile has 14 equally spacing time points. BAC consists of expression profiles of 1590
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FIGURE 2: Plot of ARRI over different number of clusters for ELU after filtering.

genes without missing data. Expression profiles are measured during the cell cycle division process of the
bacterium Caulobacter crescentus [3]. The measurements were taken at 11 equally spaced time points over
150 minutes. Both datasets are preprocessed in the following two steps.

Step 1. Shift the mean of each gene expression profile to 0.

Step 2. Filter the dataset with F-test at the significance level α, that is,

H0 : xi (t) = εi t , H1 : xit = a cos(wt)+b sin(wt)+ εt ,

F =
(
RH0 − RH1

)
/2

RH1/(m −2)
∼ F(2,m −2),

(3.3)

where RHi is the sum of squared errors under the specific hypothesis and m is the number of time points.
Keep the genes which reject the null hypothesis (show periodical behaviours) [21].

After these two steps, the number of genes remains for different significant level as in Table 4. Then
we run the evaluation procedure proposed in Algorithm 2 on these selected gene expression profiles. The
AARIs of the proposed method and k-means over various numbers of clusters are plotted in Figures 2 and 3
for dataset ELU and BAC, respectively. From Figures 2 and 3 the results from both real-life datasets show
that the proposed method outperforms the k-means in terms of AARI.

4. CONCLUSIONS

This paper has presented a nonlinear model-based method for clustering periodically expressed genes from
their time-course expression profiles. In this method, profiles of periodically expressed genes and thus the
cluster of profiles are modelled by a linear combination of trigonometric sine and cosine functions in time
plus a Gaussian noise term which is equivalent to a sinusoidal function model [1–4, 6–13, 17–19]. Although
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FIGURE 3: Plot of ARRI over different number of clusters for BAC after filtering.

this model is not new, the existing methods are not based on parameter estimation technique, especially
not estimating the frequency in the model as it is nonlinear in parameter. In the presented method, a two
step linear least squares method is proposed to estimate all model parameters including the frequency for
each clusters. Computational experiments on one synthetic dataset and two biological datasets show that
the proposed method outperforms the traditional clustering methods such as k-means in terms of AARI,
which indicate that the proposed method can effectively cluster periodically expressed genes from their
time-course expression profiles.
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